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Origins

● The study originates in attempts to use geologic/ 
geomechanic constraints in seismic imaging.

● Can geologic/ geomechanic data be used for the 
regularization of e.g. least-squares migration to mitigate 
illumination artifacts?
- acquisition-related illumination artifacts (YES!)
- model-related illumination artifacts (unknown)

● Well tie-ins, steering filters (Clapp et al. 1997) can be used 
for the regularization of  e.g. tomographic inversion. 
Beyond that, quantitative connections are controversial.

● What we don't do: Carcione et al. 2003, Kvam et al. 2005, 
Varela et al. 2006. 
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Lacq Subsidence (Segall et al. 1994)
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Lacq Gas Reservoir
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Objectives

● Develop a robust numerical technique for modeling 
displacements and inverting pore-pressure change for 
known blocky or layered poroelastic medium.

● Interpolate partial displacement data without detailed prior 
knowledge of poroelastic medium parameters.

● Generate time-lapse seismic data from strain-induced 
velocity updates (Hatchell, Bourne 2005) .

● Generate synthetic time-lapse data where monitor 
acquisitions have illumination gaps.
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Quasistatic Poroelastic Model
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- 4 equations for displacement and pore 
pressure change (p); μ is shear modulus, ν 
Poisson's ratio, α Biot coefficient, κ 
permeability, η fluid viscosity, S is the storage 
coefficient.
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The Importance of Analytic Solutions

● Analytic Green's function for the fully-coupled system in half-
space with a free boundary is unknown.

● We use fluid-to-solid coupling approximation where the 
elastostatic Green's tensor (Mindlin 1936) is used to generate 
displacement Green's tensor due to a concentrated dilatational 
force.

● Analytic solutions can be used to construct asymptotic solutions 
for slowly-varying or blocky models.

● Numeric evaluation of Green's tensor or a BVP solution would 
require e.g. finite elements – expensive, especially in an 
inversion framework.

● Alternative numeric techniques exist – e.g., Wang et al. 2003.
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Modeling I
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- where g is Mindlin's Elastostatic tensor 
(Segall et al. 94 use axisymmetric Green's 
tensor, we consider the general asymmetric 
case)
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Asymmetric Pressure Drop Synthetic
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Subsidence Modeling I
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The pore pressure change is estimated right 
above the reservoir, and used to derive 
boundary conditions for the elastostatic 
system. The latter is solved by a parallelized 
1D banded BVP solver for a layered or 
blocky model.

Modeling II
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Subsidence Modeling II
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Inversion

● Numerically inverting the above integral transform is an ill-
conditioned least squares problem.

● However, the underlying process is diffusive and multi-scale 
inversion can be easily applied.

● The output of inversion on a coarser grid is supplied as an initial 
approximation to inversion on a denser grid.

● Inversion of the simulated Lacq data is achieved within 4 
iterations.

● Achieved robust inversion from only partial displacement data 
(e.g., only subsidence)
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Application to Asymmetric Synthetic
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Application to Asymmetric Synthetic
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Application to Asymmetric Synthetic
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Application to Lacq Data - subsidence
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Application to Lacq Data - subsidence
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Application to Lacq Data - subsidence



SEP147, pp 193-217
  

 musa@sep.stanford.edu 21

Application to Lacq Data – pp drop
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Application to Lacq Data
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Application to Lacq Data
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exp_tk_*.* object-oriented framework

● EXPTK_INSTALL_DIR/exp_tk_*.*/src/tests/poroelastic_deform

● Modeling operators are implemented as classes (not procedure 
pointers) allowing a hierarchical implementation of poroelstic, 
elstoplastic and thermoelastic earth models – e.g, 
poroelastic_green extends green_tensor, 
poroelastic_reservoir extends base_reservoir, etc.

● Data structures are stored in header/binary files similar to SEP 
datasets but allowing arbitrary data geometry and distribution.

● The framework is 100% thread-safe, including data IO.

● No external dependencies except Intel Fortran >=12.0.
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Velocity and density from deformation
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(Hatchell and Bourne, 2005). Extract time-
shifts using cross-correlation where available, 
estimate R, compute velocity change from 
deformation and R.
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Conclusions and Perspectives

● Pore-pressure change can be inverted from only partial 
displacement data, suggesting a technique for Physics-based 
regularization of displacement interpolation.

● Application to real time-lapse seimic and subsidence data is 
required to validate the regularization approach.

● Blocky or slowly-varying models can be handled using 
asymptotic methods.

● Pseudo-differential operator factorization of the elastodynamic 
equations proposed in this work has resulted in the development 
of a computationally efficient one-way multicomponent elastic 
wave extrapolation method (SEP148).
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