Tomographic Full Waveform Inversion (TFWI)

Biondo Biondi & Ali Almomin

SEP 147 pp. 1-12

"Deep water" Marmousi model

TFWI result

- Reflections present in data low frequencies help inversion of model long wavelengths
- Transmissions effects present in data high frequencies help inversion of model long wavelengths

- Reflections present in data low frequencies help inversion of model long wavelengths
- Transmissions effects present in data high frequencies help inversion of model long wavelengths

- Reflections present in data low frequencies help inversion of model long wavelengths
- Transmissions effects present in data high frequencies help inversion of model long wavelengths

Gaussian anomaly model

Shots recorded in the middle

"Old" data (8-40 Hz)

"New" data (4-40 Hz)

Model updates

- Reflections present in data low frequencies help inversion of model long wavelengths
- Transmissions effects present in data high frequencies help inversion of model long wavelengths

Model updates

"New" data (4-40 Hz)

Data modeled after 1st iteration

Full bandwidth (4-50 Hz)

Data modeled after 1st iter. (zoom)

Full bandwidth (4-50 Hz)

Recorded data (zoom)

Full bandwidth (4-50 Hz)

Data modeled after 1st iter. (zoom)

Full bandwidth (4-50 Hz)

Recorded data (zoom)

Full bandwidth (4-50 Hz)

Solves for one model (v)

Data-domain objective function

Include tomographic component

Avoid cycle skipping

Solves for one model (v)

Has data-domain objective function

Include tomographic component

Avoid cycle skipping

Solves for one model (v)

Has data-domain objective function

Includes tomographic component

Avoid cycle skipping

Solves for one model (v)

Has data-domain objective function

Includes tomographic component

Avoids cycle skipping

Broadband inversion: try #1 (FWI)

- ✓ Solves for one model (v)
- ✓ Has data-domain objective function
- ✓ Includes tomographic component
- Avoids cycle skipping

$$J_{\mathbf{d}}(\mathbf{v}) = \|\mathfrak{L}(\mathbf{v}) - \mathbf{d}\|_{2}^{2}$$

£: modeling operator,

v: velocity model,

d: recorded data.

One reflector model

Recorded data

One reflector – High velocity

Recorded data

Data modeled after 1st iteration

Broadband inversion: try #2 (EFWI)

- ✓ Solves for one model (v)
- ✓ Has data-domain objective function

 $J_{\mathbf{d}}(\tilde{\mathbf{v}}) = \left\| \tilde{\mathfrak{L}}(\tilde{\mathbf{v}}(\mathbf{h})) - \mathbf{d} \right\|_{2}^{2}$

 $\tilde{\mathfrak{L}}$: new modeling operator,

 $\tilde{\mathbf{v}}(\mathbf{h})$: extended velocity,

d:recorded data.

X Includes tomographic component

Symes, 2008 Geophysical Prospecting

✓ Avoids cycle skipping

Velocity model function of subsurface offsets???

- It requires solution of an "extended wave equation" where Laplacian of wavefield is convolved with velocity squared instead of simply multiplied.
- It is expensive!
- Assuring stability is a challenge because velocity may become negative at offsets ≠ 0

Broadband inversion: try #2 (EFWI)

- ✓ Solves for one model (v)
- ✓ Has data-domain objective function

$$J_{\mathbf{d}}(\tilde{\mathbf{v}}) = \left\| \tilde{\mathfrak{L}}(\tilde{\mathbf{v}}(\mathbf{h})) - \mathbf{d} \right\|_{2}^{2}$$

 $\tilde{\mathfrak{L}}$: new modeling operator,

 $\tilde{\mathbf{v}}(\mathbf{h})$: extended velocity,

d:recorded data.

- X Includes tomographic component
- ✓ Avoids cycle skipping

Broadband inversion: TFWI

- ✓ Solves for one model (v)
- ✓ Has data-domain objective function
- ✓ Includes tomographic component
- ✓ Avoids cycle skipping

$$J_{\text{TFWI}}(\tilde{\mathbf{v}}) = J_{\mathbf{d}}(\tilde{\mathbf{v}}) \mp \|\mathfrak{F}(\tilde{\mathbf{v}})\|_{2}^{2}$$

 $\mathfrak{F}(\tilde{\mathbf{v}})$: measures focusing of $\tilde{\mathbf{v}}$

- -Stacking after RMO,
- + DSO.

Broadband inversion: TFWI

- ✓ Solves for one model (v)
- ✓ Has data-domain objective function
- ✓ Includes tomographic component

✓ Avoids cycle skipping

$$J_{\text{TFWI}}(\tilde{\mathbf{v}}) = J_{\mathbf{d}}(\tilde{\mathbf{v}}) \mp \|\mathfrak{F}(\tilde{\mathbf{v}})\|_{2}^{2}$$

 $\mathfrak{F}(\tilde{\mathbf{v}})$: measures focusing of $\tilde{\mathbf{v}}$

- -Stacking after RMO,
- +DSO.

Symes, 2008 Geophysical Prospecting

One reflector – High velocity

Recorded data

Model update at 1st iter.

Common Image Gather

One reflector – High velocity

Recorded data

Model update at 1st iter.

Common Image Gather after application of DSO

Gaussian anomaly model

Model update at 1st iteration

Update - clip based on anomaly

TFWI result after 400 iterations

TFWI result- clip based on anomaly

Common Image Gathers

First iteration

400 iterations

Modified Marmousi model

Starting model for inversion

Result of FWI after ∞ iterations

Result of EFWI after 610 iterations

Result of TFWI after 610 iterations

Modified Marmousi model

Data residuals (J_d) vs. iterations

CIGs: EFWI vs. TFWI

EFWI – 610 iterations

TFWI - 610 iterations

Conclusions Good news

 Simultaneous inversion for all model wavelengths and from all data frequencies is attractive, in particular with modern data.

TFWI enables simultaneous inversion and

Conclusions Good news

- Simultaneous inversion for all model wavelengths and from all data frequencies is attractive, in particular with modern data.
- TFWI enables simultaneous inversion and avoids cycle skipping of tomographic component.

Conclusions Not so good news

- TFWI is expensive because:
 - Modeling operator with extended velocity is computational demanding,
 - Convergence seems to be slow.

Conclusions Not so good news

- TFWI is expensive because:
 - Modeling operator with extended velocity is computational demanding,
 - Convergence seems to be slow.
- TFWI assumes constant density and no AVO.

Conclusions Not so good news

- TFWI is expensive because:
 - Modeling operator with extended velocity is. computational demanding,
 - Convergence seems to be slow.
- TFWI assumes constant density and no AVO.
- Ali's presentation addresses both concerns!

