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Estimation of Q from surface-
seismic reflection data in data 

space and image space 

Stanford Exploration Project 



Why Q? 
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 In reservoir characterization: 
 Very sensitive to rock and fluid properties 

(saturation, porosity, permeability, etc. ) 
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Why Q? 

3 

 In seismic imaging: 
 Enhances image quality/sharpness  
 (include Q in deconvolution, stacking, 
migration, inverse Q filtering, etc.) 
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Why Q? 
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 In seismic imaging: 
 Corrects amplitude and phase of seismic data 
  (AVO and anisotropy analysis)  
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Why Q? 
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 In seismic imaging: 
 Improve the accuracy of full waveform 

inversion 
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Why Q? 
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 In seismic-acquisition design 
 Helps determine how much signal may reach 

the target 
 Enables acquisition parameters to be 

optimized 
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Conventional ways of Q estimation 
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 Estimation of Q is based on 
 Stacked traces 
 Ray theory 
 Time domain 
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 (Quan and Harris, 1997; Plessix, 2006; Rickett, 2006, 2007, etc) 



Conventional ways of Q estimation 
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 Estimation of Q is based on 
 Stacked traces 
 Pros: has optimum S/N ratio 
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 (Quan and Harris, 1997; Plessix, 2006; Rickett, 2006, 2007, etc) 



Conventional ways of Q estimation 

9 

 Estimation of Q is based on 
 Stacked traces 

    Cons: has a distorted attenuation signature 
•   path lengths 
•   spectral distortions from NMO stretch 
•   reflectivity-transmissivity effects 
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 (Quan and Harris, 1997; Plessix, 2006; Rickett, 2006, 2007, etc) 



Conventional ways of Q estimation 
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 Estimation of Q is based on 
 Ray theory 

    Pros:  is easily understood and implemented;                   
       has low computational cost 
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 (Quan and Harris, 1997; Plessix, 2006; Rickett, 2006, 2007, etc) 



Conventional ways of Q estimation 
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 Estimation of Q is based on 
 Ray theory 

    Cons:  can not handle complex structure 
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 (Quan and Harris, 1997; Plessix, 2006; Rickett, 2006, 2007, etc) 



Proposed method 
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 Estimation of Q is based on 
 Q versus offset/angle analysis (QVO1/QVA) 

 Wave equation theory 
 Image domain 

Stanford Exploration Project 

[1]: Dasgupta, R. and R. A. Clark, 1998, Estimation of Q from surface 
seismic reflection data: Geophysics, 63, 2120–2128. 



Proposed method 
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 Estimation of Q is based on 
 Q versus offset/angle analysis (QVO1/QVA) 

 Pros: helps reduce attenuation signature  
        distortion 

Stanford Exploration Project 

[1]: Dasgupta, R. and R. A. Clark, 1998, Estimation of Q from surface 
seismic reflection data: Geophysics, 63, 2120–2128. 



Proposed method 
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 Estimation of Q is based on 

 Wave equation theory 
 Image domain 
   Pros: can handle the complex structure in the 

subsurface 
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Proposed method 
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 Estimation of Q is based on 

 Wave equation theory 
 Image domain 
   Pros: has high S/N ratio 
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Theory  
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Two popular ways of estimating Q 
 Central frequency shift 
 Spectral ratio 

Stanford Exploration Project 



Theory  
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Two popular ways of estimating Q 
 Central frequency shift 
 Spectral ratio 
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Theory  
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Δfc = σ s
2 π

Qv
dl

ray∫
σ s

2 :  variance of source spectrum
v: velocity



Theory  
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Two popular ways of estimating Q 
 Central frequency shift 
 Spectral ratio 

Stanford Exploration Project 



Theory  
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R∗ :  non-attenuated spectra
R:  attenuated spectra



Theory  
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Theory  
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Theory  
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Theory  
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 Time domain   Image domain 

Angle/Offset 

Δfc
or
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0 0 

Angle/Offset 
Δk
or
Slope
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Numerical test 
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 Estimation of Q from data space 
 Central frequency shift 

 Estimation of Q from image space 
 Central frequency shift 
 Spectral ratio 
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Numerical test 
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 Estimation of Q from data space 
 Central frequency shift 

 Estimation of Q from image space 
 Central frequency shift 
 Spectral ratio 
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Incorporating Q in one-way wave 
equation 
 Assume no dispersion 

 
v(ω ) = v 1+ i
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Model 
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-2000 2000 x[m] 

z[m] 

1500 

Q=50 (With attenuation) 
Q=99999(Without attenuation) 
Vel=2000 m/s 
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Central frequency  
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Without 
attenuation 
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Central frequency 
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With attenuation 
(Q=50) 
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Velocity scan 
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t

x slowness 

τ
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Q scan 
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z

x 1/Q 

Δfc
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Q scan 



Numerical test 
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 Estimation of Q from data space 
 Central frequency shift 

 Estimation of Q from image space 
 Central frequency shift 
 Spectral ratio 
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Conventional migration 
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   d : data 
   m : model 
   F : forward modeling operator 

d = Fm
m = FTd
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Q compensation 
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   d : data 
   m : model 
   F :  forward modeling operator 
   A : attenuation operator 

d = AFm
m = FTA−1d

Stanford Exploration Project 



43 

Without 
attenuation 
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Conventional 
migration 
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Q compensation 
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Without 
attenuation 
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Work flow 

47 

 First, take one common midpoint to compute the 
image- wavenumber shift/slope in its angle-
domain common-image gathers after Q 
compensation. 
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Work flow 
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 First, take one common midpoint to compute the 
image- wavenumber shift/slope in its angle-
domain common-image gathers after Q 
compensation. 
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Work flow 
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 First, take one common midpoint to compute the 
image- wavenumber shift/slope in its angle-
domain common-image gathers after Q 
compensation. 

kimage = 4π f / v

f : frequency
v: velocity
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Work flow 
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 Second, an inverse shift correction is applied 
to the gathers, then compute the Q scan 

Stanford Exploration Project 



Work flow 
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 Second,       an inverse NMO is applied to the 
gathers, then compute the Q scan 

≈
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Work flow 

52 

 Second,       an inverse NMO is applied to the 
gathers, then compute the Q scan 
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Work flow 
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 Second,       an inverse NMO is applied to the 
gathers, then compute the Q scan 
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Work flow 

54 

 Second,       an inverse NMO is applied to the 
gathers, then compute the Q scan 

≈
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Numerical test 
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 Estimation of Q from data space 
 Central frequency shift 

 Estimation of Q from image space 
 Central frequency shift 
 Spectral ratio 
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Image wavenumber  
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Q scan 
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Numerical test 
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 Estimation of Q from data space 
 Central frequency shift 

 Estimation of Q from image space 
 Central frequency shift 
 Spectral ratio 

Stanford Exploration Project 



59 Stanford Exploration Project 



60 Stanford Exploration Project 

Q scan 



Spectral ratio vs. Central frequency shift  
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 Minimize the large error (e.g. abrupt jump) 

Stanford Exploration Project 



Spectral ratio vs. Central frequency shift  
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 Take the f/k band of interests 
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Spectral ratio vs. Central frequency 
shift  

Central k shift Spectral ratio 
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Spectral ratio vs. Central frequency 
shift  

Central k shift Spectral ratio 
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Future Work 
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 Wave-equation migration Q analysis (WEMQA) 

Stanford Exploration Project 



Conclusion 
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 Analyzed Q versus offset (QVO) or Q 
versus angle (QVA) in both data domain and 
image domain 
 Well estimated Q  
 Spectral ratio method has advantage over 

central f/k shift method in image domain 
 WEMQA is needed for more complex model  
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 Analyzed Q versus offset (QVO) or Q 
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Conclusion 
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 Analyzed Q versus offset (QVO) or Q 
versus angle (QVA) in both data domain and 
image domain 
 Well estimated Q  
 Spectral ratio method has advantage over 

central f/k shift method in image domain 
 WEMQA is needed for more complex model  
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Thank You 
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Outline 
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 The importance of estimation of Q 
 Proposed method 
 Numerical tests 
 Future work 
 Conclusion 
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Conventional ways of Q estimation 
 (Quan and Harris, 1997; Plessix, 2006; Rickett, 2006, 2007, etc) 
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 Estimation of Q based on 
 Stacked traces 

       Cons: need the reference/source information 

 Ray theory 
 Time domain 



Proposed method 
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 Estimation of Q is based on 
 Q versus offset analysis 
   Pros: need no reference/source information 

 Wave equation theory 
 Image domain 



Theory  
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Without 
attenuation 
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With attenuation 
(Q=50) 



Q spectra 
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adj 



Q migration 

79 

   d : data 
   m : model 
   F : downward continuation operator 
   A : attenuation operator 

d = AFm
m = FTATd



Q migration 
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   d : data 
   m : model 
   F : downward continuation operator 
   A : attenuation operator 

d = AFm
m = FTATd Further decay 
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Q migration 



Amplitude 
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  migration   Compensation 

- - + + 



Work flow 
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 First, take one common midpoint to compute the 
image- wavenumber shift/slope in its angle-
domain common-image gathers after Q 
compensation. 

kimage = 4π f / v = kz / cosθ



84 

Q scan: adj 



85 

 

Δkz 
kimage cosθ
cosθ

Vertical wavenumber  
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Slope 
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Q scan: adj 


