
Linearised inversion with GPUs

Chris Leader* and Robert Clapp

SEP147 - p139

Tuesday May 22nd

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 1



Presentation goals

Last year:

Reverse Time Migration on GPUs

Random boundaries to remove I/O
Single card solution

Today:

Brief recap
Extending to linearised inversion
Extending to mutli-GPU solutions

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 2



Table of contents

1 Recap

2 Domain decomposition

3 Linearised inversion

4 Conclusions

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 3



Last year

We discussed approaches to GPU based Reverse Time
Migration

In particular, trying to solve:

Computational bottleneck

I/O bottleneck

We did this by:

Using optimised GPU wave propagation kernels

Using random boundaries to remove I/O from the
RTM loop

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 4



Memory heirarchy - GPU

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 5



Conventional algorithm

Forward model the source wavefield

Save this to disk (z , x , y , t)

Back propagate recorded data
At imaging time step?

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 6



Conventional algorithm

Forward model the source wavefield

Save this to disk

Back propagate recorded data
At imaging time step?

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate

Computational bottleneck

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 7



Conventional algorithm

Forward model the source wavefield

Save this to disk

Back propagate recorded data
At imaging time step?

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate

Computational bottleneck

IO bottleneck

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 8



GPU wave propagation

Follow Micikevicius, 2009

Minimise global memory read redundancy

Break wavefield into blocks, store in shared
memory

Use texture memory for velocity array

Cached (useful for adjoint propagation)

Normalised indexing option

Out of boundary clamping =⇒ reduce boundary
allocation

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 9



CPU vs GPU

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 10



GPU implementation

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 11



Conventional algorithm

Forward model the source wavefield

Save this to disk (z , x , y , t)

Back propagate recorded data
At imaging time step?

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate

IO bottleneck

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 12



GPU performance

PCIe: ∼ 2 Gb/s Disk: ∼ 200 Mb/s

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 13



GPU performance

PCIe: ∼ 2 Gb/s Disk: ∼ 200 Mb/s

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 13



GPU performance

PCIe: ∼ 2 Gb/s Disk: ∼ 200 Mb/s

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 13



IO and computation balancing

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 14



IO and computation balancing

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 15



Memory considerations

Fermi global memory: 6 GBytes

RTM objects that must be allocated:

Four 3D wavefield snapshots

Recorded data (one shot)

Velocity model

Image

If our domain is larger than 6003:

Decompose our propagation across multiple GPUs

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 16



Recap summary

We can accelerate wave propagation by at least an
order of magnitude

We can remove I/O during the RTM main loop by
using random boundaries

Stacking more than 50 shots =⇒ no artifacts

We have to remain very aware of memory limitations

Especially for more complicated propagation

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 17



Table of contents

1 Recap

2 Domain decomposition

3 Linearised inversion

4 Conclusions

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 18



Domain decomposition

In 1D:

Each block has to overlap

In 3D, break domain along slowest axis

More allocation, but easier communication

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 19



GPU Implementation

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 20



CUDA 4.0

CUDA 4.0 and Fermi architectures have made several
things easier / possible

Peer to Peer (P2P) GPU communication

CPU and GPU use a Unified Virtual Address
space (UVA)
The GPU can derefence a pointer:

On itself
On another GPU
On the host

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 21



Multi-GPU programming

Main points:

Faster/more convenient device-to-device transfer
Transferred along shortest PCIe path
Copies can overlap

PCIe links are duplex
Send/receive can be done simultaneously
...providing paths are in opposite directions

Communication can be hidden by overlapping
with kernels

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 22



Visualising halo exchange

Computation order:

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 23



Visualising halo exchange

Calculate halo region, set to halo stream[i]

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 24



Visualising halo exchange

Calculate internal region, set to internal stream[i]

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 25



Visualising halo exchange

During internal computation, send halo to the right

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 26



Visualising halo exchange

Then, send to the left

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 27



Visualising halo exchange

Send halo to the right, receive from the left

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 28



Visualising halo exchange

Send halo to the left, receive from the right

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 29



Pseudo-code

Loop through time

Loop through GPUs

kernel(...,halo stream[gpu id]);
kernel(...,internal stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaStreamSynchronize(halo stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaDeviceSynchronize();

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 30



Pseudo-code

Loop through time

Loop through GPUs

kernel(...,halo stream[gpu id]);
kernel(...,internal stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaStreamSynchronize(halo stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaDeviceSynchronize();

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 30



Pseudo-code

Loop through time

Loop through GPUs

kernel(...,halo stream[gpu id]);
kernel(...,internal stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaStreamSynchronize(halo stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaDeviceSynchronize();

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 30



Pseudo-code

Loop through time

Loop through GPUs

kernel(...,halo stream[gpu id]);
kernel(...,internal stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaStreamSynchronize(halo stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaDeviceSynchronize();

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 30



Pseudo-code

Loop through time

Loop through GPUs

kernel(...,halo stream[gpu id]);
kernel(...,internal stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaStreamSynchronize(halo stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaDeviceSynchronize();

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 30



Do we overlap?

Even for TTI, we completely overlap communication
(Micikevicius, 2012)

We get close to linear speed up, but not quite

Splitting the computation requires some small
overhead

Get around 96% linear speed up

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 31



Table of contents

1 Recap

2 Domain decomposition

3 Linearised inversion

4 Conclusions

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 32



Linearised inversion

We can extend RTM to linearised inversion

Construct a forward modelling process

Ensure RTM and forward are fully adjoint

Use a conjugate direction solver for updates

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 33



The forward process

First order approximation to the Born scattering series

Adjoint process:

m(x) =
∑
xs ,ω

f (ω)G0(x, xs , ω)
∑
xr

G0(x, xr , ω)d∗(xr , xs , ω)

Forward process:

d(xr , xs , ω) =
∑
x,ω

f (ω)G0(x, xs , ω)m(x)
∑
x
G0(x, xr , ω)

Both wavefields have the same sense of time

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 34



Adjoint propagation

We need an adjoint to our propagator

We now require velocity values along the length of our
stencil

Read from:

Global memory array
Textured velocity array
Copy values to shared memory

Get around a 2x speed up by using shared memory

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 35



Table of contents

1 Recap

2 Domain decomposition

3 Linearised inversion

4 Conclusions

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 36



Conclusions

Extending GPU RTM to linearised inversion is fairly
straightforward

Allocate velocity for adjoint propagation in shared memory

We can create an exact adjoint pair

Once our domain exceeds 6003, we must move to domain
decomposition

Asynchronous calls can overlap

We can overlap internal computation with halo
communication

Close to linear speed up achieved

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 37



Conclusions

We can now perform large scale, GPU based linearised
inversion

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 38



Acknowledgments

Robert Clapp - continuous coding assistance

Paulius Micikevicius - GPU troubleshooting, code
sharing and discussions

All SEP sponsors - continued financial, intellectual and
moral support

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 39



References

Micikevicius, P., 2009, 3D finite difference computation on GPUs
using CUDA: GPGPU, 2.

Micikevicius, P., 2012, Programming multiple GPUs: GPU
Technology Conference, 2012.

Recap Domain decomposition Linearised inversion Conclusions

Chris Leader Linearised inversion with GPUs 40


	Recap
	Domain decomposition
	Linearised inversion
	Conclusions

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	anm1: 


