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Presentation goals

Last year:

Reverse Time Migration on GPUs

Random boundaries to remove I/O
Single card solution

Today:

Brief recap
Extending to linearised inversion
Extending to mutli-GPU solutions
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Last year

We discussed approaches to GPU based Reverse Time
Migration

In particular, trying to solve:

Computational bottleneck

I/O bottleneck

We did this by:

Using optimised GPU wave propagation kernels

Using random boundaries to remove I/O from the
RTM loop
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Memory heirarchy - GPU
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Conventional algorithm

Forward model the source wavefield

Save this to disk (z , x , y , t)

Back propagate recorded data
At imaging time step?

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate
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GPU wave propagation

Follow Micikevicius, 2009

Minimise global memory read redundancy

Break wavefield into blocks, store in shared
memory

Use texture memory for velocity array

Cached (useful for adjoint propagation)

Normalised indexing option

Out of boundary clamping =⇒ reduce boundary
allocation
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CPU vs GPU
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GPU implementation
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GPU performance

PCIe: ∼ 2 Gb/s Disk: ∼ 200 Mb/s
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IO and computation balancing
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IO and computation balancing
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Memory considerations

Fermi global memory: 6 GBytes

RTM objects that must be allocated:

Four 3D wavefield snapshots

Recorded data (one shot)

Velocity model

Image

If our domain is larger than 6003:

Decompose our propagation across multiple GPUs
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Recap summary

We can accelerate wave propagation by at least an
order of magnitude

We can remove I/O during the RTM main loop by
using random boundaries

Stacking more than 50 shots =⇒ no artifacts

We have to remain very aware of memory limitations

Especially for more complicated propagation
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Domain decomposition

In 1D:

Each block has to overlap

In 3D, break domain along slowest axis

More allocation, but easier communication
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GPU Implementation
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CUDA 4.0

CUDA 4.0 and Fermi architectures have made several
things easier / possible

Peer to Peer (P2P) GPU communication

CPU and GPU use a Unified Virtual Address
space (UVA)
The GPU can derefence a pointer:

On itself
On another GPU
On the host
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Multi-GPU programming

Main points:

Faster/more convenient device-to-device transfer
Transferred along shortest PCIe path
Copies can overlap

PCIe links are duplex
Send/receive can be done simultaneously
...providing paths are in opposite directions

Communication can be hidden by overlapping
with kernels
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Visualising halo exchange

Computation order:
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Visualising halo exchange

Calculate halo region, set to halo stream[i]
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Visualising halo exchange

Calculate internal region, set to internal stream[i]
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Visualising halo exchange

During internal computation, send halo to the right
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Visualising halo exchange

Then, send to the left
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Visualising halo exchange

Send halo to the right, receive from the left
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Visualising halo exchange

Send halo to the left, receive from the right
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Pseudo-code

Loop through time

Loop through GPUs

kernel(...,halo stream[gpu id]);
kernel(...,internal stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaStreamSynchronize(halo stream[gpu id]);

Loop through GPUs

cudaMemcpyPeerAsync(...,halo stream[gpu id]);

Loop through GPUs

cudaDeviceSynchronize();
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Do we overlap?

Even for TTI, we completely overlap communication
(Micikevicius, 2012)

We get close to linear speed up, but not quite

Splitting the computation requires some small
overhead

Get around 96% linear speed up
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Linearised inversion

We can extend RTM to linearised inversion

Construct a forward modelling process

Ensure RTM and forward are fully adjoint

Use a conjugate direction solver for updates
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The forward process

First order approximation to the Born scattering series

Adjoint process:

m(x) =
∑
xs ,ω

f (ω)G0(x, xs , ω)
∑
xr

G0(x, xr , ω)d∗(xr , xs , ω)

Forward process:

d(xr , xs , ω) =
∑
x,ω

f (ω)G0(x, xs , ω)m(x)
∑
x
G0(x, xr , ω)

Both wavefields have the same sense of time
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Adjoint propagation

We need an adjoint to our propagator

We now require velocity values along the length of our
stencil

Read from:

Global memory array
Textured velocity array
Copy values to shared memory

Get around a 2x speed up by using shared memory
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Conclusions

Extending GPU RTM to linearised inversion is fairly
straightforward

Allocate velocity for adjoint propagation in shared memory

We can create an exact adjoint pair

Once our domain exceeds 6003, we must move to domain
decomposition

Asynchronous calls can overlap

We can overlap internal computation with halo
communication

Close to linear speed up achieved
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Conclusions

We can now perform large scale, GPU based linearised
inversion
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