Linearised inversion with GPUs

Chris Leader* and Robert Clapp

SEP147 - p139

Tuesday May 22nd

Chris Leader

Domain decomposition

Linearised inversion

Presentation goals

Last year:

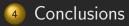
- Reverse Time Migration on GPUs
 - Random boundaries to remove ${\rm I}/{\rm O}$
 - Single card solution

Today:

- Brief recap
- Extending to linearised inversion
- Extending to mutli-GPU solutions

Table of contents

- 2 Domain decomposition
- 3 Linearised inversion



Domain decomposition

Linearised inversion

Last year

We discussed approaches to GPU based Reverse Time Migration

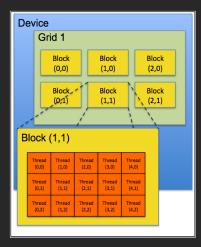
In particular, trying to solve:

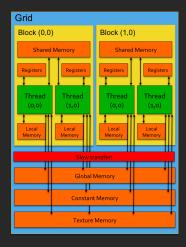
- Computational bottleneck
- I/O bottleneck

We did this by:

- Using optimised GPU wave propagation kernels
- Using random boundaries to remove I/O from the RTM loop

Memory heirarchy - GPU





Recap

Domain decomposition

Linearised inversion

Conclusions

Forward model the source wavefield

• Save this to disk (z, x, y, t)

Back propagate recorded data

- At imaging time step?
 - Read the relevant source wavefield snapshot
 - Multiply source and receiver wavefields

Chris Leader

• Sum result to image estimate

Forward model the source wavefield

Save this to disk

Back propagate recorded data

- At imaging time step?
 - Read the relevant source wavefield snapshot
 - Multiply source and receiver wavefields

Chris Leader

• Sum result to image estimate

Computational bottleneck

Forward model the source wavefield

Save this to disk

Back propagate recorded data

- At imaging time step?
 - Read the relevant source wavefield snapshot
 - Multiply source and receiver wavefields

Chris Leader

Sum result to image estimate

Computational bottleneck

IO bottleneck

Linearised inversion

GPU wave propagation

Follow Micikevicius, 2009

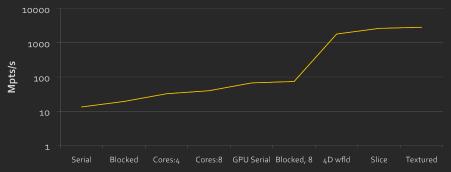
- Minimise global memory read redundancy
- Break wavefield into blocks, store in shared memory
- Use texture memory for velocity array
 - Cached (useful for adjoint propagation)

Chris Leader

- Normalised indexing option
- Out of boundary clamping \implies reduce boundary allocation

CPU vs GPU

GPU implementation



Forward model the source wavefield

• Save this to disk (z, x, y, t)

Back propagate recorded data

- At imaging time step?
 - Read the relevant source wavefield snapshot
 - Multiply source and receiver wavefields

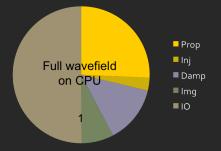
Chris Leader

• Sum result to image estimate

IO bottleneck

Linearised inversion

GPU performance



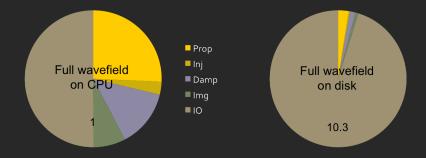
Domain decomposition

Linearised inversion

Conclusions

Chris Leader

GPU performance



Recap

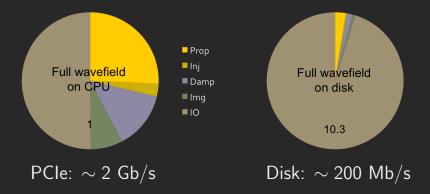
Domain decomposition

Linearised inversion

Conclusions

Chris Leader

GPU performance



Chris Leader

Linearised inversion

Conclusions

IO and computation balancing

Recar			

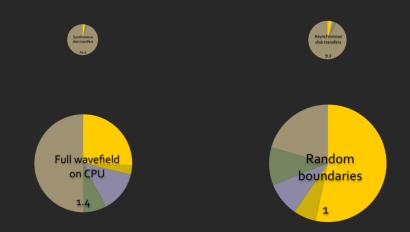
Domain decomposition

Chris Leader

Linearised inversion

IO and computation balancing

Recap



Domain decomposition		
Chris Leader	Linearised inversion with GPUs	

Memory considerations

Fermi global memory: 6 GBytes RTM objects that must be allocated:

- Four 3D wavefield snapshots
- Recorded data (one shot)
- Velocity model
- Image
- If our domain is larger than 600^3 :
 - Decompose our propagation across multiple GPUs

Chris Leader

We can accelerate wave propagation by at least an order of magnitude

We can remove I/O during the RTM main loop by using random boundaries

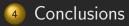
• Stacking more than 50 shots \implies no artifacts

We have to remain very aware of memory limitations

Especially for more complicated propagation

Table of contents

- 2 Domain decomposition
- 3 Linearised inversion



Domain decomposition

Chris Leader

Linearised inversion

Domain decomposition

In 1D:

• Each block has to overlap

GPU 0	GPU 1	GPU 2	GPU 3
-------	-------	-------	-------

In 3D, break domain along slowest axis More allocation, but easier communication

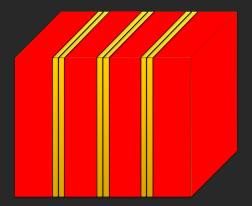
Domain decomposition

Linearised inversion

Conclusions

Chris Leader

GPU Implementation



Domain decomposition

Linearised inversion

Conclusions

Chris Leader

CUDA 4.0

CUDA 4.0 and Fermi architectures have made several things easier / possible

- Peer to Peer (P2P) GPU communication
- CPU and GPU use a Unified Virtual Address space (UVA)
- The GPU can derefence a pointer:

Chris Leader

- On itself
- On another GPU
- On the host

Multi-GPU programming

Main points:

- Faster/more convenient device-to-device transfer
 - Transferred along shortest PCIe path
 - Copies can overlap
- PCIe links are duplex
 - Send/receive can be done simultaneously
 - ...providing paths are in opposite directions
- Communication can be hidden by overlapping with kernels

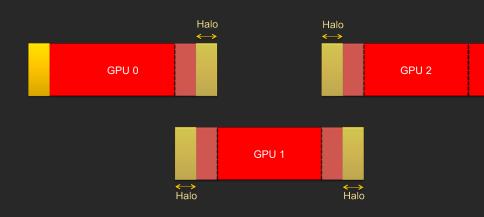
Chris Leader

Computation order:

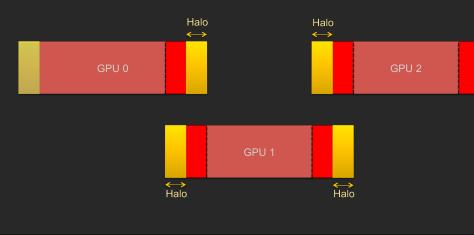


Domain decomposition		
Chris Leader	Linearised inversion with GPUs	23

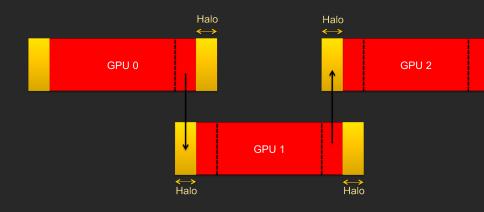
Calculate halo region, set to halo_stream[i]



Calculate internal region, set to internal_stream[i]

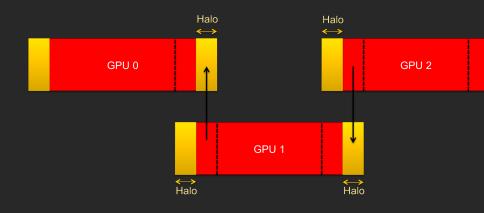


During internal computation, send halo to the right

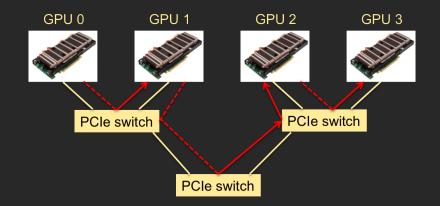


Domain decomposition		
Chris Leader	Linearised inversion with GPUs	26

Then, send to the left



Send halo to the right, receive from the left



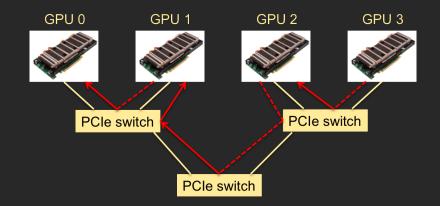
Domain decomposition

Linearised inversion

Conclusions

Chris Leader

Send halo to the left, receive from the right



Domain decomposition

Linearised inversion

Conclusions

Chris Leader

Loop through time

- Loop through GPUs
 - kernel(...,halo_stream[gpu_id]);
 - kernel(...,internal_stream[gpu_id]);
- Loop through GPUs
 - cudaMemcpyPeerAsync(...,halo_stream[gpu_id]);
- Loop through GPUs
 - cudaStreamSynchronize(halo_stream[gpu_id]);
- Loop through GPUs
 - cudaMemcpyPeerAsync(...,halo_stream[gpu_id]);
- Loop through GPUs
 - cudaDeviceSynchronize();

Chris Leader

Loop through time

- Loop through GPUs
 - kernel(...,halo_stream[gpu_id]);
 - kernel(...,internal_stream[gpu_id]);
- Loop through GPUs
 - cudaMemcpyPeerAsync(...,halo_stream[gpu_id]);
- Loop through GPUs
 - cudaStreamSynchronize(halo_stream[gpu_id]);
- Loop through GPUs
 - cudaMemcpyPeerAsync(...,halo_stream[gpu_id]);
- Loop through GPUs
 - cudaDeviceSynchronize();

Chris Leader

Loop through time

- Loop through GPUs
 - kernel(...,halo_stream[gpu_id]);
 - kernel(...,internal_stream[gpu_id]);
- Loop through GPUs
 - cudaMemcpyPeerAsync(...,halo_stream[gpu_id]);
- Loop through GPUs
 - cudaStreamSynchronize(halo_stream[gpu_id]);
- Loop through GPUs
 - cudaMemcpyPeerAsync(...,halo_stream[gpu_id]);
- Loop through GPUs
 - cudaDeviceSynchronize();

Chris Leader

Loop through time

- Loop through GPUs
 - kernel(...,halo_stream[gpu_id]);
 - kernel(...,internal_stream[gpu_id]);
- Loop through GPUs
 - cudaMemcpyPeerAsync(...,halo_stream[gpu_id]);
- Loop through GPUs
 - cudaStreamSynchronize(halo_stream[gpu_id]);
- Loop through GPUs
 - cudaMemcpyPeerAsync(...,halo_stream[gpu_id]);
- Loop through GPUs
 - cudaDeviceSynchronize();

Chris Leader

Loop through time

- Loop through GPUs
 - kernel(...,halo_stream[gpu_id]);
 - kernel(...,internal_stream[gpu_id]);
- Loop through GPUs
 - cudaMemcpyPeerAsync(...,halo_stream[gpu_id]);
- Loop through GPUs
 - cudaStreamSynchronize(halo_stream[gpu_id]);
- Loop through GPUs
 - cudaMemcpyPeerAsync(...,halo_stream[gpu_id]);
- Loop through GPUs
 - cudaDeviceSynchronize();

Chris Leader

Even for TTI, we completely overlap communication (Micikevicius, 2012)

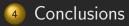
We get close to linear speed up, but not quite

Chris Leader

- Splitting the computation requires some small overhead
- Get around 96% linear speed up

Table of contents

- 2 Domain decomposition
- 3 Linearised inversion



Domain decomposition

Chris Leader

Linearised inversion Linearised inversion with GPUs

We can extend RTM to linearised inversion

- Construct a forward modelling process
- Ensure RTM and forward are fully adjoint
- Use a conjugate direction solver for updates

The forward process

First order approximation to the Born scattering series Adjoint process:

$$m(\mathbf{x}) = \sum_{\mathbf{x}_s,\omega} f(\omega) G_0(\mathbf{x}, \mathbf{x}_s, \omega) \sum_{\mathbf{x}_r} G_0(\mathbf{x}, \mathbf{x}_r, \omega) d^*(\mathbf{x}_r, \mathbf{x}_s, \omega)$$

Forward process:

 $\overline{d(\mathbf{x}_r, \mathbf{x}_s, \omega)} = \sum_{\mathbf{x}, \omega} f(\omega) \overline{G_0}(\mathbf{x}, \mathbf{x}_s, \omega) m(\mathbf{x}) \sum_{\mathbf{x}} \overline{G_0}(\mathbf{x}, \mathbf{x}_r, \omega)$ Both wavefields have the same sense of time

Recap

Domain decomposition

Linearised inversion Linearised inversion with GPUs

Adjoint propagation

We need an adjoint to our propagator

We now require velocity values along the length of our stencil

- Read from:
 - Global memory array
 - Textured velocity array
 - Copy values to shared memory

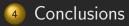
Get around a 2x speed up by using shared memory

Chris Leader

Linearised inversion Linearised inversion with GPUs

Table of contents

- 2 Domain decomposition
- 3 Linearised inversion



Domain decomposition

Linearised inversion

Conclusions

Extending GPU RTM to linearised inversion is fairly straightforward

- Allocate velocity for adjoint propagation in shared memory
- We can create an exact adjoint pair

Once our domain exceeds 600³, we must move to domain decomposition

- Asynchronous calls can overlap
- We can overlap internal computation with halo communication

Chris Leader

Close to linear speed up achieved

Conclusions

We can now perform large scale, GPU based linearised inversion

Chris Leader

Robert Clapp - continuous coding assistance

Paulius Micikevicius - GPU troubleshooting, code sharing and discussions

Chris Leader

All SEP sponsors - continued financial, intellectual and moral support

Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA: GPGPU, 2.

Micikevicius, P., 2012, Programming multiple GPUs: GPU Technology Conference, 2012.

