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Motivation / research goals

Create a flexible, robust linearised inversion scheme
that minimises I/O and favours computation

Phase encoding
Inversion needed to remove crosstalk artifacts

Random boundaries
Sufficient shots / iterations needed to stack out
artifacts

Can these schemes be effectively augmented?
How is convergence changed? Shot sampling vs
iteration count?
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Linearised inversion

Inverting for the Born scattering potential

Assume we know the background velocity (kinematic
model)

s2(z , x , y) = b(z , x , y) + m(z , x , y)

Two-way wave solution

Reverse Time Migration (RTM)

Frist order Born scattering approximation

Linearised inverion / Least Squares Reverse Time
Migration (LSRTM)
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Full model
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Background (kinematic model)
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’Reflectivity’ (perturbation)
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LI: Conventional algorithm

Using absorbing boundaries

1 Initialise
2 Forward model and save 4D source wavefields
3 r = Fm − dobs
4 Iterate

gg = F ′r
rr = Fgg
(m, r) = linear stepper (m, r , gg , rr)

5 Output m

Let’s look closer at gg = F ′r
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The time reversal problem

Our forward process:

rr = Fgg
d(xr , xs , ω) =

∑
x,ω

f (ω)G0(x, xs , ω)m(x)
∑

x
G0(x, xr , ω)

Our adjoint process:

gg = F ′r

m(x) =
∑
xs ,ω

f (ω)G0(x, xs , ω)
∑
xr

G0(x, xr , ω) d∗(xr , xs , ω)

Opposite sense of time to source
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What does this mean?

Practically, RTM needs two processes:
Forward propagate the source wavefield

Save wavefield to disk (z,x,y,t)

Back propagate the recevier wavefield
At imaging time step?

Read the source relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image

I/O bottleneck
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Random boundaries

Remove IO from propagation

Make source wavefield time reversible

We propagate an extra wavefield, but no disk
access needed during the RTM time loop

However:

Ensure boundaries are set up correctly

Sufficient fold / iterations needed to stack out
residual artifacts

We can extend this to changing our boundaries
between iterations
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Static random boundaries

1 Initialise
2 Construct random boundaries

Calculate final wavefield snapshots

3 r = Fm − dobs
4 Iterate

gg = F ′r
rr = Fgg
(m, r) = linear-stepper (m, r , gg , rr)

5 Output m
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Dynamic random boundaries

1 Initialise
2 r = Fm − dobs
3 Iterate

Construct random boundaries
Calculate final wavefield snapshots

gg = F ′r
rr = Fgg
(m, r) = non-linear-stepper (m, r , gg , rr)

4 Output m
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When is this useful?

Dynamic random boundaries require more
computation, typically 12% longer

Theoretically, a non-linear solver should be used

Similar results seen with linear solver, however

Advantage seen in areas of poor shot sampling

Can also vary boundary depth

Artifacts still seem to stack out at around
√
n
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LI: Iteration 1
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LI: Iteration 5
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LI: Iteration 10
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LI: Iteration 1, cut low wavenumbers
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LI: Iteration 5, cut low wavenumbers
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LI: Iteration 10, cut low wavenumbers
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Phase encoding

Aim is to reduce the quantity of data we are migrating
and modelling

Weight, shift and sum shots together
Create one, or a series of, super-shot(s)
Extra computation needed to attenuate crosstalk

Balance of data-size vs computation

Cost can approach independence from the number
of sources

d̃(xr , ps , ω) =
∑
xs

α(xs , ps)d(xr , xs , ω)

f̃ (xr , ps , ω) =
∑
xs

α(xs , ps)f (ω)
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Encoding function α

The consensus has been that randomly selecting +1 or
−1 gives the best convergence properties (Romerero et
al., 2000; Krebs et al., 2009)

However:

Changing α inherently changes our oberserved
data, dobs
The first step of each iteration recalculates the
’initial’ residual

One more forward process per iteration
Cost increase by (roughly) 1.5x
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PELI: Conventional

1 Initialise
2 Iterate

Create α
d = αdobs
r = Fm − d

Create and save 4D source wavefields

gg = F ′r
rr = Fgg
(m, r) = non-linear-stepper (m, r , gg , rr)

3 Output m

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 25



PELI: Cost considerations

Separated linearised inversion:

About 2x the operator cost per iteration

Use a conjugate direction solver

Phase encoded linearised inversion

About 3x the operator cost per iteration

Use a non-linear solver

How does this extend to random boundaries?
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PELI with random boundaries

Algorithm extension is obvious

We get dynamic random boundaries for free

Both techniques rely on certain wavefields being more
coherent than others

Does their combination violate any of their
individual assumptions?

Would this slow convergence significantly?

We find similar convergence characteristics, but with
an asymptote towards greater misfit error
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PELI with random boundaries

Let us propagate 100 combined shots through the
same random boundary

Different incident angle =⇒ different scattering

We will have correlation between:

Scattered fields with scattered fields

Scattered fields with coherent fields

Coherent fields with non-matching coherent fields

Coherent fields with matching coherent fields

We have ≈ twice the noise of each method
independently
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Convergence with iterations
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Convergence with cost
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LI: Iteration 1
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PELI: Equivalent cost
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LI: Iteration 1, with filter
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PELI: Equivalent cost, with filter
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Equivalent cost comparison, raw: 1
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Equivalent cost comparison, raw: 5
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Equivalent cost comparison, raw: 10
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Equivalent cost comparison, filtered: 1
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Equivalent cost comparison, filtered: 5
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Equivalent cost comparison, filtered: 10
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Cleaning up our gradients

Using one supershot, we have 7 other GPUs sitting on
our node

We can use these to perform multiple realisations per
iteration

Use 8 different encoding schemes

Stack and normalise the gradient

We see slight convergence improvement

Also, slight data-fit improvement
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Note: same residual
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Conclusions

Inversion improves images created with random boundaries

Phase encoding and random boundaries can be combined

As a function of iteration number, we see better convergence with
separated inversion (as expected)

As a function of cost, using an `2 norm, we see a significant
benefit for phase encoding

Using multiple realisations per iteration, we can slightly improve
convergence properties

We have created a 3D inversion scheme that requires minimal IO
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