
How incoherent can we be? Phase
encoding with random boundaries

Chris Leader

SEP147 - p149

Tuesday, May 22nd

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 1



Motivation / research goals

Create a flexible, robust linearised inversion scheme
that minimises I/O and favours computation

Phase encoding
Inversion needed to remove crosstalk artifacts

Random boundaries
Sufficient shots / iterations needed to stack out
artifacts

Can these schemes be effectively augmented?
How is convergence changed? Shot sampling vs
iteration count?

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 2



Motivation / research goals

Create a flexible, robust linearised inversion scheme
that minimises I/O and favours computation

Phase encoding
Inversion needed to remove crosstalk artifacts

Random boundaries
Sufficient shots / iterations needed to stack out
artifacts

Can these schemes be effectively augmented?
How is convergence changed? Shot sampling vs
iteration count?

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 2



Table of contents

1 Linearised inversion

2 Random boundaries

3 Phase encoding

4 Conclusions

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 3



Linearised inversion

Inverting for the Born scattering potential

Assume we know the background velocity (kinematic
model)

s2(z , x , y) = b(z , x , y) + m(z , x , y)

Two-way wave solution

Reverse Time Migration (RTM)

Frist order Born scattering approximation

Linearised inverion / Least Squares Reverse Time
Migration (LSRTM)

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 4



Full model

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 5



Background (kinematic model)

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 6



’Reflectivity’ (perturbation)

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 7



LI: Conventional algorithm

Using absorbing boundaries

1 Initialise
2 Forward model and save 4D source wavefields
3 r = Fm − dobs
4 Iterate

gg = F ′r
rr = Fgg
(m, r) = linear stepper (m, r , gg , rr)

5 Output m

Let’s look closer at gg = F ′r

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 8



LI: Conventional algorithm

Using absorbing boundaries

1 Initialise
2 Forward model and save 4D source wavefields
3 r = Fm − dobs
4 Iterate

gg = F ′r
rr = Fgg
(m, r) = linear stepper (m, r , gg , rr)

5 Output m

Let’s look closer at gg = F ′r

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 8



The time reversal problem

Our forward process:

rr = Fgg
d(xr , xs , ω) =

∑
x,ω

f (ω)G0(x, xs , ω)m(x)
∑

x
G0(x, xr , ω)

Our adjoint process:

gg = F ′r

m(x) =
∑
xs ,ω

f (ω)G0(x, xs , ω)
∑
xr

G0(x, xr , ω) d∗(xr , xs , ω)

Opposite sense of time to source

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 9



The time reversal problem

Our forward process:

rr = Fgg
d(xr , xs , ω) =

∑
x,ω

f (ω)G0(x, xs , ω)m(x)
∑

x
G0(x, xr , ω)

Our adjoint process:

gg = F ′r

m(x) =
∑
xs ,ω

f (ω)G0(x, xs , ω)
∑
xr

G0(x, xr , ω) d∗(xr , xs , ω)

Opposite sense of time to source

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 9



What does this mean?

Practically, RTM needs two processes:
Forward propagate the source wavefield

Save wavefield to disk (z,x,y,t)

Back propagate the recevier wavefield
At imaging time step?

Read the source relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image

I/O bottleneck

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 10



What does this mean?

Practically, RTM needs two processes:
Forward propagate the source wavefield

Save wavefield to disk (z,x,y,t)

Back propagate the recevier wavefield
At imaging time step?

Read the source relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image

I/O bottleneck

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 10



Table of contents

1 Linearised inversion

2 Random boundaries

3 Phase encoding

4 Conclusions

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 11



Random boundaries

Remove IO from propagation

Make source wavefield time reversible

We propagate an extra wavefield, but no disk
access needed during the RTM time loop

However:

Ensure boundaries are set up correctly

Sufficient fold / iterations needed to stack out
residual artifacts

We can extend this to changing our boundaries
between iterations

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 12



Random boundaries

Remove IO from propagation

Make source wavefield time reversible

We propagate an extra wavefield, but no disk
access needed during the RTM time loop

However:

Ensure boundaries are set up correctly

Sufficient fold / iterations needed to stack out
residual artifacts

We can extend this to changing our boundaries
between iterations

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 12



Static random boundaries

1 Initialise
2 Construct random boundaries

Calculate final wavefield snapshots

3 r = Fm − dobs
4 Iterate

gg = F ′r
rr = Fgg
(m, r) = linear-stepper (m, r , gg , rr)

5 Output m

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 13



Dynamic random boundaries

1 Initialise
2 r = Fm − dobs
3 Iterate

Construct random boundaries
Calculate final wavefield snapshots

gg = F ′r
rr = Fgg
(m, r) = non-linear-stepper (m, r , gg , rr)

4 Output m

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 14



When is this useful?

Dynamic random boundaries require more
computation, typically 12% longer

Theoretically, a non-linear solver should be used

Similar results seen with linear solver, however

Advantage seen in areas of poor shot sampling

Can also vary boundary depth

Artifacts still seem to stack out at around
√
n

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 15



LI: Iteration 1

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 16



LI: Iteration 5

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 17



LI: Iteration 10

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 18



LI: Iteration 1, cut low wavenumbers

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 19



LI: Iteration 5, cut low wavenumbers

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 20



LI: Iteration 10, cut low wavenumbers

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 21



Table of contents

1 Linearised inversion

2 Random boundaries

3 Phase encoding

4 Conclusions

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 22



Phase encoding

Aim is to reduce the quantity of data we are migrating
and modelling

Weight, shift and sum shots together
Create one, or a series of, super-shot(s)
Extra computation needed to attenuate crosstalk

Balance of data-size vs computation

Cost can approach independence from the number
of sources

d̃(xr , ps , ω) =
∑
xs

α(xs , ps)d(xr , xs , ω)

f̃ (xr , ps , ω) =
∑
xs

α(xs , ps)f (ω)

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 23



Encoding function α

The consensus has been that randomly selecting +1 or
−1 gives the best convergence properties (Romerero et
al., 2000; Krebs et al., 2009)

However:

Changing α inherently changes our oberserved
data, dobs
The first step of each iteration recalculates the
’initial’ residual

One more forward process per iteration
Cost increase by (roughly) 1.5x

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 24



PELI: Conventional

1 Initialise
2 Iterate

Create α
d = αdobs
r = Fm − d

Create and save 4D source wavefields

gg = F ′r
rr = Fgg
(m, r) = non-linear-stepper (m, r , gg , rr)

3 Output m

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 25



PELI: Cost considerations

Separated linearised inversion:

About 2x the operator cost per iteration

Use a conjugate direction solver

Phase encoded linearised inversion

About 3x the operator cost per iteration

Use a non-linear solver

How does this extend to random boundaries?

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 26



PELI: Cost considerations

Separated linearised inversion:

About 2x the operator cost per iteration

Use a conjugate direction solver

Phase encoded linearised inversion

About 3x the operator cost per iteration

Use a non-linear solver

How does this extend to random boundaries?

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 26



PELI: Conventional

1 Initialise
2 Iterate

Create α
d = αdobs
r = Fm − d

Create final source wavefield snapshots

gg = F ′r
rr = Fgg
(m, r) = non-linear-stepper (m, r , gg , rr)

3 Output m

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 27



PELI with random boundaries

Algorithm extension is obvious

We get dynamic random boundaries for free

Both techniques rely on certain wavefields being more
coherent than others

Does their combination violate any of their
individual assumptions?

Would this slow convergence significantly?

We find similar convergence characteristics, but with
an asymptote towards greater misfit error

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 28



PELI with random boundaries

Let us propagate 100 combined shots through the
same random boundary

Different incident angle =⇒ different scattering

We will have correlation between:

Scattered fields with scattered fields

Scattered fields with coherent fields

Coherent fields with non-matching coherent fields

Coherent fields with matching coherent fields

We have ≈ twice the noise of each method
independently

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 29



Convergence with iterations

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 30



Convergence with cost

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 31



LI: Iteration 1

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 32



PELI: Equivalent cost

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 33



LI: Iteration 1, with filter

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 34



PELI: Equivalent cost, with filter

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 35



Equivalent cost comparison, raw: 1

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 36



Equivalent cost comparison, raw: 5

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 37



Equivalent cost comparison, raw: 10

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 38



Equivalent cost comparison, filtered: 1

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 39



Equivalent cost comparison, filtered: 5

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 40



Equivalent cost comparison, filtered: 10

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 41



Cleaning up our gradients

Using one supershot, we have 7 other GPUs sitting on
our node

We can use these to perform multiple realisations per
iteration

Use 8 different encoding schemes

Stack and normalise the gradient

We see slight convergence improvement

Also, slight data-fit improvement

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 42



Note: same residual

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 43



Table of contents

1 Linearised inversion

2 Random boundaries

3 Phase encoding

4 Conclusions

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 44



Conclusions

Inversion improves images created with random boundaries

Phase encoding and random boundaries can be combined

As a function of iteration number, we see better convergence with
separated inversion (as expected)

As a function of cost, using an `2 norm, we see a significant
benefit for phase encoding

Using multiple realisations per iteration, we can slightly improve
convergence properties

We have created a 3D inversion scheme that requires minimal IO

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 45



Acnkowledgments

Ali Almomin, for help with image error interpretation

SEP sponsors

Linearised inversion Random boundaries Phase encoding Conclusions

Chris Leader IO vs Linearised Inversion 46


	Linearised inversion
	Random boundaries
	Phase encoding
	Conclusions



