How incoherent can we be? Phase encoding with random boundaries

Chris Leader

SEP147 - p149

Tuesday, May 22nd

Linearised inversion

Random boundaries

Chris Leader

Phase encoding

Conclusions

Motivation / research goals

Create a flexible, robust linearised inversion scheme that minimises I/O and favours computation

- Phase encoding
 - Inversion needed to remove crosstalk artifacts
- Random boundaries
 - Sufficient shots / iterations needed to stack out artifacts

Motivation / research goals

Create a flexible, robust linearised inversion scheme that minimises I/O and favours computation

- Phase encoding
 - Inversion needed to remove crosstalk artifacts
- Random boundaries
 - Sufficient shots / iterations needed to stack out artifacts

Can these schemes be effectively augmented? How is convergence changed? Shot sampling vs iteration count?

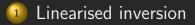
Linear		

Random boundaries

Phase encoding

Conclusions

Table of contents



- 2 Random boundaries
- Phase encoding

Inverting for the Born scattering potential

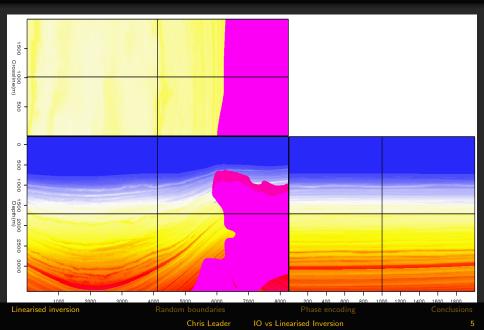
Assume we know the background velocity (kinematic model)

•
$$s^{2}(z, x, y) = b(z, x, y) + m(z, x, y)$$

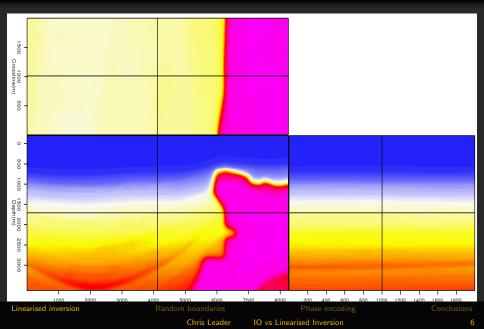
Two-way wave solution

- Reverse Time Migration (RTM)
- Frist order Born scattering approximation
- Linearised inversion / Least Squares Reverse Time Migration (LSRTM)

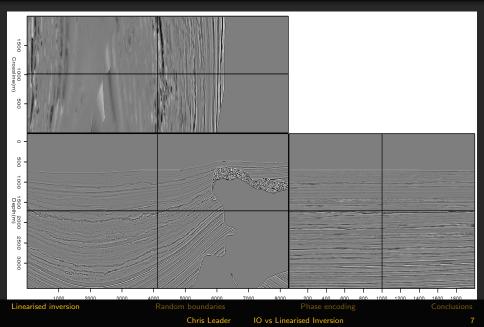
Full model



Background (kinematic model)



'Reflectivity' (perturbation)



LI: Conventional algorithm

Using absorbing boundaries

- Initialise
 - Forward model and save 4D source wavefields
- $r = Fm d_{obs}$

Iterate

$$gg = F'r$$

• $(m, r) = \text{linear_stepper} (m, r, gg, rr)$

Output *m*

LI: Conventional algorithm

Using absorbing boundaries

- Initialise
- Forward model and save 4D source wavefields
- $r = Fm d_{obs}$

Iterate

- gg = F'r
- rr = Fgg
- $(m, r) = \text{linear_stepper} (m, r, gg, rr)$

Output m

Let's look closer at gg = F'r

The time reversal problem

Our forward process:

$$rr = Fgg$$

$$d(\mathbf{x}_r, \mathbf{x}_s, \omega) = \sum_{\mathbf{x}, \omega} f(\omega) G_0(\mathbf{x}, \mathbf{x}_s, \omega) m(\mathbf{x}) \sum_{\mathbf{x}} G_0(\mathbf{x}, \mathbf{x}_r, \omega)$$

Our adjoint process:

$$gg = F'r$$

$$m(\mathbf{x}) = \sum_{\mathbf{x}_s,\omega} f(\omega)G_0(\mathbf{x}, \mathbf{x}_s, \omega) \sum_{\mathbf{x}_r} G_0(\mathbf{x}, \mathbf{x}_r, \omega) d^*(\mathbf{x}_r, \mathbf{x}_s, \omega)$$

Random boundaries

Phase encoding

Conclusions

The time reversal problem

Our forward process:

$$rr = Fgg$$

$$d(\mathbf{x}_r, \mathbf{x}_s, \omega) = \sum_{\mathbf{x}, \omega} f(\omega) G_0(\mathbf{x}, \mathbf{x}_s, \omega) m(\mathbf{x}) \sum_{\mathbf{x}} G_0(\mathbf{x}, \mathbf{x}_r, \omega)$$

Our adjoint process:

$$gg = F'r$$

$$m(\mathbf{x}) = \sum_{\mathbf{x}_s,\omega} f(\omega)G_0(\mathbf{x}, \mathbf{x}_s, \omega) \sum_{\mathbf{x}_r} G_0(\mathbf{x}, \mathbf{x}_r, \omega) d^*(\mathbf{x}_r, \mathbf{x}_s, \omega)$$

Opposite sense of time to source

Random boundaries

Chris Leader

Phase encoding

Conclusions

What does this mean?

Practically, RTM needs two processes:

- Forward propagate the source wavefield
 - Save wavefield to disk (z,x,y,t)
- Back propagate the recevier wavefield
 - At imaging time step?
 - Read the source relevant source wavefield snapshot
 - Multiply source and receiver wavefields
 - Sum result to image

What does this mean?

Practically, RTM needs two processes:

- Forward propagate the source wavefield
 - Save wavefield to disk (z,x,y,t)
- Back propagate the receiver wavefield
 - At imaging time step?
 - Read the source relevant source wavefield snapshot
 - Multiply source and receiver wavefields
 - Sum result to image

I/O bottleneck

Table of contents

- 2 Random boundaries
- Phase encoding

Chris Leader

Phase encoding

Conclusions

Random boundaries

Remove IO from propagation

- Make source wavefield time reversible
- We propagate an extra wavefield, but no disk access needed during the RTM time loop

However:

- Ensure boundaries are set up correctly
- Sufficient fold / iterations needed to stack out residual artifacts

Random boundaries

Remove IO from propagation

- Make source wavefield time reversible
- We propagate an extra wavefield, but no disk access needed during the RTM time loop

However:

- Ensure boundaries are set up correctly
- Sufficient fold / iterations needed to stack out residual artifacts

We can extend this to changing our boundaries between iterations

Chris Leader

Linearised	

Random boundaries

Phase encoding

Conclusions

Static random boundaries

Initialise

- Construct random boundaries
 - Calculate final wavefield snapshots

•
$$r = Fm - d_{obs}$$

🕨 lterate

•
$$gg = F'r$$

• (m, r) =linear-stepper (m, r, gg, rr)

Output *m*

Dynamic random boundaries

Initialise

- $r = Fm d_{obs}$
 - Iterate
 - Construct random boundaries
 - Calculate final wavefield snapshots

•
$$gg = F'r$$

•
$$rr = Fgg$$

• (m, r) =non-linear-stepper (m, r, gg, rr)

Output *m*

When is this useful?

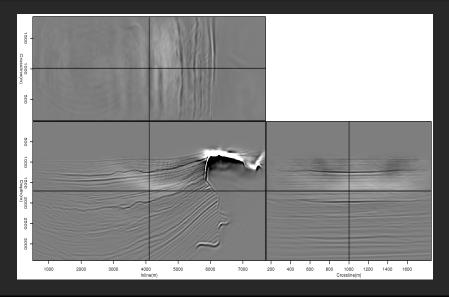
Dynamic random boundaries require more computation, typically 12% longer

- Theoretically, a non-linear solver should be used
- Similar results seen with linear solver, however

Advantage seen in areas of poor shot sampling

- Can also vary boundary depth
- Artifacts still seem to stack out at around \sqrt{n}

LI: Iteration 1



Linearised inversion

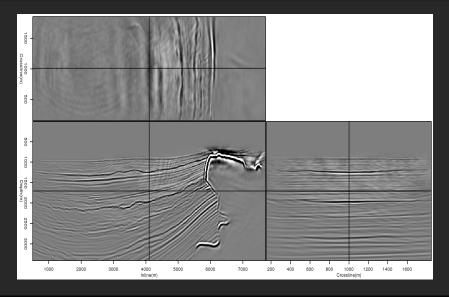
Random boundaries

Phase encoding

Conclusions

Chris Leader

LI: Iteration 5



Linearised inversion

Random boundaries

Phase encodin

Conclusions

Chris Leader

LI: Iteration 10



Linearised inversion

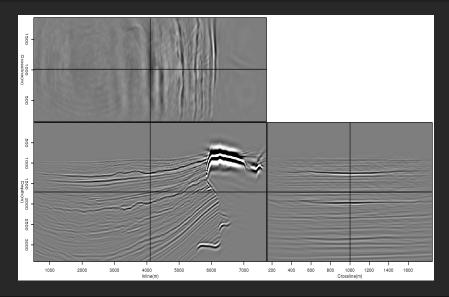
Random boundaries

Phase encodin

Conclusions

Chris Leader

LI: Iteration 1, cut low wavenumbers



Linearised inversion

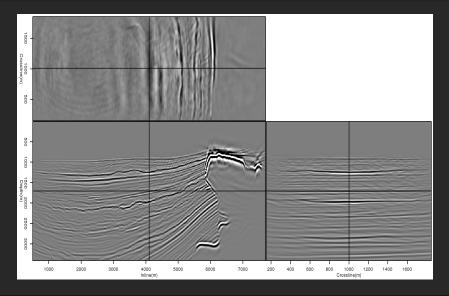
Random boundaries

Phase encoding

Conclusions

Chris Leader

LI: Iteration 5, cut low wavenumbers



Linearised inversion

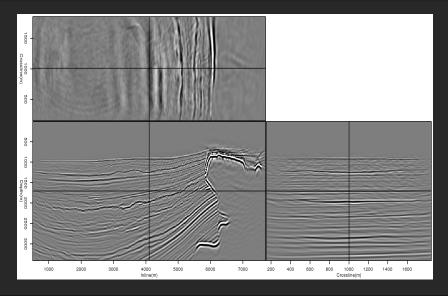
Random boundaries

Phase encoding

Conclusions

Chris Leader

LI: Iteration 10, cut low wavenumbers



Linearised inversion

Random boundaries

Phase encoding

Conclusions

Chris Leader

Table of contents

- 2 Random boundaries
- Phase encoding

Phase encoding

Aim is to reduce the quantity of data we are migrating and modelling

Weight, shift and sum shots together

- Create one, or a series of, super-shot(s)
- Extra computation needed to attenuate crosstalk
 - Balance of data-size vs computation
- Cost can approach independence from the number of sources

$$\widetilde{d}(\mathbf{x}_r, \mathbf{p}_s, \omega) = \sum_{\mathbf{x}_s} \alpha(\mathbf{x}_s, \mathbf{p}_s) d(\mathbf{x}_r, \mathbf{x}_s, \omega)$$
$$\widetilde{f}(\mathbf{x}_r, \mathbf{p}_s, \omega) = \sum_{\mathbf{x}_s} \alpha(\mathbf{x}_s, \mathbf{p}_s) f(\omega)$$

Random boundaries

Phase encoding

Conclusions

Encoding function $\boldsymbol{\alpha}$

The consensus has been that randomly selecting +1 or -1 gives the best convergence properties (Romerero et al., 2000; Krebs et al., 2009)

However:

- Changing α inherently changes our oberserved data, d_{obs}
- The first step of each iteration recalculates the 'initial' residual
 - One more forward process per iteration
 - Cost increase by (roughly) 1.5x

PELI: Conventional

Initialise

Iterate

• Create α

•
$$d = \alpha d_{obs}$$

•
$$r = Fm - d$$

Create and save 4D source wavefields

•
$$gg = F'r$$

• (m, r) =non-linear-stepper (m, r, gg, rr)

Output *m*

PELI: Cost considerations

Separated linearised inversion:

- About 2x the operator cost per iteration
- Use a conjugate direction solver

Phase encoded linearised inversion

- About 3x the operator cost per iteration
- Use a non-linear solver

PELI: Cost considerations

Separated linearised inversion:

- About 2x the operator cost per iteration
- Use a conjugate direction solver

Phase encoded linearised inversion

- About 3x the operator cost per iteration
- Use a non-linear solver

How does this extend to random boundaries?

PELI: Conventional

Initialise

Iterate

• Create α

•
$$d = \alpha d_{obs}$$

•
$$r = Fm - d$$

• Create final source wavefield snapshots

•
$$gg = F'r$$

• (m, r) =non-linear-stepper (m, r, gg, rr)

Output *m*

PELI with random boundaries

Algorithm extension is obvious We get dynamic random boundaries for free Both techniques rely on certain wavefields being more coherent than others

- Does their combination violate any of their individual assumptions?
- Would this slow convergence significantly?

We find similar convergence characteristics, but with an asymptote towards greater misfit error

PELI with random boundaries

Let us propagate 100 combined shots through the same random boundary

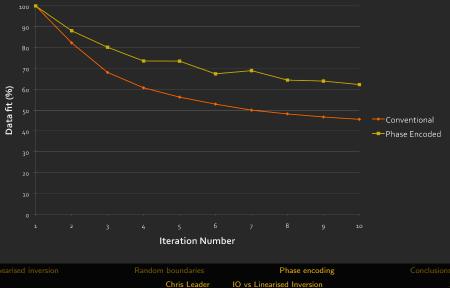
• Different incident angle \implies different scattering

We will have correlation between:

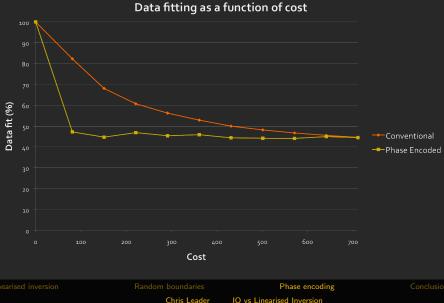
- Scattered fields with scattered fields
- Scattered fields with coherent fields
- Coherent fields with non-matching coherent fields
- Coherent fields with matching coherent fields

We have \approx twice the noise of each method independently

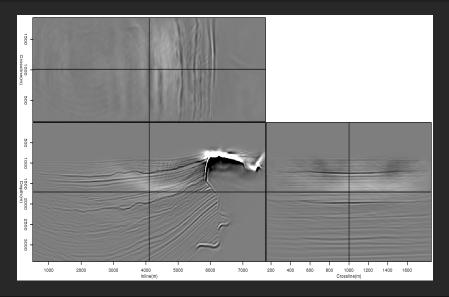
Convergence with iterations



Convergence with cost



LI: Iteration 1



Linearised inversion

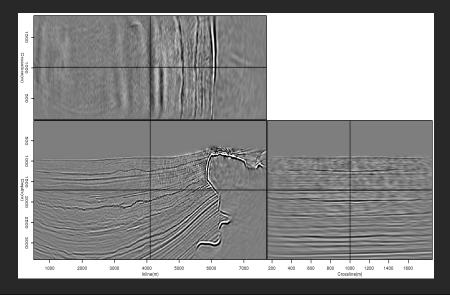
Random boundarie

Phase encoding

Conclusions

Chris Leader

PELI: Equivalent cost



Linearised inversion

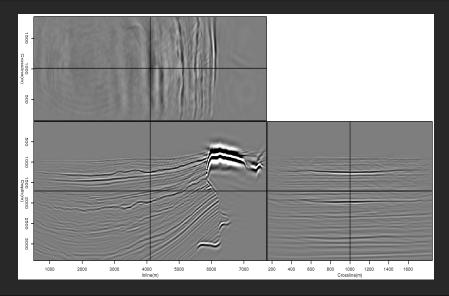
Random boundarie

Phase encoding

Conclusions

Chris Leader

LI: Iteration 1, with filter



Linearised inversion

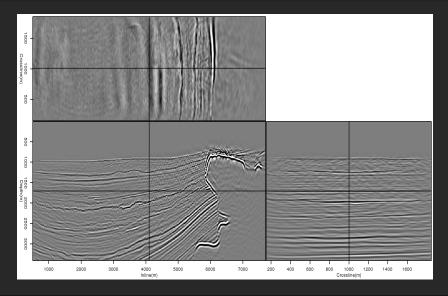
Random boundarie

Phase encoding

Conclusions

Chris Leader

PELI: Equivalent cost, with filter



Linearised inversion

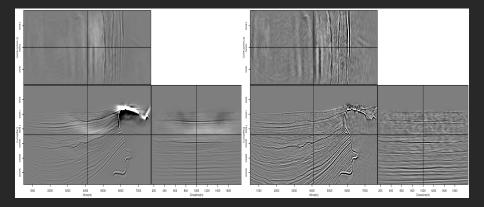
Random boundarie

Phase encoding

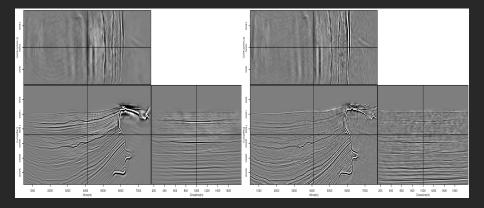
Conclusions

Chris Leader

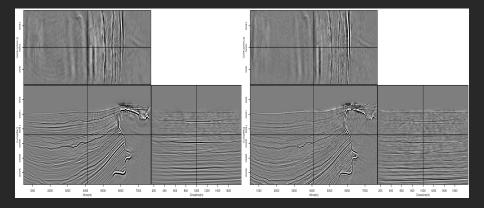
Equivalent cost comparison, raw: 1



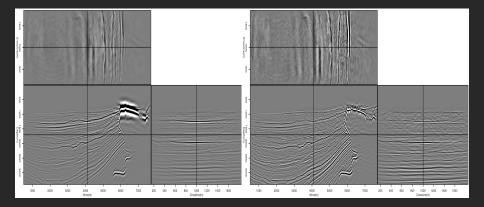
Equivalent cost comparison, raw: 5



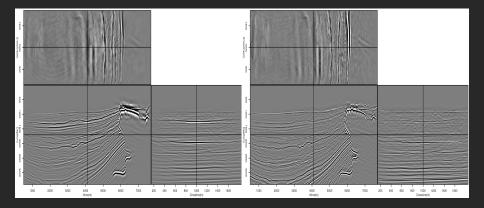
Equivalent cost comparison, raw: 10



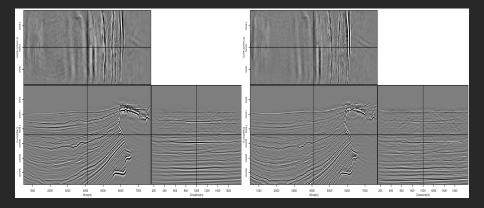
Equivalent cost comparison, filtered: 1



Equivalent cost comparison, filtered: 5



Equivalent cost comparison, filtered: 10



Cleaning up our gradients

Using one supershot, we have 7 other GPUs sitting on our node

We can use these to perform multiple realisations per iteration

- Use 8 different encoding schemes
- Stack and normalise the gradient
- We see slight convergence improvement
- Also, slight data-fit improvement

Chris Leader

Note: same residual

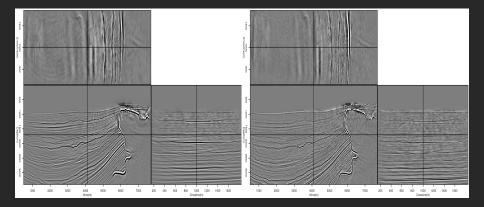


Table of contents

- 2 Random boundaries
- Phase encoding

Chris Leader

Phase encoding

Conclusions

Conclusions

Inversion improves images created with random boundaries Phase encoding and random boundaries can be combined

- As a function of iteration number, we see better convergence with separated inversion (as expected)
- As a function of cost, using an ℓ_2 norm, we see a significant benefit for phase encoding
- Using multiple realisations per iteration, we can slightly improve convergence properties

We have created a 3D inversion scheme that requires minimal IO

Acnkowledgments

Ali Almomin, for help with image error interpretation SEP sponsors

Random boundaries

Phase encoding

Conclusions

Chris Leader IO vs Linearised Inversion