

Decon in the log domain with variable gain

Jon Claerbout, Antoine Guitton, and Qiang Fu

SEP 2012 spring meeting Monterey, California

SEP report page 147, page 313

Sparsity decon in the log domain with variable gain

Jon Claerbout, Antoine Guitton, and Qiang Fu

SEP 2012 spring meeting Monterey, California

SEP report page 147, page 313

OLD NEWS: We seek sparse deconvolutions by imposing a hyperbolic penalty function.

NEW: Although FT based, we find theory for arbitrary gain (t) and mute (t, x) AFTER decon.

NEW: Results confirm benefit of "gain after decon"

NEW: We have identified a long-needed regularization.

Sparseness goals

The ℓ_{2}-norm decon forces a whiteness assumption and forces a "minimum phase" assumption. Both bad.

The sparseness goal should yield a "best" spectrum and (hopefully) the most appropriate phase.

Enhance low frequency only when it aids sparsity.

Seek to integrate reflectivity to obtain log impedance.

Logarithmic parameterization

$$
r_{t}=\mathrm{FT}^{-1} D(\omega) \exp \left(\sum_{\tau \neq 0} u_{\tau} Z^{\tau}\right.
$$

$D(\omega)$ is the FT of the data. r_{t} is reflectivity (and residual) u_{τ} are the free parameters. $u_{0}=0$ is mean log spectrum.

Gain and sparsity

$q_{t}=g_{t} r_{t}$
where:
r_{t} is the physical output of the filter
g_{t} is the given gain function, often t^{2} q_{t} is the gained output, also called the "statistical signal" to be sparsified.

$$
\begin{aligned}
q_{t} & =g_{t} r_{t} \\
H\left(q_{t}\right) & =\sqrt{q_{t}^{2}+1}-1 \\
\frac{d H}{d q}=H^{\prime}(q) & =\frac{q}{\sqrt{q^{2}+1}}=\operatorname{softly} \text { clipped residut }
\end{aligned}
$$

r_{t} is the physical output of the filter
g_{t} is the given gain function
q_{t} is the gained output,
$H(q)$ is the hyperbolic penalty function.
Choose g_{t} so that $q_{t} \approx 1$. What percentile?
"Sparsity" is $1 / \sum_{t} H\left(q_{t}\right)$

$$
r_{t}=\mathrm{FT}^{-1} D(Z) e^{\cdots+u_{2} Z^{2}+u_{3} Z^{3}+u_{4} Z^{4}+\cdots}
$$

$$
\begin{aligned}
\frac{d r_{t}}{d u_{\tau}} & =\mathrm{FT}^{-1} D(Z) Z^{\tau} e^{\cdots+u_{2} Z^{2}+u_{3} Z^{3}+u_{4} Z^{4}+\cdots} \\
\frac{d r_{t}}{d u_{\tau}} & =r_{t+\tau}
\end{aligned}
$$

$$
r_{t}=\mathrm{FT}^{-1} D(Z) e^{\cdots+u_{2} Z^{2}+u_{3} Z^{3}+u_{4} Z^{4}+\cdots}
$$

$$
\begin{aligned}
\frac{d r_{t}}{d u_{\tau}} & =\mathrm{FT}^{-1} D(Z) Z^{\tau} e^{\cdots+u_{2} Z^{2}+u_{3} Z^{3}+u_{4} Z^{4}+\cdots} \\
\frac{d r_{t}}{d u_{\tau}} & =r_{t+\tau} \quad \text { You think you have seen this before...? }
\end{aligned}
$$

$$
r_{t}=\mathrm{FT}^{-1} D(Z) e^{\cdots+u_{2} Z^{2}+u_{3} Z^{3}+u_{4} Z^{4}+\cdots}
$$

$$
\begin{aligned}
\frac{d r_{t}}{d u_{\tau}} & =\mathrm{FT}^{-1} D(Z) Z^{\tau} e^{\cdots+u_{2} Z^{2}+u_{3} Z^{3}+u_{4} Z^{4}+\cdots} \\
\frac{d r_{t}}{d u_{\tau}} & =r_{t+\tau}
\end{aligned} \quad \text { No, you likely saw } d_{t+\tau} .
$$

Residual orthogonal to fitting function becomes
Residual orthogonal to itself
$r_{t}=\mathrm{FT}^{-1} D(Z) e^{\cdots+u_{2} Z^{2}+u_{3} Z^{3}+u_{4} Z^{4}+\cdots}$

$$
\begin{aligned}
\frac{d r_{t}}{d u_{\tau}} & =\mathrm{FT}^{-1} D(Z) Z^{\tau} e^{\cdots+u_{2} Z^{2}+u_{3} Z^{3}} \\
\frac{d r_{t}}{d u_{\tau}} & =r_{t+\tau} \quad \begin{array}{l}
\text { Physical output gradient } \\
\text { w.r.t. lag-log variable }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
q_{t} & =r_{t} g_{t} \\
\frac{d q_{t}}{d u_{\tau}} & =\frac{d r_{t}}{d u_{\tau}} g_{t}=r_{t+\tau} g_{t} \quad \text { Statistical gradient }
\end{aligned}
$$

the step
$\Delta u_{\tau}=$
$\begin{aligned} & \left.=\sum_{t} \frac{d q_{t}}{d u_{\tau}} / \frac{d / H\left(q_{t}\right)}{d q_{t}}\right)^{t} \\ \Delta u_{\tau} & =\sum_{t}\left(r_{t+\tau}\right) \quad\left(g_{t} H^{\prime}\left(q_{t}\right)\right) \quad \tau \neq 0\end{aligned}$
A crosscorrelation: Compute it in the Fourier domain.
At convergence this is a delta function. Special case: stationary $L 2$ then $r(t)$ is white.

Amazing generalization to
(I) non-causal, (2) gain, and (3) sparsity!
the step

A crosscorrelation: Compute it in the Fourier domain.
the step

A crosscorrelation: Compute it in the Fourier domain.
At convergence this is a delta function. Special case: stationary $L 2$ then $r(t)$ is white.

Amazing generalization to
(I) non-causal, (2) gain, and (3) sparsity!

From $\Delta \mathbf{u}$ to $\Delta \mathbf{r}$

Skipping lots of algebra
(including a linearization)
given the gradient step $\Delta \mathbf{u}=\left(\Delta u_{\tau}\right)$
and the residual $\mathbf{r}=\left(r_{t}\right)$,
the residual perturbation is $\Delta \mathbf{r}=\mathbf{r} * \Delta \mathbf{u}$.
("*" is convolution)
and the sparsity perturbation is
$\Delta q_{t}=g_{t} \Delta r_{t}$.

Minimizing $H(\mathbf{q}+\alpha \Delta \mathbf{q})$

At each q_{t} fit hyperbola to parabola (Taylor series).
A sum of parabolas is a parabola. Easy getting α.

$$
\alpha=-\frac{\sum_{t} \Delta q_{t} H_{t}^{\prime}}{\sum_{t}\left(\Delta q_{t}\right)^{2} H_{t}^{\prime \prime}}
$$

Update the residual \mathbf{q} and unknowns \mathbf{u}. Form new Taylor series and iterate.

Recall stationary $\ell_{2}: \quad \alpha=-(\Delta \mathbf{r} \cdot \mathbf{r}) /(\Delta \mathbf{r} \cdot \Delta \mathbf{r})$

Quick peek at the algorithm: math to code key

Lower case letters for variables in time and space like $\mathrm{d}=d(t, x), \mathrm{dq}=\Delta q(t, x), \mathrm{u}=u_{\tau}$.

Upper case for frequency domain like $\mathrm{R}=R(\omega, x)$, and $\mathrm{dU}=\Delta U(\omega)$.

Asterisk $*$ means multiply within an implied loop on t or ω.

EXPLORATION PROJECT

Remove the mean from U(omega).
Iteration \{

```
dU = 0
For all x
```

```
r \(=\mathrm{iFT}(\mathrm{D} * \exp (\mathrm{U}))\)
```

r $=\mathrm{iFT}(\mathrm{D} * \exp (\mathrm{U}))$
$\mathrm{q}=\mathrm{g} * \mathrm{r}$
$\mathrm{q}=\mathrm{g} * \mathrm{r}$
$\mathrm{dU}=\mathrm{dU}+\operatorname{conjg}(\mathrm{FT}(r)) * \mathrm{FT}(\mathrm{g} * \operatorname{softclip}(\mathrm{q}))$
$\mathrm{dU}=\mathrm{dU}+\operatorname{conjg}(\mathrm{FT}(r)) * \mathrm{FT}(\mathrm{g} * \operatorname{softclip}(\mathrm{q}))$
Remove the mean from dU(omega)
For all x
dR = FT(r) * dU
dq = g * iFT(dR)
Newton iteration for finding alfa {
H' = softclip(q)
H}\mp@subsup{}{}{\prime}\prime= = 1/(1+q^2)^1.
alfa= - Sum(dq * H') / Sum(dq^2 * H'')
q = q + alfa * dq
U = U + alfa * dU
}
}

```

\section*{Instability! Yikes!}

Sometimes there are time shifts. Sometimes the polarity is wrong. l'm going to work on velocity instead.


Try preconditioning. Try regularization.

I tried them.

l'd rather do Q tomography.

\section*{K Instability! Yikes!}

Masking the gradient fails. Here are the sample histories you asked for.

I'm going to Houston.



\section*{Instability．Yikes！}

Antoine：I changed the gain by \(10 \%\) and the spike jumped from \(B\) to \(C\) ．

Jon：Awful！I thought I had a great starting solution at B

Jon：Make me a movie as a function of iteration．


\section*{Instability. Yikes!}
with Antoine and Qiang Fu

10 iterations: good spike at B,
A\&C small

\section*{200 iterations:} maybe spikes at \(A\) maybe spikes at \(B\) maybe spikes at \(C\) others small


\title{
"But when it's good, it's really good! Let's look at some of the results."
}


We'll return to the stability problem later.


\section*{Prepare to compare gain before with gain after}
data \(\longrightarrow\) t-squared gain \(\longrightarrow\) decon
data \(\longrightarrow\) new decon \(\longrightarrow\) t-squared gain
\[
r_{t}
\]
\[
q_{t}
\]

\section*{Estimated shot}

\section*{Scale up by 10x} Same (scaled up 10x, clipped) whelre data gained AFTER decon

\section*{Compare}

Same (same sc and clip) where dat Gain before decon.



EXPLORATION PROJECT

Estimated shot waveform

Scale up by 5 5x 5x, clipped) wher|e data Gain after decon. \(\xrightarrow{\text { scaled up 5x, clipped) wherge data gained AFTER decon }}\)
Scale up by 5x same (same scale and clip) where

Gain before decon. data gained BEFORE decon



\section*{Produced by Antoine}


\footnotetext{
\(-24000-16000-8000\)
0
}

\section*{Instability. Yikes!}

\section*{with Antoine and Qiang Fu}

10 iterations, spikes at B, A\&C small

200 iterations, maybe spikes at \(A\)
 maybe spikes at \(B\) maybe spikes at \(C\) others small

\section*{Instability. Yikes!}
with Antoine and Qiang Fu
10 iterations,
spikes at B, A\&C small

200 iterations, maybe spikes at \(A\)
 maybe spikes at \(B\) maybe spikes at \(C\) others small

\title{
Nobody has proven it is a null space problem.
}

But I think it is,
so I must come up with a regularization.

\section*{Basic Regularization}
\(0 \approx w_{\tau}\left(u_{\tau}-\bar{u}_{\tau}\right)\)
\(\bar{u}_{\tau}\), a prior model, how to choose it? \(w_{\tau}\) are weights, how to choose them?

\section*{Basic Regularization}
\[
0 \approx w_{\substack{w_{\mathrm{sioh}}^{\alpha_{s}}}}\left(u_{\tau}-\bar{u}_{\tau}\right)
\]

\section*{But how to choose them?}

еxяo

\section*{Fancier Regularization}
\[
\begin{aligned}
& 0 \approx \quad \sum_{t} \sum_{k} w_{k, \tau}\left(u_{\tau}-\bar{u}_{\tau}\right) \\
& 0 \quad \mathbf{W}(\mathbf{u}-\overline{\mathbf{u}}) \\
& \text { but what to choose for } \mathbf{W} \text { and } \overline{\mathbf{u}} \text { ? }
\end{aligned}
\]
\[
\begin{aligned}
& \text { STANFORD }
\end{aligned}
\]

\section*{Intuitive Regularization}
\[
\begin{aligned}
& 0 \approx w_{\tau}\left(u_{\tau}-u_{-\tau}\right) \\
& \text { Choose big } w_{\tau} \text { where }|\tau \approx 0|
\end{aligned}
\]

\section*{Reduces the phase near \(\mathrm{t}=0\), more like Ricker there.} EXPLORATION PROJECT

\section*{Regularization}

FFT notation in matrix, Fortran notation in vectors.
\[
\mathbf{0} \approx\left[\begin{array}{c}
r_{m}(1) \\
r_{m}(2) \\
r_{m}(3) \\
r_{m}(4) \\
r_{m}(5) \\
r_{m}(6)
\end{array}\right]=\mathbf{W}\left[\begin{array}{rrrrrr}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 & 0 & -1 \\
0 & 0 & +1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & +1 & 0 \\
0 & -1 & 0 & 0 & 0 & +1
\end{array}\right]\left[\begin{array}{c}
u(1) \\
u(2) \\
u(3) \\
u(4) \\
u(5) \\
u(6)
\end{array}\right]=\mathbf{W} \mathbf{J u}
\]

\section*{Report deadline}

\section*{Only Antoine has seen the results}

\section*{(if he hasn't been too busy at work).}

Any student had too much synthetic data?

\section*{Theory innovations}
- Two-sided filters escape minimum phase.
- Use sparsity goal instead of whiteness.
- Apply gain and mute AFTER filtering.

\section*{Conclusions from testing}
- Value of gain theory confirmed by two examples.
- Sparsity is not powerful enough to ensure a "best" phase. Regularization is needed.
- A long-needed regularization is identified.


\section*{ACKNOWLEDGEMENT}

We thank Western Geophysical for the Gulf of Mexico data set.
Jon Claerbout and Qiang Fu thank the sponsors of the Stanford Exploration Project.

Antoine Guitton thanks Repsol Sinopec Brasil SA and Geo Imaging Solucoes Tecnologicas em Geociencias Ltda.

We'd like to thank Yang Zhang for continued interest.

\section*{The end}

STANFORD
EXPLORATION PROJECT

\section*{The end}

STANFORD
EXPLORATION PROJECT






52

STANE
Exploration proisct```

