Imaging with multiples using linearized fullwave inversion

May 22nd, 2012 SEP 147 p. 249-262

Mandy Wong* Biondo Biondi Shuki Ronen

Overview

- Introduction
- Theory
 - Linearized full-wave inversion
- Synthetic examples
 - One reflector model
 - Sigbee2B model
- Discussion and Conclusion

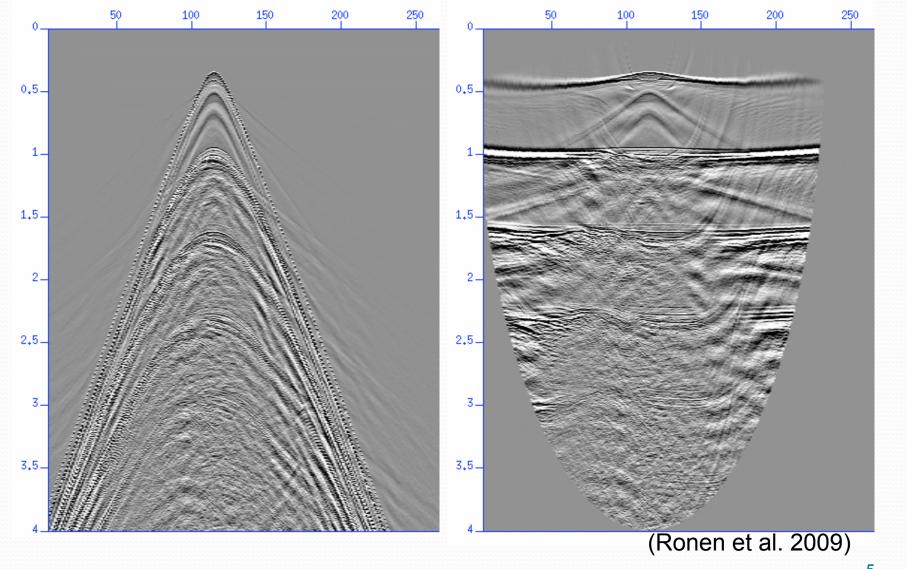
Imaging primary after demultiple

- Traditional multiple removal tools
 - Deconvolution
 - radon-transform demultiple
 - f-k demultiple
- Convolution-based techniques
 - Surface-related multiple removal (SRME)
 - Generalized surface multiple prediction (GSMP)
- Model based techniques
 - Modeling and subtractions

Imaging with multiples

- Motivations for imaging with multiples
 - multiples can provide sub-surface information not found in primary
 - incomplete removal of all multiples from the primaries
 - Migrating multiples as primary results in crosstalk artifacts in the image
 - Multiples are sensitive to velocity information

Imaging with multiples



Imaging with multiples

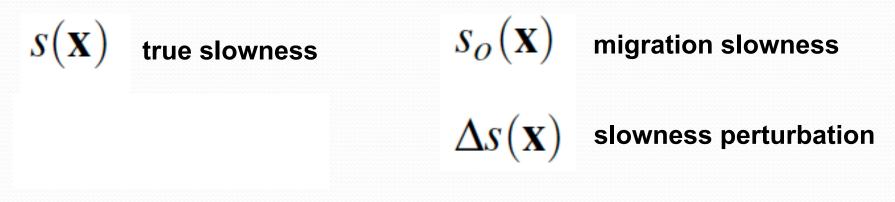
- Reiter et al. (1991) developed a prestack Kirchhoff timemigration method first-order water-layer reverberation.
- Using surface-related multiples as source
 - Shot-profile migration (Guitton 2002)
 - Source-receiver migration (Shan 2003)
 - Reverse time migration (Liu et al. 2011)
- Muijs et al. (2007) image primary and free-surface multiples for OBS data with up-going and down-going data.
- Brown (2004) uses linearized inversion with a NMO based operator

Overview

- Introduction
- Theory
 - Linearized full-wave inversion
- Synthetic examples
 - One reflector model
 - Sigbee2B model
- Discussion and Conclusion

Linearizing the wave equation with respect to model m

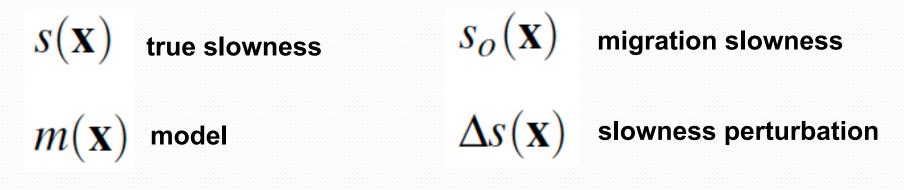
$$s(\mathbf{x}) = s_o(\mathbf{x}) + \Delta s(\mathbf{x})$$



Linearizing the wave equation with respect to model m

$$s(\mathbf{x}) = s_o(\mathbf{x}) + \Delta s(\mathbf{x})$$

$$m(\mathbf{x}) = \Delta s(\mathbf{x}) s_o(\mathbf{x})$$



LFWI forward modeling equation

$$d^{\text{mod}}(\mathbf{x}_r, \mathbf{x}_s.\boldsymbol{\omega}) = \sum_{\mathbf{x}} \boldsymbol{\omega}^2 f_s(\boldsymbol{\omega}) G_o(\mathbf{x}_s, \mathbf{x}, \boldsymbol{\omega}) m(\mathbf{x}) G_o(\mathbf{x}, \mathbf{x}_r, \boldsymbol{\omega})$$

$$d \mod(\mathbf{x}_r,\mathbf{x}_s.\boldsymbol{\omega})$$

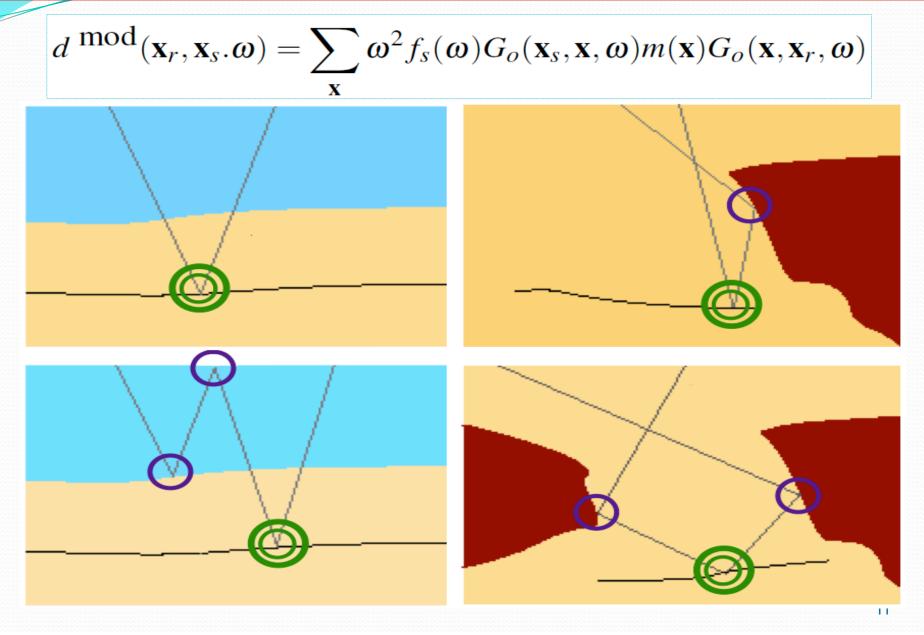
forwarded modeled data

source waveform

 $G_o(\mathbf{x}_1,\mathbf{x}_2,\boldsymbol{\omega})$

 $f_s(\boldsymbol{\omega})$

Green's function of the two-way acoustic constant density wave-equation over the migration slowness



LFWI forward modeling equation

$$d^{\text{mod}}(\mathbf{x}_r, \mathbf{x}_s.\boldsymbol{\omega}) = \sum_{\mathbf{x}} \boldsymbol{\omega}^2 f_s(\boldsymbol{\omega}) G_o(\mathbf{x}_s, \mathbf{x}, \boldsymbol{\omega}) m(\mathbf{x}) G_o(\mathbf{x}, \mathbf{x}_r, \boldsymbol{\omega})$$

Adjoint of LFWI forward modeling

$$\hat{m}(\mathbf{x}) = \sum_{\mathbf{x}_r, \mathbf{x}_s, \boldsymbol{\omega}} \boldsymbol{\omega}^2 f_s^*(\boldsymbol{\omega}) G_o^*(\mathbf{x}_s, \mathbf{x}, \boldsymbol{\omega}) G_o^*(\mathbf{x}, \mathbf{x}_r, \boldsymbol{\omega}) d(\mathbf{x}_r, \mathbf{x}_s, \boldsymbol{\omega})$$

LFWI forward modeling equation

$$\mathbf{d}^{mod} = \mathbf{F}\mathbf{m}$$

Adjoint of LFWI forward modeling

$$\hat{\mathbf{m}} = \mathbf{F}^T \mathbf{d}$$

Minimizing the objective function

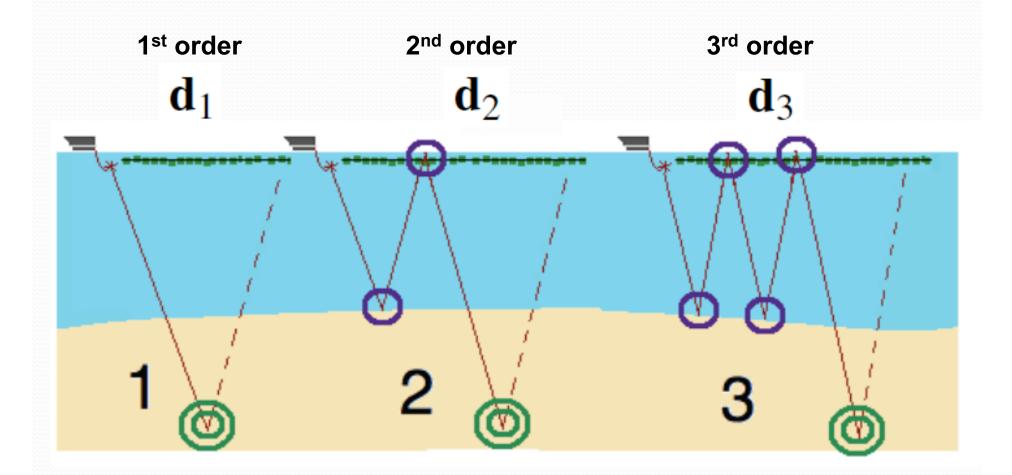
F

d

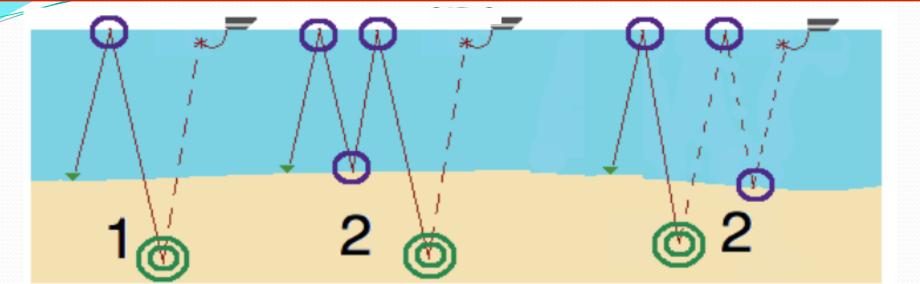
$$S(\mathbf{m}) = \|\mathbf{F}\mathbf{m} - \mathbf{d}\|^2$$

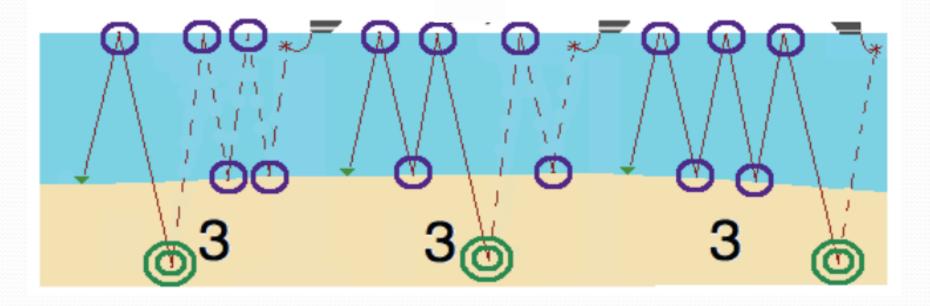
recorded data

LFWI with towed-streamer data

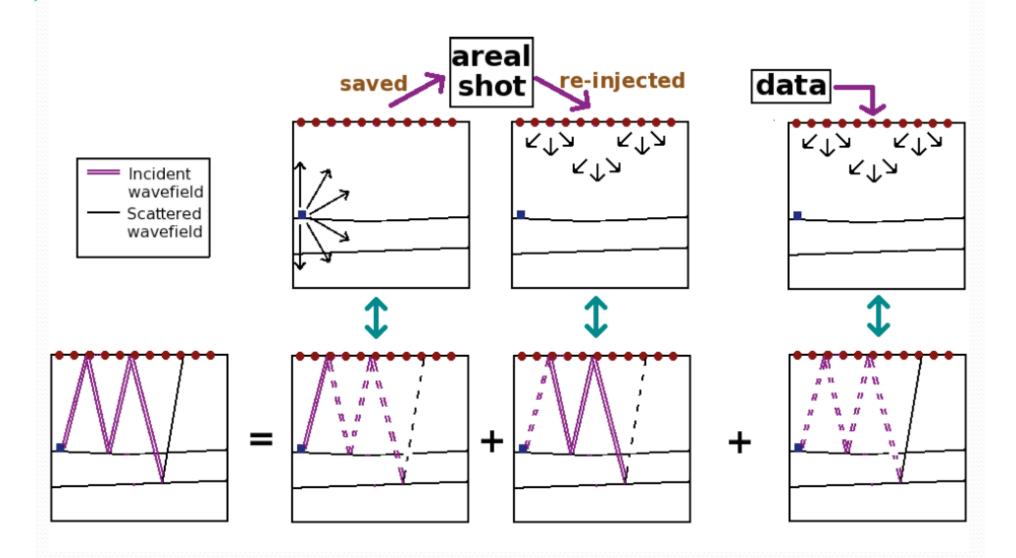


LFWI with OBN data





LFWI with OBN data



LFWI vs. primary-only

LFWI forward modeling operator

$$\mathbf{F} = \mathbf{L}_1 + \mathbf{L}_2 + \mathbf{L}_3 + \dots$$

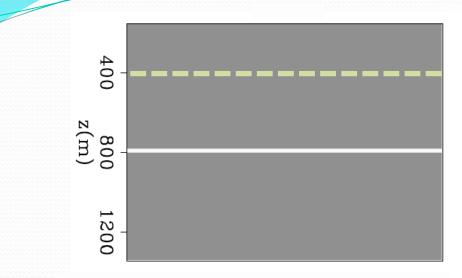
Primary only forward modeling operator

$$\mathbf{L}_p = \mathbf{L}_1$$

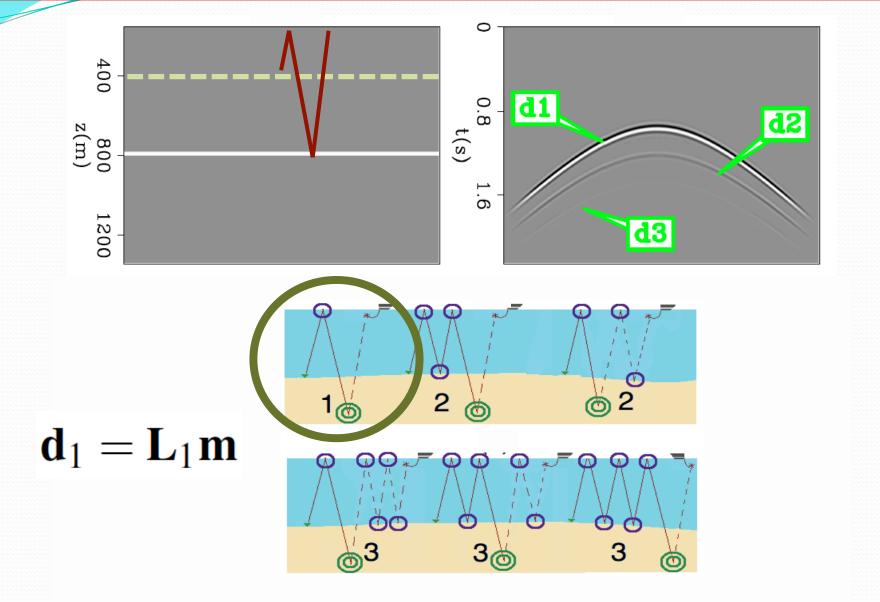
Overview

- Introduction
- Theory
 - Linearized full-wave inversion
- Synthetic examples
 - One reflector model
 - Sigbee2B model
- Discussion and Conclusion

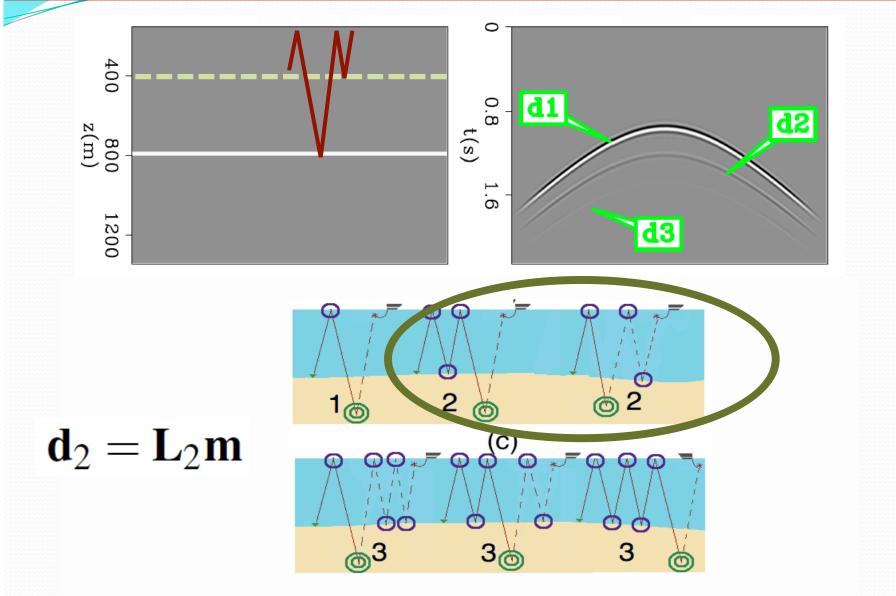
One reflector below seabed with OBN geometry



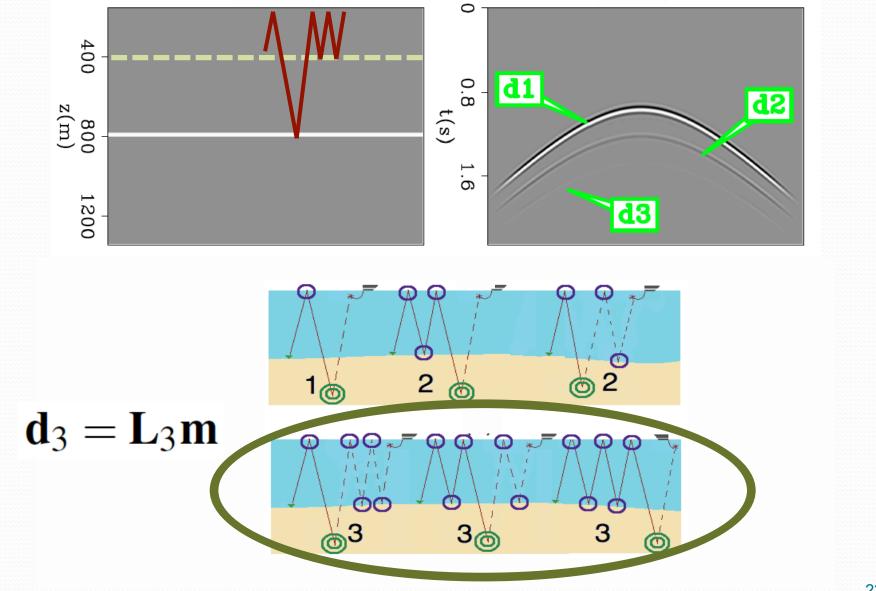
OBN synthetic data – first order



OBN synthetic data – second order

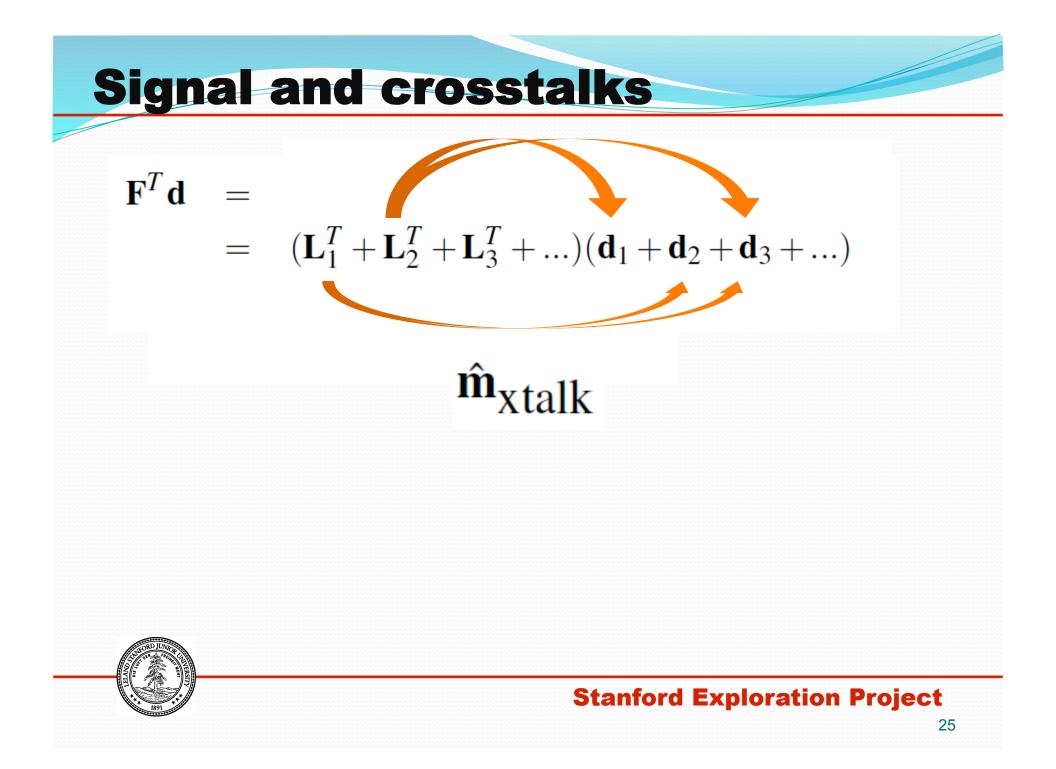


OBN synthetic data – third order



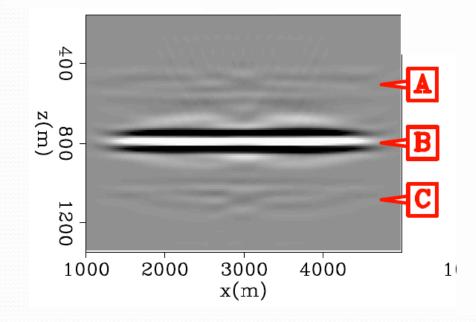
Signal and crosstalks

 $\mathbf{F}^{T}\mathbf{d} = (\mathbf{L}_{1} + \mathbf{L}_{2} + \mathbf{L}_{3} + ...)^{T}(\mathbf{d}_{1} + \mathbf{d}_{2} + \mathbf{d}_{3} + ...)$ = $(\mathbf{L}_{1}^{T} + \mathbf{L}_{2}^{T} + \mathbf{L}_{3}^{T} + ...)(\mathbf{d}_{1} + \mathbf{d}_{2} + \mathbf{d}_{3} + ...)$



One reflector model – adjoint image

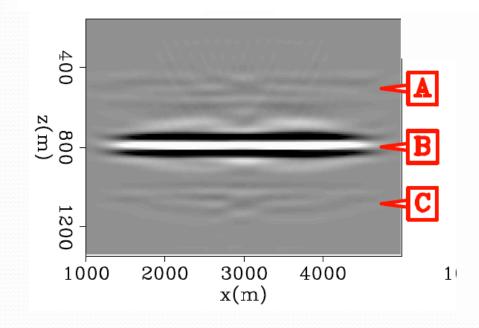
$$\mathbf{F}^T \mathbf{d} = \hat{\mathbf{m}}_{signal} + \hat{\mathbf{m}}_{xtalk}$$



One reflector model – adjoint image

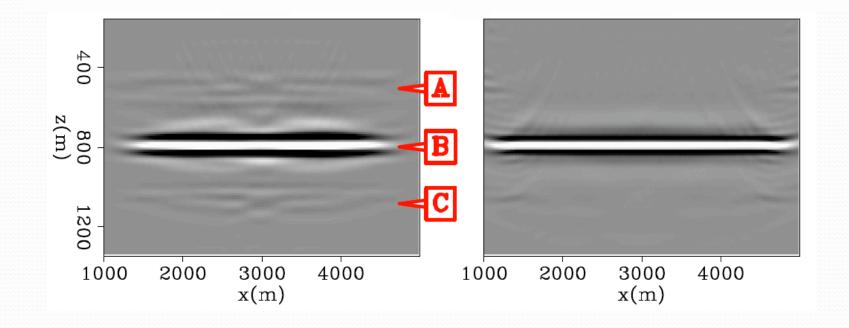
$$\mathbf{F}^T \mathbf{d} = \hat{\mathbf{m}}_{signal} + \hat{\mathbf{m}}_{xtalk}$$

 $m_A = \mathbf{L}'_2 \mathbf{d}_1 + \mathbf{L}'_3 \mathbf{d}_1 + \mathbf{L}'_4 \mathbf{d}_1 + \dots$ $m_B = \mathbf{L}'_1 \mathbf{d}_1 + \mathbf{L}'_2 \mathbf{d}_2 + \mathbf{L}'_3 \mathbf{d}_3 + \dots$ $m_C = \mathbf{L}'_1 \mathbf{d}_2 + \mathbf{L}'_1 \mathbf{d}_3 + \mathbf{L}'_2 \mathbf{d}_3 + \dots$



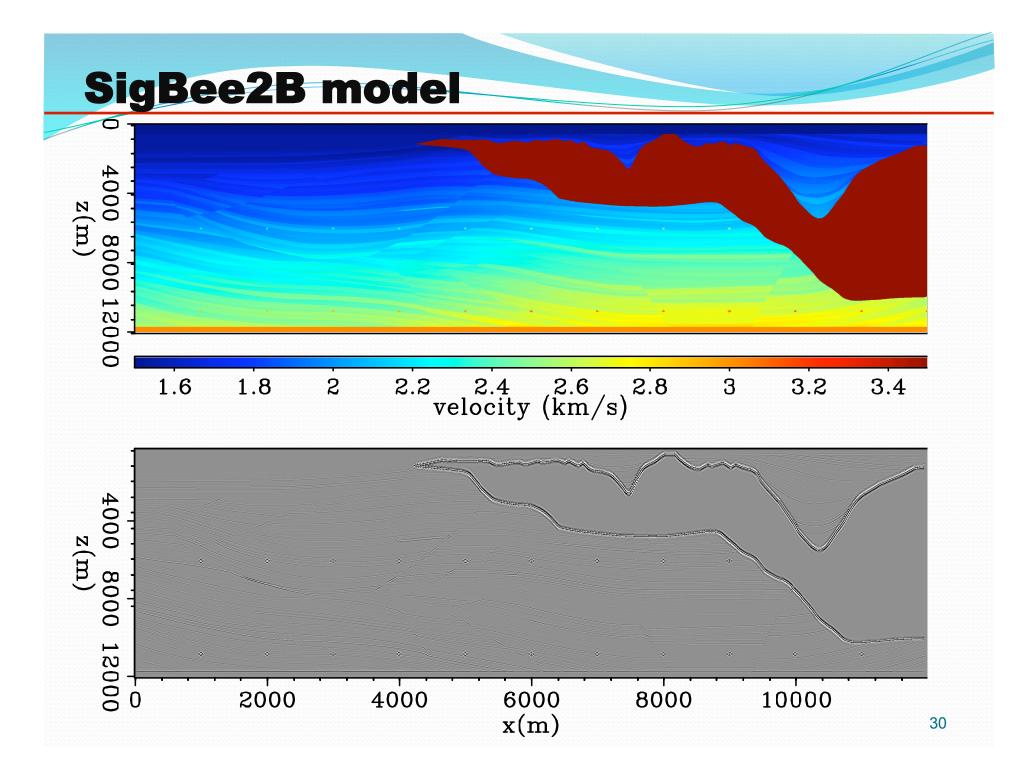
One reflector model – inversion image

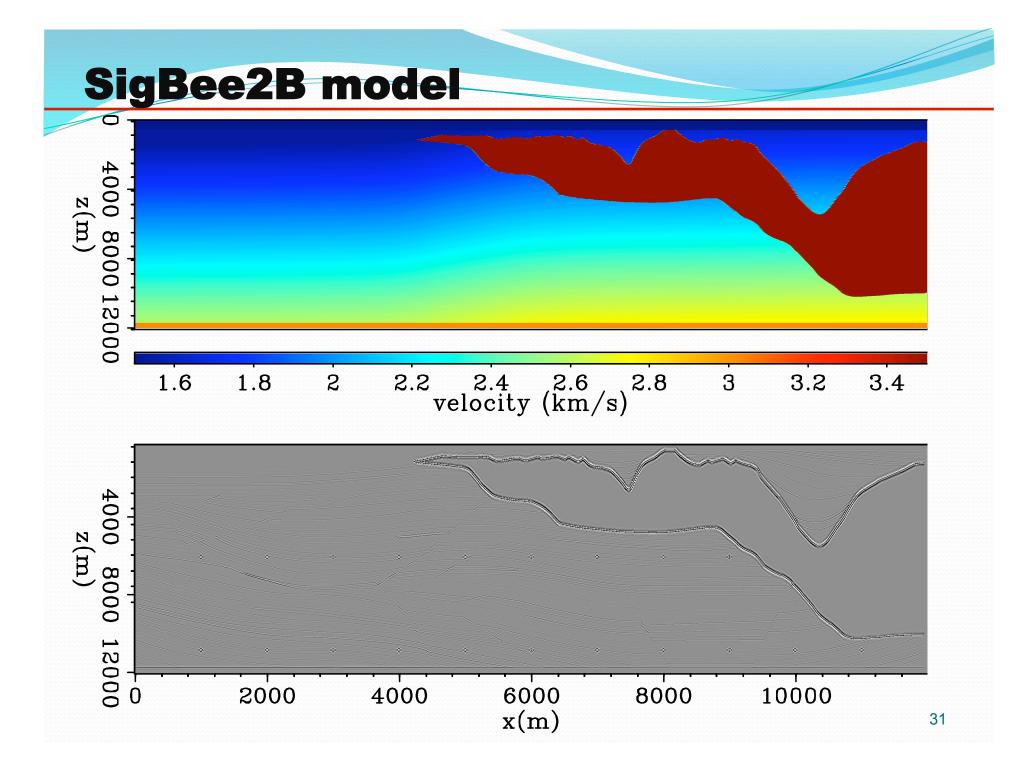
$$\hat{\mathbf{m}}_{inv} = (\mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T \mathbf{d}$$



Overview

- Introduction
- Theory
 - Linearized full-wave inversion
- Synthetic examples
 - One reflector model
 - Sigbee2B model
- Discussion and Conclusion





Primary-only and primary+multiples synthetic data

Primaries + multiples synthetic

$$\begin{array}{lll} \mathbf{d_{P+M}} &=& \mathbf{Fm} \\ &=& (\mathbf{L}_1 + \mathbf{L}_2 + \mathbf{L}_3 + \ldots)\mathbf{m} \\ &=& \mathbf{d}_1 + \mathbf{d}_2 + \mathbf{d}_3 + \ldots \end{array}$$

Primary-only synthetic

 $\mathbf{d}_{\mathbf{P}} = \mathbf{L}_{p}\mathbf{m}$ $= \mathbf{L}_{1}\mathbf{m} = \mathbf{d}_{1}$

Primary-only and primary+multiples synthetic data

Primaries + multiples synthetic

$$\begin{array}{lll} \mathbf{d}_{P+M} &=& \mathbf{Fm} \\ &=& (\mathbf{L}_1 + \mathbf{L}_2 + \mathbf{L}_3 + \ldots)\mathbf{m} \\ &=& \mathbf{d}_1 + \mathbf{d}_2 + \mathbf{d}_3 + \ldots \end{array}$$

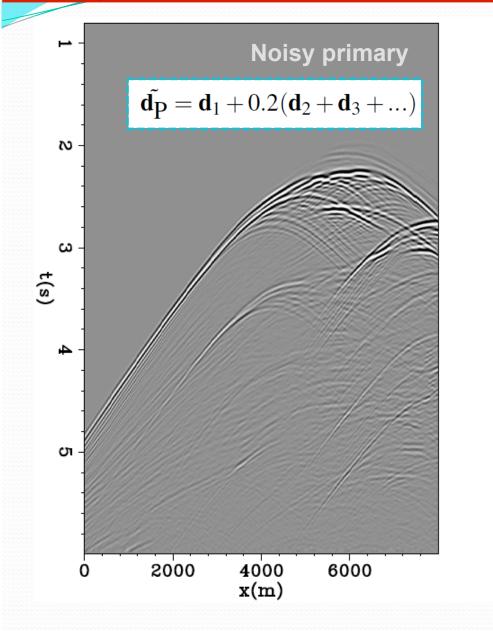
Primary-only synthetic

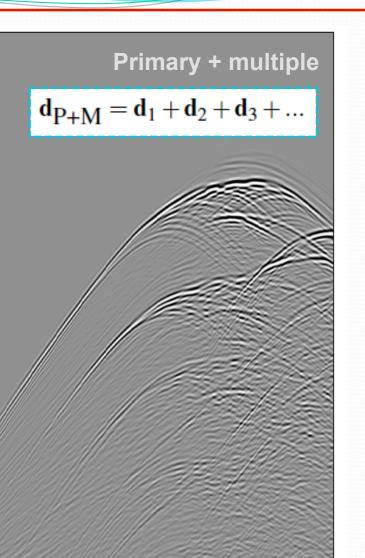
Noisy primary

$$\mathbf{d}_{\mathbf{P}} = \mathbf{L}_{p}\mathbf{m}$$
$$= \mathbf{L}_{1}\mathbf{m} = \mathbf{d}_{1}$$

$$\tilde{\boldsymbol{d_P}} = \boldsymbol{d_1} + 0.2(\boldsymbol{d_2} + \boldsymbol{d_3} + ...)$$

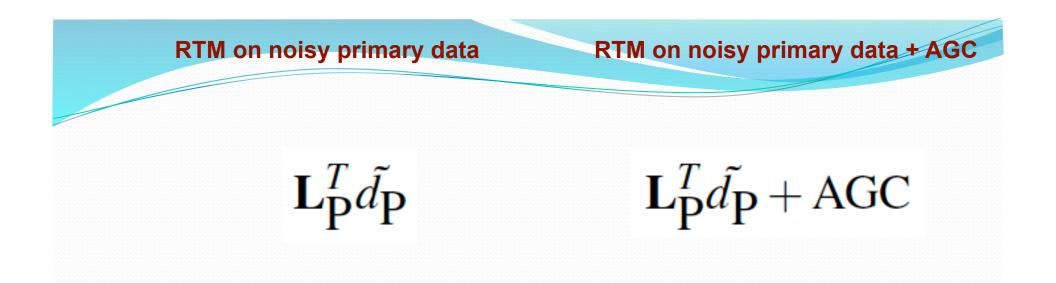
SigBee2B model





x(m)

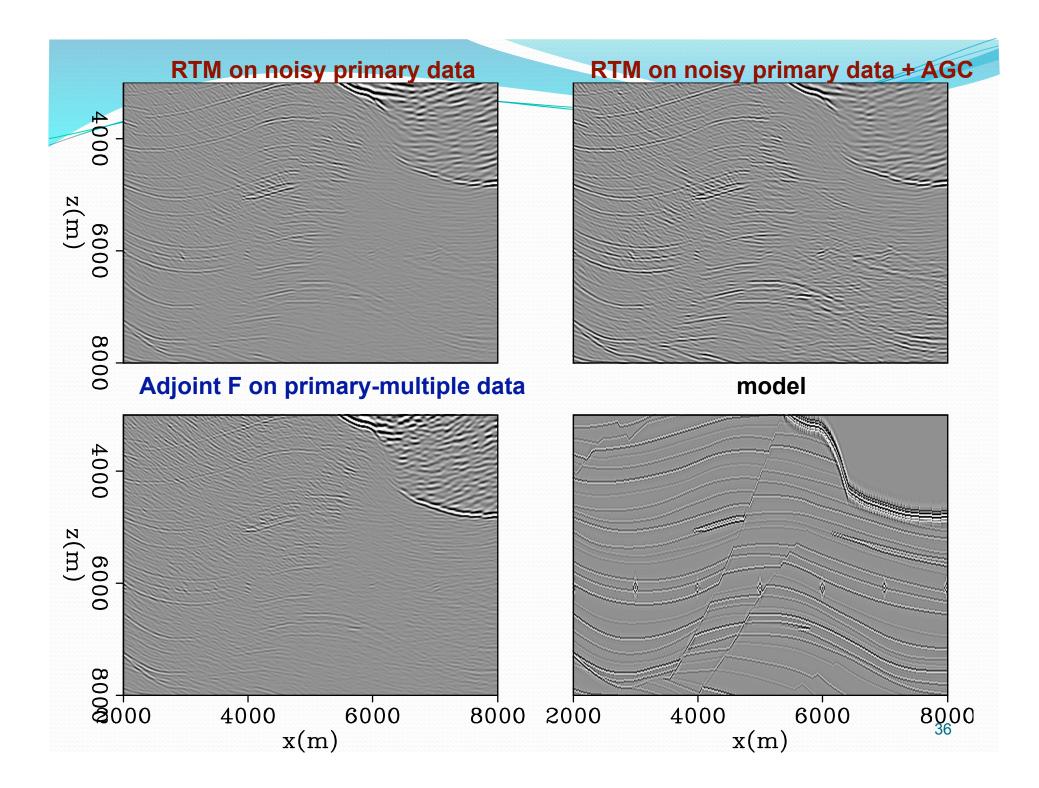
.....



Adjoint F on primary-multiple data

model

 $\mathbf{F}^T d_{\mathbf{P}+\mathbf{M}}$

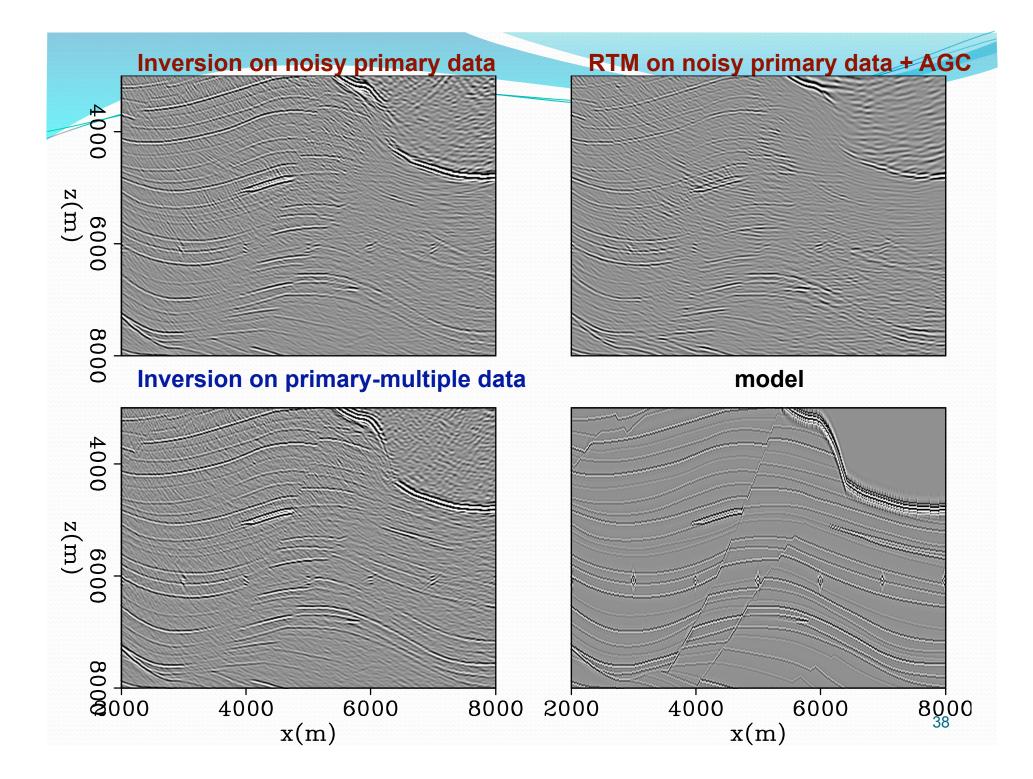


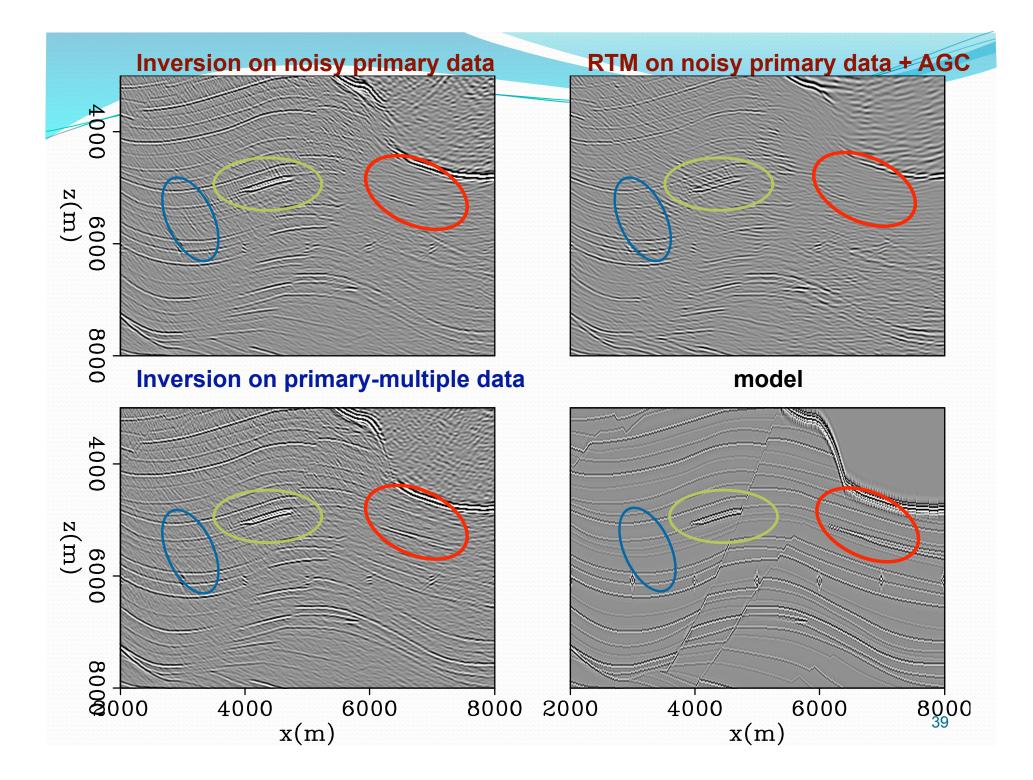
Inversion on noisy primary data $(\mathbf{L}_{P}^{T}\mathbf{L}_{P})^{-1}\mathbf{L}_{P}^{T}\tilde{\mathbf{d}_{P}}$ $\mathbf{L}_{P}^{T}\tilde{\mathbf{d}_{P}} + AGC$

Inversion on primary-multiple data

model

 $(\mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T \mathbf{d}_{\mathbf{P}+\mathbf{M}}$





Overview

- Introduction
- Theory
 - Linearized full-wave inversion
- Synthetic examples
 - One reflector model
 - Sigbee2B model
- Discussion and Conclusion

Discussion

- LFWI does not migrate all orders of multiples
 - Migrates multiples with single scattering off the model
- LFWI depends on the migration velocity
- Can be extended to include variable density, anisotropy and more.
- This technique is appropriate for surveys where multiple removal is an issue

Conclusion

- Linearized full-wave inversion (LFWI) can image both primaries and multiples
- Results from the 2D Sigbee2B model shows that
 - LFWI increases subsurface illumination by using multiple as energy
 - It reduces crosstalks in the final image

