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Bidirectional deconvolution 
}  Convolution model 

}  Bidirectional deconvolution 
 d = r *w
d = r * (wa *wb

r )
r = d ∗ (wa *wb

r )−1

Where d = data,  wa *wb
r = w = wavelet, 

 wa  and wb  are both minium phase
( The superscript r means reverse in time)

d = r *w
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Bidirectional deconvolution 
}  The deconvolution filters are the inverse wavelets 

}  Apply deconvolution filters on the data to recover the 
reflectivity series 

}  We can deal with mix-phase wavelet by this way, but how 
can we add sparseness assumption on this bidirectional 
deconvolution?    

 

wa * fa = δ
wb * fb = δ
"
#
$

r = d * fa * fb
r
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Bidirectional deconvolution 
}  The deconvolution filters are the inverse wavelets 

}  Apply deconvolution filters on the data to recover the 
reflectivity series 

}  This deals with mix-phase wavelets 

 

wa * fa = δ
wb * fb = δ
"
#
$

r = d * fa * fb
r
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Time-domain methods 
}  Two time-domain methods 

}  Slalom method 
}  Zhang, Y. and J. Claerbout, 2010, A new bidirectional deconvolution 

method that overcomes the minimum phase assumption: SEP-Report, 
142, 93–104. 

}  Symmetric method  
}  Shen, Y., Q. Fu, and J. Claerbout, 2011, A new algorithm for 

bidirectional deconvolution: SEP-Report, 143, 271–282. 

}  However, both time methods are very sensitive to the starting 
solution and the parameters 
}  For example, changing the filter length a little led to total different  

result 
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Instability caused by nonlinearity? 
}  Bidirectional deconvolution is a non-linear problem 

}  A multidimensional non-linear objective function with local minima 
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Instability caused by nonlinearity? 
}  Bidirectional deconvolution is a non-linear problem 

}  A multidimensional non-linear objective function with local minima 
}  Results are very sensitive to the starting solution and parameters 
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Instability caused by null space? 
}  The sensitivity of initial solution may be caused by the 

Null Space  
}  We do not have enough evidence to confirm the reason yet 
}  No matter what is the reason of this sensitivity, we need to solve this 

problem by preconditioning in time-domain methods 
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Preconditioning 
}  Time domain methods require preconditioning to provide 

prior information in inversion 
}  Also accelerates the convergence and stabilizes the results 

7/8/13 12 



Preconditioning 
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}  We use PEF (prediction error filter) as a preconditioner 
for time domain methods 



Preconditioning 
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}  We use PEF (prediction error filter) as a preconditioner 
for time domain methods 

}  PEF is a causal and minimum-phase filter 
}  That means if we have a Ricker wavelet in our data, we can 

only get an output spike on the first lobe 
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Common offset data 
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Time-domain method 
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Data after preconditioning 



Estimated wavelet from time-domain method  
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The time-domain methods - issue 
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}  Polarity flipping and time shifts: 
}  The polarities of the events are flipped by bidirectional 

deconvolution (white to black) 
}  There is a time shift for the peaks of the events after bidirectional 

deconvolution 

}  This reminds us the preconditioner may lead to problems 
}  We don’t want to rely on the preconditioner 



}  Redefine the unknowns U 

}  The final deconvolution filter is 

r = d ∗ fa ∗ fb = IFT(DFaFb ) = IFT(DF)
U = logF = logFaFb
u = IFT(U )

Logarithm method 

f = fa ∗ fb = IFT(e
U )
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}  Why do we need this? 
}  We have to update minimum-phase and maximum-phase 

deconvolution filters respectively 
}  The exponential “e” helps to map minimum-phase and 

maximum-phase filters into u separately without crosstalk 

Logarithm method 
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 u = (…,u−3,u−2 ,u−1,0,u1,u2 ,u3,…)



}  Why do we need this? 
}  We have to update minimum-phase and maximum-phase 

deconvolution filters respectively 
}  The exponential “e” helps to map minimum-phase and 

maximum-phase filters into u separately without crosstalk 

}  Claerbout, J., Q. Fu, and Y. Shen, 2011, A log spectral approach to 
bidirectional deconvolution: SEP-Report, 143, 297–300. 

Logarithm method 
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 u = (…,u−3,u−2 ,u−1,0,u1,u2 ,u3,…)

 fb  fa



Logarithm method is self-preconditioned 
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}  The logarithm method is self-preconditioned 

}  We do not need extra preconditioning for this method 
anymore  

}  The convergence speed is fast  
}  We do not have any polarity flips or time shifts in the 

logarithm method 

  r = IFT(DeU +αΔU ) = IFT(DeU eαΔU ) = d ∗ f pre ∗ fupdate
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Common offset data 
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Logarithm method 
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Time domain method 



Estimated wavelet: logarithm method 
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Estimated wavelet: time-domain method  
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Conclusion - advantages 
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}  The logarithm method is self-preconditioned.  We do not 
have any polarity flips or time shifts in the logarithm 
method and the convergence is fast  

}  The fa and fb are guaranteed to be minimum-phase and 
maximum-phase respectively (the time domain methods 
can not guarantee this) 

}  We have only one rather than two-coefficient series to 
solve for 



Conclusion - disadvantages 
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} We need to constrain the deconvolution filter 
} The estimated deconvolution filter is as long as the input data 
trace 

} However, it is not easy.  
} because of the exponential, the u is not linear  with the 
deconvolution filter f.  Thus it is not easy to constrain the filter 
length 
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Backup slices 
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Hyperbolic penalty function 
}  We replace the conventional L2 norm with a hyperbolic 

penalty function.  
}  This favors sparseness of the result after bidirectional 

deconvolution and retrieves non-white reflectivity series. 

}  Hyperbolic penalty function: 

Hyp(r) = r2 + R0
2 − R0

Where R0  is a constant value behaving as a threshold.
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Hyperbolic penalty function 
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Logarithm method 
}  Why do we need this? 

}  We have to update minimum-phase and maximum-phase 
deconvolution filters respectively. 

}  The new u variable can help us to separate minimum-phase and 
maximum-phase filters without crosstalk. 

 

u = (…,u−3,u−2 ,u−1,0,u1,u2 ,u3,…),   z = eiw

u+ = (0,u1,u2 ,u3,…);                  u− = (…,u−3,u−2 ,u−1,0)
U + (z) = 0 + u1z + u2z

2 +;       U − (z) = 0 + u−1 z + u−2 z2 +

Fa = e
U+

;                                    Fb = e
U−

u = u+ + u−  (No overlap between u+  and u−  )
u = ([maximum-phase part],0,[minimum-phase part])
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Logarithm method 
}  Intuitive proof 

 

u = (…,u−3,u−2 ,u−1,0,u1,u2 ,u3,…),   z = eiw

u+ = (0,u1,u2 ,u3,…);                  u− = (…,u−3,u−2 ,u−1,0)
U + (z) = 0 + u1z + u2z

2 +;       U − (z) = 0 + u−1 z + u−2 z2 +

Fa = e
U+

;                                    Fb = e
U−

eU
+

= 1+U + + (U + )2 2!+ (U + )3 3!     The filter Fa  is causal.

e−(U+ ) = 1−U + + (U + )2 2!− (U + )3 3!  The inverse Fa  is also causal.
So the filter Fa  is minimum-phase. 
Likewise, we can proof Fb  is maximum-phase
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Logarithm method 
}  How to implement the logarithm method? 
 We use a iterative gradient based inversion scheme. For 
each iteration, we need to know 
I.  The gradient (update direction for u), Δu ; 
II. The update direction for residual r, Δr ; 
III. The update step length α. 
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J=Hyp(r) = H (rt )
t
∑ = H ([IFT(DeU )]t

t
∑ )

Δu = ∂J
∂u

=
∂H (rt )
∂rt

∂rt
∂ut

∑ = H '(rt )
∂rt
∂ut

∑
If we look at the τ -th component of Δu

Δuτ = [Δu]τ = H '(rt )
∂rt
∂uτt

∑

∂rt
∂uτ

=
∂[IFT(DeU )]t

∂uτ
= [IFT(DeU ∂U

∂uτ
)]t

Logarithm method 
}  I. The gradient (update direction for u in each iteration) 
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}  I. The gradient (update direction for u in each iteration) 

 

∂rt
∂uτ

=
∂[IFT(DeU )]t

∂uτ
= [IFT(DeU ∂U

∂uτ
)]t

U =+u−2 z2 + u−1 z + u0 + u1z + u2z
2 +

  ∂U
∂uτ

= zτ      

∴
∂rt
∂uτ

= [IFT(DeUzτ )]t = rt+τ

Logarithm method 
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Logarithm method 
}  I. The gradient (update direction for u in each iteration) 

 

Δuτ = [Δu]τ = H '(rt )
∂rt
∂uτt

∑ = H '(rt )rt+τ
t
∑

Δu = rH '(r)
 (  denotes cross-correlation)
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}  II. The update direction for residual r 

If we ignore higher terms of α (assuming α is small) 

 

r +αΔr = IFT(DeU+αΔU ) = IFT(DeUeαΔU )
= IFT(DeU )IFT(eαΔU )

IFT(eαΔU ) = IFT(eα (+Δu−1 z+0+Δu1z+) )
= IFT(1+α(+Δu−1 z + 0 + Δu1z +)+α

2 ()+)

Logarithm method 
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IFT(eαΔU ) = IFT(1+α(+Δu−1 z + 0 + Δu1z +))
=,αΔu−1,1,αΔu1,



}  II. The update direction for residual r 

Logarithm method 
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r +αΔr = IFT(DeU+αΔU ) = IFT(DeUeαΔU )
r +αΔr = r ∗ (,αΔu−1,1,αΔu1,)

= r +αr ∗Δu
Δr = r ∗Δu



}  III. The update step length α 
}  To find the update step length α , we try to minimize the 

object function by tuning α 

}  We use Newton iteration to find this minimum. 

 Ignore the terms higher than 2nd order 
 
Hyp(r +αΔr) = H (rt )+αΔrtH '(rt )+ (αΔrt )

2H ''(rt ) 2!+( )
t
∑

Logarithm method 
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argmin
α

[Hyp(r +αΔr)]

∂Hyp(r +αΔr)
∂α

= 0



}  III. The update step length α 

Because we use Newton method here (ignoring higher order 
terms in Taylor expansion), we need a iteration to get final α. 

Logarithm method 

7/8/13 47 

Hyp(r +αΔr) = H (rt )+αΔrtH '(rt )+ (αΔrt )
2H ''(rt ) 2!( )

t
∑

∂Hyp(r +αΔr)
∂α

=
∂
∂α

H (rt )+αΔrtH '(rt )+ (αΔrt )
2H ''(rt ) 2!( )

t
∑

α = −
ΔrtH '(rt )

t
∑
(Δrt )

2H ''(rt )
t
∑



Logarithm method 
}  The iteration to get final alpha 

α = 0
loop
{

    α inc = −
ΔrtH '(rt )

t
∑
(Δrt )

2H ''(rt )
t
∑

    α =α +α inc

    rt = rt +α incΔrt
}

7/8/13 48 



Logarithm method 
}  We can use trial and error method to reduce the over 

shoot problem  
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loop{

    α inc = −
ΔrtH '(rt )

t
∑
(Δrt )

2H ''(rt )
t
∑

    loop {
        rtemp = r +α incΔr
        If (Hyp(rtemp ) > Hyp(r)) then (α inc =α inc / 2) Else Break
    }
    α =α +α inc

    r = r +α incΔr
}



The magic of Logarithm method 
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}  The magic of exponential operator “e” 
}  Why gradient Δu  is a function of shifted output r is 

improtant? 

}  The gradient should be vanished in the final solution. If H(rt) is 
convention L2 norm rather than hyperbolic penalty function,  

}  The auto-correlation of the output is 0 except at the origin. 
The shifted output is orthogonal with output itself.  The says 
the output is white.  

Δuτ = [Δu]τ = H '(rt )
∂rt
∂uτt

∑ = H '(rt )rt+τ
t
∑

H '(rt ) = (rt
2 )' = 2rt

0 = Δuτ = H '(rt )rt+τ
t
∑ = 2rtrt+τ

t
∑



The magic of Logarithm method 
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}  The magic of exponential operator “e” 
}  If we do not have “e” here, the gradient is a function of shifted 

input d 

}  The gradient should be vanished in the final solution. If H(rt) is 
convention L2 norm rather than hyperbolic penalty function,  

}  The output is orthogonal with shifted input.  The says the 
output is not white anymore.  

Δfτ = [Δf ]τ = H '(rt )
∂rt
∂fτt

∑ = H '(rt )dt+τ
t
∑

H '(rt ) = (rt
2 )' = 2rt

0 = Δfτ = H '(rt )dt+τ
t
∑ = 2rtdt+τ

t
∑


