
Recent progress of bidirectional
deconvolution

Qiang Fu

7/8/13 1

SEP-147 p333

Stanford Exploration Project

Bidirectional deconvolution
}  Convolution model

}  Bidirectional deconvolution
 d = r *w
d = r * (wa *wb

r)
r = d ∗ (wa *wb

r)−1

Where d = data, wa *wb
r = w = wavelet,

 wa and wb are both minium phase
(The superscript r means reverse in time)

d = r *w

7/8/13 2

Bidirectional deconvolution
}  Convolution model

}  Bidirectional deconvolution
 d = r *w
d = r * (wa *wb

r)
r = d ∗ (wa *wb

r)−1

Where d = data, wa *wb
r = w = wavelet,

 wa and wb are both minium phase
(The superscript r means reverse in time)

d = r *w

7/8/13 3

Bidirectional deconvolution
}  Convolution model

}  Bidirectional deconvolution
 d = r *w
d = r * (wa *wb

r)
r = d ∗ (wa *wb

r)−1

Where d = data, wa *wb
r = w = wavelet,

 wa and wb are both minium phase
(The superscript r means reverse in time)

d = r *w

7/8/13 4

Bidirectional deconvolution
}  The deconvolution filters are the inverse wavelets

}  Apply deconvolution filters on the data to recover the
reflectivity series

}  We can deal with mix-phase wavelet by this way, but how
can we add sparseness assumption on this bidirectional
deconvolution?

wa * fa = δ
wb * fb = δ
"
#
$

r = d * fa * fb
r

7/8/13 5

Bidirectional deconvolution
}  The deconvolution filters are the inverse wavelets

}  Apply deconvolution filters on the data to recover the
reflectivity series

}  We can deal with mix-phase wavelet by this way, but how
can we add sparseness assumption on this bidirectional
deconvolution?

wa * fa = δ
wb * fb = δ
"
#
$

r = d * fa * fb
r

7/8/13 6

Bidirectional deconvolution
}  The deconvolution filters are the inverse wavelets

}  Apply deconvolution filters on the data to recover the
reflectivity series

}  This deals with mix-phase wavelets

wa * fa = δ
wb * fb = δ
"
#
$

r = d * fa * fb
r

7/8/13 7

Time-domain methods
}  Two time-domain methods

}  Slalom method
}  Zhang, Y. and J. Claerbout, 2010, A new bidirectional deconvolution

method that overcomes the minimum phase assumption: SEP-Report,
142, 93–104.

}  Symmetric method
}  Shen, Y., Q. Fu, and J. Claerbout, 2011, A new algorithm for

bidirectional deconvolution: SEP-Report, 143, 271–282.

}  However, both time methods are very sensitive to the starting
solution and the parameters
}  For example, changing the filter length a little led to total different

result

7/8/13 8

Instability caused by nonlinearity?
}  Bidirectional deconvolution is a non-linear problem

}  A multidimensional non-linear objective function with local minima

7/8/13 9

Instability caused by nonlinearity?
}  Bidirectional deconvolution is a non-linear problem

}  A multidimensional non-linear objective function with local minima
}  Results are very sensitive to the starting solution and parameters

7/8/13 10

Instability caused by null space?
}  The sensitivity of initial solution may be caused by the

Null Space
}  We do not have enough evidence to confirm the reason yet
}  No matter what is the reason of this sensitivity, we need to solve this

problem by preconditioning in time-domain methods

7/8/13 11

Preconditioning
}  Time domain methods require preconditioning to provide

prior information in inversion
}  Also accelerates the convergence and stabilizes the results

7/8/13 12

Preconditioning

7/8/13 13

}  We use PEF (prediction error filter) as a preconditioner
for time domain methods

Preconditioning

7/8/13 14

}  We use PEF (prediction error filter) as a preconditioner
for time domain methods

}  PEF is a causal and minimum-phase filter
}  That means if we have a Ricker wavelet in our data, we can

only get an output spike on the first lobe

7/8/13 15

Common offset data

7/8/13 16

Time-domain method

7/8/13 17

Data after preconditioning

Estimated wavelet from time-domain method

7/8/13 18

The time-domain methods - issue

7/8/13 19

}  Polarity flipping and time shifts:
}  The polarities of the events are flipped by bidirectional

deconvolution (white to black)
}  There is a time shift for the peaks of the events after bidirectional

deconvolution

}  This reminds us the preconditioner may lead to problems
}  We don’t want to rely on the preconditioner

}  Redefine the unknowns U

}  The final deconvolution filter is

r = d ∗ fa ∗ fb = IFT(DFaFb) = IFT(DF)
U = logF = logFaFb
u = IFT(U)

Logarithm method

f = fa ∗ fb = IFT(e
U)

7/8/13 20

}  Why do we need this?
}  We have to update minimum-phase and maximum-phase

deconvolution filters respectively
}  The exponential “e” helps to map minimum-phase and

maximum-phase filters into u separately without crosstalk

Logarithm method

7/8/13 21

 u = (…,u−3,u−2 ,u−1,0,u1,u2 ,u3,…)

}  Why do we need this?
}  We have to update minimum-phase and maximum-phase

deconvolution filters respectively
}  The exponential “e” helps to map minimum-phase and

maximum-phase filters into u separately without crosstalk

}  Claerbout, J., Q. Fu, and Y. Shen, 2011, A log spectral approach to
bidirectional deconvolution: SEP-Report, 143, 297–300.

Logarithm method

7/8/13 22

 u = (…,u−3,u−2 ,u−1,0,u1,u2 ,u3,…)

 fb fa

Logarithm method is self-preconditioned

7/8/13 23

}  The logarithm method is self-preconditioned

}  We do not need extra preconditioning for this method
anymore

}  The convergence speed is fast
}  We do not have any polarity flips or time shifts in the

logarithm method

 r = IFT(DeU +αΔU) = IFT(DeU eαΔU) = d ∗ f pre ∗ fupdate

7/8/13 24

Common offset data

7/8/13 25

Logarithm method

7/8/13 26

Time domain method

Estimated wavelet: logarithm method

7/8/13 27

Estimated wavelet: time-domain method

7/8/13 28

Conclusion - advantages

7/8/13 29

}  The logarithm method is self-preconditioned. We do not
have any polarity flips or time shifts in the logarithm
method and the convergence is fast

}  The fa and fb are guaranteed to be minimum-phase and
maximum-phase respectively (the time domain methods
can not guarantee this)

}  We have only one rather than two-coefficient series to
solve for

Conclusion - disadvantages

7/8/13 30

} We need to constrain the deconvolution filter
} The estimated deconvolution filter is as long as the input data
trace

} However, it is not easy.
} because of the exponential, the u is not linear with the
deconvolution filter f. Thus it is not easy to constrain the filter
length

Acknowledgements
}  I would especially thank

}  Jon Claerbout
for all knowledge he teaches me

}  I would like to thank
}  Yang Zhang
}  Antoine Guitton
}  Shuki Ronen

 for help on my research

7/8/13 31

THANK YOU

7/8/13 32

Backup slices

7/8/13 33

Hyperbolic penalty function
}  We replace the conventional L2 norm with a hyperbolic

penalty function.
}  This favors sparseness of the result after bidirectional

deconvolution and retrieves non-white reflectivity series.

}  Hyperbolic penalty function:

Hyp(r) = r2 + R0
2 − R0

Where R0 is a constant value behaving as a threshold.

7/8/13 34

Hyperbolic penalty function
}  We replace the conventional L2 norm with a hyperbolic

penalty function.
}  This favors sparseness of the result after bidirectional

deconvolution and retrieves non-white reflectivity series.

}  Hyperbolic penalty function:

Hyp(r) = r2 + R0
2 − R0

Where R0 is a constant value behaving as a threshold.

7/8/13 35

Hyperbolic penalty function

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

H
yp

(r
)

(R
=1

.0
)

r

(1,0.4142)

7/8/13 36

Hyperbolic penalty function

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

H
yp

(r
)

(R
=1

.0
)

r

(1,0.4142)

7/8/13 37

L1

L2

Logarithm method
}  Why do we need this?

}  We have to update minimum-phase and maximum-phase
deconvolution filters respectively.

}  The new u variable can help us to separate minimum-phase and
maximum-phase filters without crosstalk.

u = (…,u−3,u−2 ,u−1,0,u1,u2 ,u3,…), z = eiw

u+ = (0,u1,u2 ,u3,…); u− = (…,u−3,u−2 ,u−1,0)
U + (z) = 0 + u1z + u2z

2 +; U − (z) = 0 + u−1 z + u−2 z2 +

Fa = e
U+

; Fb = e
U−

u = u+ + u− (No overlap between u+ and u−)
u = ([maximum-phase part],0,[minimum-phase part])

7/8/13 38

Logarithm method
}  Intuitive proof

u = (…,u−3,u−2 ,u−1,0,u1,u2 ,u3,…), z = eiw

u+ = (0,u1,u2 ,u3,…); u− = (…,u−3,u−2 ,u−1,0)
U + (z) = 0 + u1z + u2z

2 +; U − (z) = 0 + u−1 z + u−2 z2 +

Fa = e
U+

; Fb = e
U−

eU
+

= 1+U + + (U +)2 2!+ (U +)3 3! The filter Fa is causal.

e−(U+) = 1−U + + (U +)2 2!− (U +)3 3! The inverse Fa is also causal.
So the filter Fa is minimum-phase.
Likewise, we can proof Fb is maximum-phase

7/8/13 39

Logarithm method
}  How to implement the logarithm method?
 We use a iterative gradient based inversion scheme. For
each iteration, we need to know
I.  The gradient (update direction for u), Δu ;
II. The update direction for residual r, Δr ;
III. The update step length α.

7/8/13 40

J=Hyp(r) = H (rt)
t
∑ = H ([IFT(DeU)]t

t
∑)

Δu = ∂J
∂u

=
∂H (rt)
∂rt

∂rt
∂ut

∑ = H '(rt)
∂rt
∂ut

∑
If we look at the τ -th component of Δu

Δuτ = [Δu]τ = H '(rt)
∂rt
∂uτt

∑

∂rt
∂uτ

=
∂[IFT(DeU)]t

∂uτ
= [IFT(DeU ∂U

∂uτ
)]t

Logarithm method
}  I. The gradient (update direction for u in each iteration)

7/8/13 41

}  I. The gradient (update direction for u in each iteration)

∂rt
∂uτ

=
∂[IFT(DeU)]t

∂uτ
= [IFT(DeU ∂U

∂uτ
)]t

U =+u−2 z2 + u−1 z + u0 + u1z + u2z
2 +

 ∂U
∂uτ

= zτ

∴
∂rt
∂uτ

= [IFT(DeUzτ)]t = rt+τ

Logarithm method

7/8/13 42

Logarithm method
}  I. The gradient (update direction for u in each iteration)

Δuτ = [Δu]τ = H '(rt)
∂rt
∂uτt

∑ = H '(rt)rt+τ
t
∑

Δu = rH '(r)
 (denotes cross-correlation)

7/8/13 43

}  II. The update direction for residual r

If we ignore higher terms of α (assuming α is small)

r +αΔr = IFT(DeU+αΔU) = IFT(DeUeαΔU)
= IFT(DeU)IFT(eαΔU)

IFT(eαΔU) = IFT(eα (+Δu−1 z+0+Δu1z+))
= IFT(1+α(+Δu−1 z + 0 + Δu1z +)+α

2 ()+)

Logarithm method

7/8/13 44

IFT(eαΔU) = IFT(1+α(+Δu−1 z + 0 + Δu1z +))
=,αΔu−1,1,αΔu1,

}  II. The update direction for residual r

Logarithm method

7/8/13 45

r +αΔr = IFT(DeU+αΔU) = IFT(DeUeαΔU)
r +αΔr = r ∗ (,αΔu−1,1,αΔu1,)

= r +αr ∗Δu
Δr = r ∗Δu

}  III. The update step length α
}  To find the update step length α , we try to minimize the

object function by tuning α

}  We use Newton iteration to find this minimum.

 Ignore the terms higher than 2nd order

Hyp(r +αΔr) = H (rt)+αΔrtH '(rt)+ (αΔrt)

2H ''(rt) 2!+()
t
∑

Logarithm method

7/8/13 46

argmin
α

[Hyp(r +αΔr)]

∂Hyp(r +αΔr)
∂α

= 0

}  III. The update step length α

Because we use Newton method here (ignoring higher order
terms in Taylor expansion), we need a iteration to get final α.

Logarithm method

7/8/13 47

Hyp(r +αΔr) = H (rt)+αΔrtH '(rt)+ (αΔrt)
2H ''(rt) 2!()

t
∑

∂Hyp(r +αΔr)
∂α

=
∂
∂α

H (rt)+αΔrtH '(rt)+ (αΔrt)
2H ''(rt) 2!()

t
∑

α = −
ΔrtH '(rt)

t
∑
(Δrt)

2H ''(rt)
t
∑

Logarithm method
}  The iteration to get final alpha

α = 0
loop
{

 α inc = −
ΔrtH '(rt)

t
∑
(Δrt)

2H ''(rt)
t
∑

 α =α +α inc

 rt = rt +α incΔrt
}

7/8/13 48

Logarithm method
}  We can use trial and error method to reduce the over

shoot problem

7/8/13 49

loop{

 α inc = −
ΔrtH '(rt)

t
∑
(Δrt)

2H ''(rt)
t
∑

 loop {
 rtemp = r +α incΔr
 If (Hyp(rtemp) > Hyp(r)) then (α inc =α inc / 2) Else Break
 }
 α =α +α inc

 r = r +α incΔr
}

The magic of Logarithm method

7/8/13 50

}  The magic of exponential operator “e”
}  Why gradient Δu is a function of shifted output r is

improtant?

}  The gradient should be vanished in the final solution. If H(rt) is
convention L2 norm rather than hyperbolic penalty function,

}  The auto-correlation of the output is 0 except at the origin.
The shifted output is orthogonal with output itself. The says
the output is white.

Δuτ = [Δu]τ = H '(rt)
∂rt
∂uτt

∑ = H '(rt)rt+τ
t
∑

H '(rt) = (rt
2)' = 2rt

0 = Δuτ = H '(rt)rt+τ
t
∑ = 2rtrt+τ

t
∑

The magic of Logarithm method

7/8/13 51

}  The magic of exponential operator “e”
}  If we do not have “e” here, the gradient is a function of shifted

input d

}  The gradient should be vanished in the final solution. If H(rt) is
convention L2 norm rather than hyperbolic penalty function,

}  The output is orthogonal with shifted input. The says the
output is not white anymore.

Δfτ = [Δf]τ = H '(rt)
∂rt
∂fτt

∑ = H '(rt)dt+τ
t
∑

H '(rt) = (rt
2)' = 2rt

0 = Δfτ = H '(rt)dt+τ
t
∑ = 2rtdt+τ

t
∑

