Recent progress of bidirectional deconvolution

SEP-147 p333
Qiang Fu

Stanford Exploration Project

Bidirectional convolution

Convolution model

$$
d=r^{*} w
$$

Where $d=$ data,$\quad w=$ wavelet,

Bidirectional convolution

- Convolution model

$$
d=r * w
$$

- Bidirectional convolution
$d=r^{*} w$
$d=r^{*}\left(w_{a} * w_{b}^{r}\right)$

Where $d=$ data, $w_{a} * w_{b}^{r}=w=$ wavelet, w_{a} and w_{b} are both minium phase
(The superscript r means reverse in time)

Bidirectional deconvolution

- Convolution model

$$
d=r^{*} w
$$

- Bidirectional deconvolution
$d=r^{*} w$
$d=r *\left(w_{a} * w_{b}^{r}\right)$
$r=d *\left(w_{a} * w_{b}^{r}\right)^{-1}$
Where $d=$ data, $w_{a} * w_{b}^{r}=w=$ wavelet,
w_{a} and w_{b} are both minium phase
(The superscript r means reverse in time)

Bidirectional deconvolution

- The deconvolution filters are the inverse wavelets

$$
\left\{\begin{array}{l}
w_{a} * f_{a}=\delta \\
w_{b} * f_{b}=\delta
\end{array}\right.
$$

Bidirectional deconvolution

- The deconvolution filters are the inverse wavelets

$$
\left\{\begin{array}{l}
w_{a} * f_{a}=\delta \\
w_{b} * f_{b}=\delta
\end{array}\right.
$$

- Apply deconvolution filters on the data to recover the reflectivity series

$$
r=d * f_{a} * f_{b}^{r}
$$

Bidirectional deconvolution

- The deconvolution filters are the inverse wavelets

$$
\left\{\begin{array}{l}
w_{a} * f_{a}=\delta \\
w_{b} * f_{b}=\delta
\end{array}\right.
$$

- Apply deconvolution filters on the data to recover the reflectivity series

$$
r=d * f_{a} * f_{b}^{r}
$$

- This deals with mix-phase wavelets

Time-domain methods

- Two time-domain methods
- Slalom method
- Zhang,Y. and J. Claerbout, 2010, A new bidirectional deconvolution method that overcomes the minimum phase assumption: SEP-Report, 142, 93-104.
- Symmetric method
- Shen, Y., Q. Fu, and J. Claerbout, 20I I,A new algorithm for bidirectional deconvolution: SEP-Report, 143, 27I-282.
- However, both time methods are very sensitive to the starting solution and the parameters
- For example, changing the filter length a little led to total different result

Instability caused by nonlinearity?

- Bidirectional deconvolution is a non-linear problem
- A multidimensional non-linear objective function with local minima

Instability caused by nonlinearity?

- Bidirectional deconvolution is a non-linear problem
- A multidimensional non-linear objective function with local minima
- Results are very sensitive to the starting solution and parameters

Instability caused by null space?

- The sensitivity of initial solution may be caused by the Null Space
* We do not have enough evidence to confirm the reason yet
- No matter what is the reason of this sensitivity, we need to solve this problem by preconditioning in time-domain methods

Preconditioning

- Time domain methods require preconditioning to provide prior information in inversion
- Also accelerates the convergence and stabilizes the results

Preconditioning

- We use PEF (prediction error filter) as a preconditioner for time domain methods

Preconditioning

- We use PEF (prediction error filter) as a preconditioner for time domain methods
- PEF is a causal and minimum-phase filter
- That means if we have a Ricker wavelet in our data, we can only get an output spike on the first lobe

Estimated wavelet from time-domain method

The time-domain methods - issue

- Polarity flipping and time shifts:
- The polarities of the events are flipped by bidirectional deconvolution (white to black)
- There is a time shift for the peaks of the events after bidirectional deconvolution
- This reminds us the preconditioner may lead to problems
- We don' t want to rely on the preconditioner

Logarithm method

- Redefine the unknowns U

$$
\begin{aligned}
& r=d * f_{a} * f_{b}=\operatorname{IFT}\left(D F_{a} F_{b}\right)=\operatorname{IFT}(D F) \\
& U=\log F=\log F_{a} F_{b} \\
& u=\operatorname{IFT}(U)
\end{aligned}
$$

- The final deconvolution filter is

$$
f=f_{a} * f_{b}=\operatorname{IFT}\left(e^{U}\right)
$$

Logarithm method

- Why do we need this?
* We have to update minimum-phase and maximum-phase deconvolution filters respectively
* The exponential "e" helps to map minimum-phase and maximum-phase filters into u separately without crosstalk

$$
u=\left(\ldots, u_{-3}, u_{-2}, u_{-1}, 0, u_{1}, u_{2}, u_{3}, \ldots\right)
$$

Logarithm method

- Why do we need this?
- We have to update minimum-phase and maximum-phase deconvolution filters respectively
- The exponential "e" helps to map minimum-phase and maximum-phase filters into u separately without crosstalk

$$
u=\underbrace{\ldots, u_{-3}, u_{-2}, u_{-1},}_{f_{b}} 0, \underbrace{u_{1}, u_{2}, u_{3}, \ldots}_{f_{a}}
$$

- Claerbout, J., Q. Fu, and Y. Shen, 20II,A log spectral approach to bidirectional deconvolution: SEP-Report, 143, 297-300.

Logarithm method is self-preconditioned

- The logarithm method is self-preconditioned

$$
r=\operatorname{IFT}\left(D e^{U+\alpha \Delta U}\right)=\operatorname{IFT}\left(D e^{U} e^{\alpha \Delta U}\right)=d * f_{\text {pre }} * f_{\text {update }}
$$

- We do not need extra preconditioning for this method anymore
- The convergence speed is fast
- We do not have any polarity flips or time shifts in the logarithm method

Estimated wavelet: logarithm method

Estimated wavelet: time-domain method

Conclusion - advantages

- The logarithm method is self-preconditioned. We do not have any polarity flips or time shifts in the logarithm method and the convergence is fast
- The f_{a} and f_{b} are guaranteed to be minimum-phase and maximum-phase respectively (the time domain methods can not guarantee this)
- We have only one rather than two-coefficient series to solve for

Conclusion - disadvantages

-We need to constrain the deconvolution filter
>The estimated deconvolution filter is as long as the input data trace

However, it is not easy.
because of the exponential, the \mathbf{u} is not linear with the deconvolution filter f. Thus it is not easy to constrain the filter length

Acknowledgements

- I would especially thank
- Jon Claerbout for all knowledge he teaches me
- I would like to thank
- Yang Zhang
- Antoine Guitton
- Shuki Ronen
for help on my research

THANK YOU

Backup slices

Hyperbolic penalty function

- We replace the conventional L2 norm with a hyperbolic penalty function.
- This favors sparseness of the result after bidirectional deconvolution and retrieves non-white reflectivity series.

Hyperbolic penalty function

- We replace the conventional L2 norm with a hyperbolic penalty function.
- This favors sparseness of the result after bidirectional deconvolution and retrieves non-white reflectivity series.
- Hyperbolic penalty function:
$\operatorname{Hyp}(r)=\sqrt{r^{2}+R_{0}^{2}}-R_{0}$
Where R_{0} is a constant value behaving as a threshold.

Hyperbolic penalty function

Hyperbolic penalty function

Logarithm method

- Why do we need this?
- We have to update minimum-phase and maximum-phase deconvolution filters respectively.
The new u variable can help us to separate minimum-phase and maximum-phase filters without crosstalk.

$$
\begin{aligned}
& u=\left(\ldots, u_{-3}, u_{-2}, u_{-1}, 0, u_{1}, u_{2}, u_{3}, \ldots\right), z=e^{i w} \\
& u^{+}=\left(0, u_{1}, u_{2}, u_{3}, \ldots\right) ; \\
& U^{+}(z)=0+u_{1} z+u_{2} z^{2}+\cdots ; \\
& F_{a}=e^{U^{+}} ;
\end{aligned} \begin{aligned}
& u^{-}=\left(\ldots, u_{-3}, u_{-2}, u_{-1}, 0\right) \\
& U^{-}(z)=0+u_{-1} / z+u_{-2} / z^{2}+\cdots \\
& F_{b}=e^{U^{-}}
\end{aligned}
$$

$u=u^{+}+u^{-}$(No overlap between u^{+}and $\left.u^{-}\right)$
$u=$ ([maximum-phase part], 0, [minimum-phase part] $)$

Logarithm method

- Intuitive proof

$$
\begin{aligned}
& u=\left(\ldots, u_{-3}, u_{-2}, u_{-1}, 0, u_{1}, u_{2}, u_{3}, \ldots\right), z=e^{i w} \\
& u^{+}=\left(0, u_{1}, u_{2}, u_{3}, \ldots\right) ; \\
& U^{+}(z)=0+u_{1} z+u_{2} z^{2}+\cdots ; \\
& F_{a}=e^{U^{+}} ;
\end{aligned} \begin{aligned}
& u^{-}=\left(\ldots, u_{-3}, u_{-2}, u_{-1}, 0\right) \\
& U^{-}(z)=0+u_{-1} / z+u_{-2} / z^{2}+\cdots \\
& F_{b}=e^{U^{-}}
\end{aligned}
$$

$e^{U^{+}}=1+U^{+}+\left(U^{+}\right)^{2} / 2!+\left(U^{+}\right)^{3} / 3!\quad$ The filter F_{a} is causal.
$e^{-\left(U^{+}\right)}=1-U^{+}+\left(U^{+}\right)^{2} / 2!-\left(U^{+}\right)^{3} / 3!$ The inverse F_{a} is also causal.
So the filter F_{a} is minimum-phase.
Likewise, we can proof F_{b} is maximum-phase

Logarithm method

- How to implement the logarithm method?

We use a iterative gradient based inversion scheme. For each iteration, we need to know
I. The gradient (update direction for \mathbf{u}), $\Delta \mathbf{u}$;
II. The update direction for residual $\mathbf{r}, \Delta \mathbf{r}$;
III. The update step length α.

Logarithm method

- I.The gradient (update direction for \mathbf{u} in each iteration)

$$
J=\operatorname{Hyp}(\mathbf{r})=\sum_{t} H\left(r_{t}\right)=\sum_{t} H\left(\left[\operatorname{IFT}\left(D e^{U}\right)\right]_{t}\right)
$$

$\Delta \mathbf{u}=\frac{\partial J}{\partial \mathbf{u}}=\sum_{t} \frac{\partial H\left(r_{t}\right)}{\partial r_{t}} \frac{\partial r_{t}}{\partial \mathbf{u}}=\sum_{t} H^{\prime}\left(r_{t}\right) \frac{\partial r_{t}}{\partial \mathbf{u}}$
If we look at the τ-th component of $\Delta \mathbf{u}$
$\Delta u_{\tau}=[\Delta \mathbf{u}]_{\tau}=\sum_{t} H^{\prime}\left(r_{t}\right) \frac{\partial r_{t}}{\partial u_{\tau}}$
$\frac{\partial r_{t}}{\partial u_{\tau}}=\frac{\partial\left[\operatorname{IFT}\left(D e^{U}\right)\right]_{t}}{\partial u_{\tau}}=\left[\operatorname{IFT}\left(D e^{U} \frac{\partial U}{\partial u_{\tau}}\right)\right]_{t}$

Logarithm method

- I.The gradient (update direction for \mathbf{u} in each iteration)

$$
\frac{\partial r_{t}}{\partial u_{\tau}}=\frac{\partial\left[\operatorname{IFT}\left(D e^{U}\right)\right]_{t}}{\partial u_{\tau}}=\left[\operatorname{IFT}\left(D e^{U} \frac{\partial U}{\partial u_{\tau}}\right)\right]_{t}
$$

$\because U=\cdots+u_{-2} / z^{2}+u_{-1} / z+u_{0}+u_{1} z+u_{2} z^{2}+\cdots$
$\frac{\partial U}{\partial u_{\tau}}=z^{\tau}$
$\therefore \frac{\partial r_{t}}{\partial u_{\tau}}=\left[\operatorname{IFT}\left(D e^{U} z^{\tau}\right)\right]_{t}=r_{t+\tau}$

Logarithm method

- I.The gradient (update direction for \mathbf{u} in each iteration)

$$
\Delta u_{\tau}=[\Delta \mathbf{u}]_{\tau}=\sum_{t} H^{\prime}\left(r_{t}\right) \frac{\partial r_{t}}{\partial u_{\tau}}=\sum_{t} H^{\prime}\left(r_{t}\right) r_{t+\tau}
$$

$\Delta \mathbf{u}=\mathbf{r} \odot H^{\prime}(\mathbf{r})$
(\odot denotes cross-correlation)

Logarithm method

- II.The update direction for residual \mathbf{r}

$$
\begin{aligned}
\mathbf{r}+\alpha \Delta \mathbf{r} & =\operatorname{IFT}\left(D e^{U+\alpha \Delta U}\right)=\operatorname{IFT}\left(D e^{U} e^{\alpha \Delta U}\right) \\
& =\operatorname{IFT}\left(D e^{U}\right) \operatorname{IFT}\left(e^{\alpha \Delta U}\right)
\end{aligned}
$$

$\operatorname{IFT}\left(e^{\alpha \Delta U}\right)=\operatorname{IFT}\left(e^{\alpha\left(\cdots+\Delta u_{-1} / z+0+\Delta u_{1} z+\cdots\right)}\right)$

$$
=\operatorname{IFT}\left(1+\alpha\left(\cdots+\Delta u_{-1} / z+0+\Delta u_{1} z+\cdots\right)+\alpha^{2}(\cdots)+\cdots\right)
$$

If we ignore higher terms of α (assuming α is small)

$$
\begin{aligned}
\operatorname{IFT}\left(e^{\alpha \Delta U}\right) & =\operatorname{IFT}\left(1+\alpha\left(\cdots+\Delta u_{-1} / z+0+\Delta u_{1} z+\cdots\right)\right) \\
& =\cdots, \alpha \Delta u_{-1}, 1, \alpha \Delta u_{1}, \cdots
\end{aligned}
$$

Logarithm method

- II.The update direction for residual \mathbf{r}

$$
\begin{aligned}
\mathbf{r}+\alpha \Delta \mathbf{r} & =\operatorname{IFT}\left(D e^{U+\alpha \Delta U}\right)=\operatorname{IFT}\left(D e^{U} e^{\alpha \Delta U}\right) \\
\mathbf{r}+\alpha \Delta \mathbf{r} & =\mathbf{r} *\left(\cdots, \alpha \Delta u_{-1}, 1, \alpha \Delta u_{1}, \cdots\right) \\
& =\mathbf{r}+\alpha \mathbf{r} * \Delta \mathbf{u}
\end{aligned}
$$

$$
\Delta \mathbf{r}=\mathbf{r} * \Delta \mathbf{u}
$$

Logarithm method

- III.The update step length α
- To find the update step length α, we try to minimize the object function by tuning α

$$
\underset{\alpha}{\operatorname{argmin}}[\operatorname{Hyp}(\mathbf{r}+\alpha \Delta \mathbf{r})]
$$

$$
\frac{\partial \operatorname{Hyp}(\mathbf{r}+\alpha \Delta \mathbf{r})}{\partial \alpha}=0
$$

- We use Newton iteration to find this minimum.
$\operatorname{Hyp}(\mathbf{r}+\alpha \Delta \mathbf{r})=\sum_{t}\left(H\left(r_{t}\right)+\alpha \Delta r_{t} H^{\prime}\left(r_{t}\right)+\left(\alpha \Delta r_{t}\right)^{2} H^{\prime \prime}\left(r_{t}\right) / 2!+\cdots\right)$
Ignore the terms higher than $2^{\text {nd }}$ order

Logarithm method

- III.The update step length α

$$
\operatorname{Hyp}(\mathbf{r}+\alpha \Delta \mathbf{r})=\sum_{t}\left(H\left(r_{t}\right)+\alpha \Delta r_{t} H^{\prime}\left(r_{t}\right)+\left(\alpha \Delta r_{t}\right)^{2} H^{\prime \prime}\left(r_{t}\right) / 2!\right)
$$

$\frac{\partial \operatorname{Hyp}(\mathbf{r}+\alpha \Delta \mathbf{r})}{\partial \alpha}=\frac{\partial}{\partial \alpha} \sum_{t}\left(H\left(r_{t}\right)+\alpha \Delta r_{t} H^{\prime}\left(r_{t}\right)+\left(\alpha \Delta r_{t}\right)^{2} H^{\prime \prime}\left(r_{t}\right) / 2!\right)$
$\alpha=-\frac{\sum_{t} \Delta r_{t} H^{\prime}\left(r_{t}\right)}{\sum_{t}\left(\Delta r_{t}\right)^{2} H^{\prime \prime}\left(r_{t}\right)}$
Because we use Newton method here (ignoring higher order terms in Taylor expansion), we need a iteration to get final α.

Logarithm method

The iteration to get final alpha

$$
\begin{aligned}
& \alpha=0 \\
& \text { loop } \\
& \left\{\begin{array}{l}
\alpha_{i n c}=-\frac{\sum_{t} \Delta r_{t} H^{\prime}\left(r_{t}\right)}{\sum_{t}\left(\Delta r_{t}\right)^{2} H^{\prime \prime}\left(r_{t}\right)} \\
\quad \alpha=\alpha+\alpha_{i n c} \\
r_{t}=r_{t}+\alpha_{i n c} \Delta r_{t} \\
\}
\end{array}\right.
\end{aligned}
$$

Logarithm method

- We can use trial and error method to reduce the over shoot problem loop\{

$$
\begin{aligned}
& \alpha_{i n c}=-\frac{\sum_{t} \Delta r_{t} H^{\prime}\left(r_{t}\right)}{\sum_{t}\left(\Delta r_{t}\right)^{2} H^{\prime \prime}\left(r_{t}\right)} \\
& \text { loop }\{ \\
& \quad \mathbf{r}_{\text {temp }}=\mathbf{r}+\alpha_{\text {inc }} \Delta \mathbf{r} \\
& \quad \text { If }\left(\operatorname{Hyp}\left(\mathbf{r}_{\text {temp }}\right)>\operatorname{Hyp}(\mathbf{r})\right) \text { then }\left(\alpha_{i n c}=\alpha_{i n c} / 2\right) \text { Else Break } \\
& \} \\
& \begin{array}{l}
\alpha=\alpha+\alpha_{\text {inc }} \\
\mathbf{r}=\mathbf{r}+\alpha_{i n c} \Delta \mathbf{r}
\end{array}
\end{aligned}
$$

The magic of Logarithm method

- The magic of exponential operator "e"
- Why gradient $\Delta \boldsymbol{u}$ is a function of shifted output \boldsymbol{r} is improtant?

$$
\Delta u_{\tau}=[\Delta \mathbf{u}]_{\tau}=\sum_{t} H^{\prime}\left(r_{t}\right) \frac{\partial r_{t}}{\partial u_{\tau}}=\sum_{t} H^{\prime}\left(r_{t}\right) r_{t+\tau}
$$

The gradient should be vanished in the final solution. If $H\left(r_{t}\right)$ is convention L^{2} norm rather than hyperbolic penalty function,

$$
\begin{aligned}
& H^{\prime}\left(r_{t}\right)=\left(r_{t}^{2}\right)^{\prime}=2 r_{t} \\
& 0=\Delta u_{\tau}=\sum_{t} H^{\prime}\left(r_{t}\right) r_{t+\tau}=\sum_{t} 2 r_{t} r_{t+\tau}
\end{aligned}
$$

- The auto-correlation of the output is 0 except at the origin. The shifted output is orthogonal with output itself. The says the output is white.

The magic of Logarithm method

- The magic of exponential operator "e"
- If we do not have " e " here, the gradient is a function of shifted input d

$$
\Delta f_{\tau}=[\Delta \mathbf{f}]_{\tau}=\sum_{t} H^{\prime}\left(r_{t}\right) \frac{\partial r_{t}}{\partial f_{\tau}}=\sum_{t} H^{\prime}\left(r_{t}\right) d_{t+\tau}
$$

- The gradient should be vanished in the final solution. If $H\left(r_{t}\right)$ is convention L^{2} norm rather than hyperbolic penalty function,

$$
\begin{aligned}
& H^{\prime}\left(r_{t}\right)=\left(r_{t}^{2}\right)^{\prime}=2 r_{t} \\
& 0=\Delta f_{\tau}=\sum_{t} H^{\prime}\left(r_{t}\right) d_{t+\tau}=\sum_{t} 2 r_{t} d_{t+\tau}
\end{aligned}
$$

The output is orthogonal with shifted input. The says the output is not white anymore.

