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Bidirectional convolution

» Convolution model

d=r*w

Where d = data, w = wavelet,
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Bidirectional convolution

» Convolution model

d=r*w
» Bidirectional convolution
d=r*w

d=r*(w, *w,)

Where d = data, w, *w, = w = wavelet,
w_and w, are both minium phase

( The superscript r means reverse in time)
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Bidirectional deconvolution

» Convolution model

d=r*w
» Bidirectional deconvolution
d=r*w

d=r*(w, *w,)
r=dx(w, *w)"

Where d = data, w, *w, = w = wavelet,
w_and w, are both minium phase

( The superscript r means reverse in time)
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Bidirectional deconvolution

» The deconvolution filters are the inverse wavelets

w *f =0
{Wb*fb=6
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Bidirectional deconvolution

» The deconvolution filters are the inverse wavelets
W, % f, =
w,* f,=0
» Apply deconvolution filters on the data to recover the
reflectivity series

r=d*f *f

6 7/8/13



Bidirectional deconvolution

» The deconvolution filters are the inverse wavelets
W, % f, =
w,* f,=0
» Apply deconvolution filters on the data to recover the
reflectivity series

r=d*f *f
» This deals with mix-phase wavelets
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Time-domain methods

» Two time-domain methods

Slalom method

Zhang,Y. and ]. Claerbout, 2010, A new bidirectional deconvolution

method that overcomes the minimum phase assumption: SEP-Report,
142, 93—104.

Symmetric method

Shen,Y,, Q. Fu,and J. Claerbout, 201 I, A new algorithm for
bidirectional deconvolution: SEP-Report, 143,271-282.

» However, both time methods are very sensitive to the starting
solution and the parameters

For example, changing the filter length a little led to total different
result
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Instability caused by nonlinearity?

» Bidirectional deconvolution is a non-linear problem

A multidimensional non-linear objective function with local minima
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Instability caused by nonlinearity?

» Bidirectional deconvolution is a non-linear problem
A multidimensional non-linear objective function with local minima

Results are very sensitive to the starting solution and parameters
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Instability caused by null space?

» The sensitivity of initial solution may be caused by the
Null Space
We do not have enough evidence to confirm the reason yet

No matter what is the reason of this sensitivity, we need to solve this
problem by preconditioning in time-domain methods
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Preconditioning

» Time domain methods require preconditioning to provide
prior information in inversion

Also accelerates the convergence and stabilizes the results
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Preconditioning

» We use PEF (prediction error filter) as a preconditioner
for time domain methods
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Preconditioning

» We use PEF (prediction error filter) as a preconditioner
for time domain methods

» PEF is a causal and minimum-phase filter

That means if we have a Ricker wavelet in our data, we can
only get an output spike on the first lobe
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CMP_x(km)
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Common offset data
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Estimated wavelet from time-domain method

Time sample points (dt=4 ms)
—100 0 100

dury
c—1—0 1 <
|
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The time-domain methods - issue

» Polarity flipping and time shifts:

The polarities of the events are flipped by bidirectional
deconvolution (white to black)

There is a time shift for the peaks of the events after bidirectional
deconvolution

» This reminds us the preconditioner may lead to problems

We don’ t want to rely on the preconditioner
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Logarithm method

Redefine the unknowns U

r=d=f =xf =IFT(DF F,)=IFT(DF)
U=logF =logF,F,

ue=IFT(U)

The final deconvolution filter is

f=f =f =IFT(e")
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Logarithm method
» Why do we need this!?

We have to update minimum-phase and maximum-phase
deconvolution filters respectively

The exponential “e” helps to map minimum-phase and
maximum-phase filters into u separately without crosstalk

u=_C..,u,u_,,u_,0,u.,u,u,,...)
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Logarithm method
» Why do we need this!?

We have to update minimum-phase and maximum-phase
deconvolution filters respectively

The exponential “e” helps to map minimum-phase and
maximum-phase filters into u separately without crosstalk

U= ({...,u_3,u_2,u_l}(),[ul,uz,%,...))

Jy Ja

Claerbout, ., Q. Fu,andY. Shen, 201 |, A log spectral approach to
bidirectional deconvolution: SEP-Report, 143,297-300.

22 7/8/13



Logarithm method is self-preconditioned
» The logarithm method is self-preconditioned
r=IFT(De” ™) = IFT(De" e )= d +|f |« f. .

» We do not need extra preconditioning for this method
anymore

» The convergence speed is fast

» We do not have any polarity flips or time shifts in the
logarithm method
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CMP_x(km)
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Common offset data
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CMP_x(km)
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Logarithm method
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CMP_x(km)
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Time domain method
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Estimated wavelet: logarithm method

Time sample points (dt=4 ms)
—100 0 100

duy
c—1—0 I <

1

1
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Estimated wavelet: time-domain method

Time sample points (dt=4 ms)
—100 0 100

dury
c—I1—0 I <
i;
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Conclusion - advantages

» The logarithm method is self-preconditioned. We do not
have any polarity flips or time shifts in the logarithm
method and the convergence is fast

» The f, and f, are guaranteed to be minimum-phase and
maximum-phase respectively (the time domain methods
can not guarantee this)

» We have only one rather than two-coefficient series to
solve for
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Conclusion - disadvantages

»We need to constrain the deconvolution filter

The estimated deconvolution filter is as long as the input data
trace

»However, it is not easy.

because of the exponential, the u is not linear with the
deconvolution filter f. Thus it is not easy to constrain the filter
length
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Backup slices
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Hyperbolic penalty function

» We replace the conventional L2 norm with a hyperbolic
penalty function.

This favors sparseness of the result after bidirectional
deconvolution and retrieves non-white reflectivity series.
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Hyperbolic penalty function

» We replace the conventional L2 norm with a hyperbolic
penalty function.

This favors sparseness of the result after bidirectional
deconvolution and retrieves non-white reflectivity series.

» Hyperbolic penalty function:

Hyp(r) = \/r2 +R’ - R,
Where R, 1s a constant value behaving as a threshold.
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Hyperbolic penalty function

Hyp(r) (R=1.0)

/' (1,0.4142)
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Hyperbolic penalty function

\

—

Hyp(r) (R=1.0)

LZ/' (1,0.4142)
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Logarithm method
» Why do we need this!?

We have to update minimum-phase and maximum-phase
deconvolution filters respectively.

The new u variable can help us to separate minimum-phase and
maximum-phase filters without crosstalk.

w
u=(..u_,u,,u_,0,u,u,,u,,...), z=¢€

u' =0,u,,u,,u,,...);

U'(2)=0+uz+u,z" +;

+

U
F =¢ :

a

u = (.., u_y,u_,u_,0)
U (2)= O+u_1/z+u_2/z2 TR

-
F o =e

u=u" +u (Nooverlap between " and u™ )

u = ([maximum-phase part],0,[ minimum-phase part])
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Logarithm method

» Intuitive proof

w
u=(..,u_q,u_,u_,0,u,u,,u,,..), z=e¢

u' = 0,u,,u,,u,,...);
U'(2)=04+uz+u,z” +-;

U+
F =€ ;

a

u = (.., u_,u_,u_,0)
U (2)= 0+u_1/z+u_2/z2 +--

-
F, =e

e =1+U" +(U*)/2'+ U*)*/3! Thefilter F, is causal.
eV =1-U"+@U")*/2!- U*)*/3! The inverse F, is also causal.

So the filter F, 1S minimum-phase.

Likewise, we can proof F, 1s maximum-phase
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Logarithm method

» How to implement the logarithm method!?
We use a iterative gradient based inversion scheme. For
each iteration, we need to know
.. The gradient (update direction for u), Au;

Il. The update direction for residual r, Ar;
ll. The update step length «.
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Logarithm method

» . The gradient (update direction for u in each iteration)

J=Hyp(r)= ¥ H(r,)=Y H([IFT(De")],)

0J oH 0
Au=—=2 (r,) or,

or,
=Y H'(r)—
du 4 9Jr ou E (f)au

4

If we look at the T-th component of Au
o,
ou

T

Au, =[Au], = ¥ H'()

IFT(De" J
or, _ oIFT(De” )], _ [IFT(Dé" U y
ou ou ou

T T T
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Logarithm method

» . The gradient (update direction for u in each iteration)

!

or, _ J[IFT(De")],

- [IFT(De’ 22,
ou

ou_ ou._ .
=t [ U [T Uy AU U
ou |
=y
ou._
or .
- —L =[IFT(De" 7 )N, =71,
ou

T
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Logarithm method

» . The gradient (update direction for u in each iteration)

or, .
= Y H (1),
Uu._ ,

Au, =[Au], = ¥ H'(1;) ;

Au=rQO H'(r)

(® denotes cross-correlation)

43 7/8/13



Logarithm method

» ll. The update direction for residual r
r + oAr = [FT(De"***" ) = IFT(De" ")

= IFT(Dée" ) IFT(e™Y)
IFT(e™V ) = IFT(e"C*Au1/m+0+ bz
= IFT(1+O{(---+AM_1/Z+O+ Aulz+...)+a2(.“)+.“)

If we ignore higher terms of & (assuming & is small)

IFT(e"") =IFT(l + ot(---+Au_, [z +0 + A,z +-++))

=, 0Au_,,1,aAu, -
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Logarithm method

» ll. The update direction for residual r
r + odAr = IFT(De” ") = IFT(De" e™?)
r+oAr =r=(---,0Au_,,l,0Au,, --)
=r+ar*Au

Ar =r * Au
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Logarithm method

» lll. The update step length &

To find the update step length & , we try to minimize the
object function by tuning «

argmin[Hyp(r + oAr)]
JdHyp(r + aAr) 0
oo

We use Newton iteration to find this minimum.

Hyp(r + 0Ar) = S (H (1) + alr,H '(1,) + (aAr, ) H'(1,) /214 -+-)

lgnore the terms higher than 2" order
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Logarithm method
» lll. The update step length &
Hyp(r + aAr) = 3 (H (1) + ar H (1) + (0Ar, ) H ()2

JHyp(r+aAr) 9
oo oo <

N ALH (1)
TS )

(H(;)+abrH () +(aAr ) H'(1,)/2!)

Because we use Newton method here (ignoring higher order
terms in Taylor expansion), we need a iteration to get final .
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Logarithm method

» The iteration to get final alpha
a=0
loop
{

S anG)
Aipe =~ EI(AI; )2H"(I’t)

a=oa+a,.
=1 +a,An

¥
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Logarithm method

» We can use trial and error method to reduce the over
shoot problem

loop{
> ArH (1)
A =—~
inc E(A”})ZH”(”;)
/,loop{ )
rtemp =r+ ainc Ar
It (Hyp(r,,,,) > Hyp(r)) then (a,,. = ;. /2) Else Break
\J /
a=o+aq,,

r=r+aq, Ar
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The magic of Logarithm method

11 b4

» The magic of exponential operator e
Why gradient A u is a function of shifted output r is

improtant?
=S H
4

Au, =[Au], = E H
The gradient should be vanished in the final solution. If H(r,) is
convention L? norm rather than hyperbolic penalty function,

H'(r)= () =2r,
0= Al/t —EH(F)HT E2r I+T

The auto- correlatlon of the output is O except at the origin.
The shifted output is orthogonal with output itself. The says
the output is white.
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The magic of Logarithm method

11 b4

» The magic of exponentlal operator e

If we do not have “e” here, the gradient is a function of shifted
input d

Af, = [Af], = EH'(r)—— 2 H G,

The gradient should be vanlshed in the final solution. If H(r,) is
convention L? norm rather than hyperbolic penalty function,

H'(r)=()'=2r
0=Af, = EH'(r)dm Ezr

The output is orthogonal W|th shifted input. The says the
output is not white anymore.
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