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Introduction

FWI objective function:

2

obs

1(v)=~|F(v)-d

2

Simultaneous inversion of all scales (high
resolution)

Far from convex

Requires very small errors in initial model



Introduction

EFWI objective function:
1
I(v(n) =2 [F (v (1))~ o

High resolution

Fits the data easily

Energy can be at any subsurface offset
Not physical

Very expensive
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Introduction

TFWI objective function:

I (v(1) =S [F(v(m) -,

2

B )]

High resolution

Energy slowly moves towards zero offset
Physical model

Even more expensive (slower convergence)



Introduction

Cost comparison to WEMVA:

TFWI
Convolution along % every propagation step
Convolution along % every scattering/imaging

WEMVA
Scalar multiplication every propagation step
Convolution along % every scattering/imaging



Introduction

Problems so far:
Computational cost
Stability

It is very impractical to allow negative values
and zeros in the velocity model

Need a cheaper method without sacrificing
the accuracy (mostly)
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Scale separation

When the model is not correct, a certain
behavior with subsurface offset is observed:

The smooth components (long wavelength)
are located mostly around the zero offset

The rough components (short wavelength)
extend to large offsets



Scale separation

Separate velocity into two components:
v=Db+r
b = background (long wavelength)

r = Born scattering potential (short wavelength)

Assuming first order scattering data or
“*primaries” (Born approximation)
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Scale separation

Several approximations:



Scale separation

Several approximations:



Scale separation

Several approximations:

v(h)=b(h)+r(h)



Scale separation

ETFWI objective function:
1

7(br)=—L(b) T, [+ o]}
ETFWI gradients:
o (oL _\
‘;—i=L*(bo)Ad e (ab )Ad T (b,.1,)Ad

L. = Born modeling op T =Tomographicop
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Scale separation

Relationship of tomographic operator to
WEMVA operator:

AVirey = YU Ad’

AVyeava = Y U AL’
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Tomographic vs. WEMVA




Scale separation

Relationship of tomographic operator to
WEMVA operator:

AVirey = YU Ad’

AVyeava = Y U AL’

Adjoint artifacts
Accurate matching



Scale mixing

We achieved cost cutting

We ac
Can

nieved an additional degree of freedom

potentially handle variations in density

and AVO effects

Did we achieve the same accuracy?

Only using “primaries”

Not completely simultaneous inversion



Scale mixing

ETFWI gradients:
JdJ - "
a_r=L(b°)Ad £=T (b,.1,)Ad

The two models are indirectly connected:

dJ

Data residuals (of next iteration)
Reflectivity

Not directly connected in model space



Scale mixing

There is an important influence in model

space betweenrandb

Data-constrained model components

Both parameters can share the same model
components at different frequencies/offsets

Null model space

A component in the null s
might by constrained by t

This applies to both signa

pace of one parameter
ne other parameter

and noise
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Scale mixing

Scale mixing can be done by radial tapering in
Fourier domain:

s, =G, (gb T8, (h =O))
Sr =Cr (gb +gr)
C,+C, =1

Both gradients need to have the same units
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Synthetic examples
Gaussian model
Marmousi model
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Gaussian model

Gaussian model
Model size is 3 km x 3 km
Ricker wavelet of 15Hz
Maximum offset of 1.5km
Source spacing 100m
Receiver spacing 20m
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True Gaussian velocity



Inverted background
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2.98

vel(km/s)
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Inverted Born reflectivity



Inverted background with mixing



Inverted Born reflectivity with mixing



Inverted background
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Inverted background with mixing



Inverted Born reflectivity



Inverted Born reflectivity with mixing
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Marmousi model

Modified Marmousi model
Model size 3.5 km x 9.2 km
Ricker wavelet of 15 Hz
Fixed receiver spread, complete coverage
Source spacing 100m
Receiver spacing 2o0m
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Initial velocity
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ODCIGs of inverted Born reflectivity



Inverted Born reflectivity with mixing



Inverted background with mixing
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Total Inverted velocity with mixing
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Conclusions
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Conclusions

TFWI is robust against initial model errors
and gives high resolution estimates

TWEFI suffers from cost and practical issues

By using Born approximation, we cut the cost

by separating the model into background and
reflectivity
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Conclusions

We only use primaries of the data

The model separation is hinders the
simultaneous inversion of scales

We regain the high resolution results by scale
mixing of parameters in Fourier domain
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Precondition the gradients

Improve the scale mixing by using better
filters and more information

Relax or eliminate the primary data
assumption

Implementin 3D
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Thanks!



