Image gather reconstruction using StOMP

Bob Clapp SEP 147-Pg. 127

Method I

Method 2

Full volume

1/20 volume size

Outline

- Cost of angle gather construction
- Compressive sensing
- Compressibility of seismic data

Compression

Engineering

Results

StOMP

• StOMP

Angle

gathers

• Making it work

Compressive

Sensing

SEP meeting 2012

Sunday, May 27, 12

Angle gather construction

- Shift-based gathers
 - Simple to code

Compressive

Sensing

- Tradeoff of massive increase in data volume (cost) or limited azimuthal information
- Gathers dependent on wavefield dips
 - More sophisticated coding

Compression

Potentially doesn't account for all arrivals

StOMP

Engineering

Results

Clapp

Angle

gathers

Receiver wavefield

Source wavefield

Receiver wavefield

Source wavefield

Receiver wavefield

Z

Source wavefield

Sunday, May 27, 12

Receiver wavefield

Source wavefield

Compression

Engineering

Results

StOMP

Receiver wavefield

Compressive

Sensing

Angle

gathers

Clapp

7

Sunday, May 27, 12

Offset

Results

Engineering

StOMP

Receiver wavefield

Compressive

Sensing

Compression

Angle

gathers

СІарр

7

Sunday, May 27, 12

Compression

Engineering

Results

StOMP

Receiver wavefield

Compressive

Sensing

Angle

gathers

Clapp

Ζ

Sunday, May 27, 12

Cost of migration

Propagation

Angle

gathers

Compressive

Sensing

Compression

Engineering

Results

SEP meeting 2012

StOMP

Clapp

Propagation

Propagation

Cost of single shift gather construction

Propagation Imaging

Hold in same memory

Clapp

Compressive Angle Compression Engineering **StOMP** Results gathers Sensing SEP meeting 2012 Sunday, May 27, 12

Sunday, May 27, 12

Additional shift dimensions

Propagation

Hold at same memory level

Angle

gathers

Compressive

Sensing

Compression

StOMP

Engineering

Results

SEP meeting 2012

Sunday, May 27, 12

Additional shift dimensions

Propagation

Sampling Example

ℓ_1 Reconstruction

Reconstruct by solving

 $\min_{q} \|\hat{g}\|_{\ell_1} := \min \sum |\hat{g}(\omega)|$ subject to $g(t_m) = f(t_m), \ m = 1, \dots, M$

SEP Meeting 2012

Sunday, May 27, 12

Example: Sparse Image

- Take M = 100,000 incoherent measurements $y = \Phi f_a$
- f_a = wavelet approximation (perfectly sparse)
- Solve

min $\|\alpha\|_{\ell_1}$ subject to $\Phi\Psi\alpha = y$

 Ψ = wavelet transform

Engineering

StOMP

original (25k wavelets)

Sensing

Compression

SEP Meeting 2012

Results

Compressive Angle gathers

Sunday, May 27, 12

Compressive sensing in SEP speak: Basic idea

- You want the dataset d
- You know that d transforms to something sparse (m) by applying the operator L'
- You record a random subset of **d**, **d**_r

Compression

- You set up an inverse problem using d_r to find m
- You apply **L** to recover **d**

Compressive

Sensing

StOMP

Engineering

Results

Cladd

Angle

gathers

Compressive sensing in SEP speak: Fitting goals

$$\mathbf{0} \approx \mathbf{r} = \mathbf{d}_{\mathbf{r}} - \mathbf{L}\mathbf{m}$$

- r Residual = Ll norm
- $\mathbf{d_r}$ Sparse data \mathbf{m} Sparse model

Compression

Engineering

Results

SEP Meeting 2012

StOMP

L Transform into/from sparse basis

Clapp

Sunday, May 27, 12

Angle

gathers

Compressive

Sensing

Wavelet transform: I-D

A - low pass filter (scaling)B- high pass filter (wavelet)

Wavelet transform

SEP meeting 2012

Clapp

Test data

- 4-D volume (z,hx,x,y)
- 400,72,32,32

Clapp

• Wavelet levels 4,2,1,1

Angle Compressive **Compression** Engineering **StOMP** Results gathers Sensing SEP meeting 2012 Sunday, May 27, 12

Offset energy sparsity

Offset energy sparsity

Zeroing wavelet coefficients: Offset

Sunday, May 27, 12

SEP meeting 2012

Zeroing wavelet coefficients: Offset

Sunday, May 27, 12

Effective L_{0/I} solvers

- The more L_o the better
- Has to work, in a reasonable amount of time, on problems with a large model space

Projection on Convex Sets

Compression

Engineering

Results

SEP Meeting 2012

StOMP

Sunday, May 27, 12

Angle

gathers

Compressive

Sensing

Projection on Convex Sets

Compression

Engineering

Results

SEP Meeting 2012

StOMP

Sunday, May 27, 12

Clapp

Angle

gathers

Compressive

Sensing

Problems with POCs

Has trouble when the sparsity becomes too large

Problems with POCs

- Has trouble when the sparsity becomes too large
- True algorithm says add a single new model component per iteration

Problems with POCs

- Has trouble when the sparsity becomes too large
- True algorithm says add a single new model component per iteration

StOMP

Must have a completely invertible transform

Compression

Results

Engineering

Clapp

Angle

gathers

Compressive

Sensing

 Basic pursuit/matching pursuit take too much time

- Basic pursuit/matching pursuit take too much time
 - Donoho et al. quote several days for what we would consider a tiny problem

- Basic pursuit/matching pursuit take too much time
 - Donoho et al. quote several days for what we would consider a tiny problem
- Proposed StOMP

- Basic pursuit/matching pursuit take too much time
 - Donoho et al. quote several days for what we would consider a tiny problem
- Proposed StOMP

Compressive

Sensing

 Combination of POCs and matching pursuit

StOMP

Engineering

Results

Compression

Clapp

Angle

gathers

m₀=**0 J=0**

Wavelet coefficients

Non-zero model locations

Clapp

Angle

gathers

d

Random sampling??

Angle

gathers

Compressive

Sensing

Compression

StOMP Engineering

Results

Sunday, May 27, 12

Clapp

Data acquisition cost

- Purpose of compressive sensing is to reduce the data acquisition cost.
- In angle gather construction the cost is in the storage, rather than the convolutions.
- More convolutions can be added at minimal additional cost.

Full image gather

Subsurface offset

 $\mathbf{d} = \mathbf{m}$

d - Sampled image gather **m** - Full image gather

Depth

Sunday, May 27, 12

Clapp

Compressive Sensing

Angle

gathers

Compression

StOMP Engineering

Results

Pseudo-randomly sampled gather

Subsurface offset

Compressive

Sensing

Compression

 $\mathbf{d} \approx \mathbf{J} \mathbf{W} \mathbf{p}$ $\mathbf{m} = \mathbf{W} \mathbf{p}$

- J Selector operator
- W Wavelet transform
- **p** Basis function

Engineering

StOMP

d - Sampled image gather**m** - Full image gather

Results

Sunday, May 27, 12

Clapp

Angle

gathers

Depth

Phase encoding

Subsurface offset

Compressive

Sensing

Compression

R - Phase encoding operator

$$r_j = \sum_{i=0}^n \alpha_i o \left(\text{Rand}(m) \right)$$

m - number of non-zero correlation locations

- o correlation values
- r output values

StOMP Engineering

 α_i - random coefficients

Results

Sunday, May 27, 12

Clapp

Angle

gathers

Depth

Full image gather

Subsurface offset

Compressive

Sensing

Compression

$\mathbf{d} \approx \mathbf{J}\mathbf{R}\mathbf{W}\mathbf{p}$ $\mathbf{m} = \mathbf{W}\mathbf{p}$

- J Selector operator
- **W** Wavelet transform
- **R** Phase encoded sampler
- **p** Basis function

StOMP Engineering

d - Sampled image gather

Results

m - Full image gather

Clapp

Angle

gathers

Fully sampled gathers Subsurface Offset Subsurface Offset Offset Offset

1% wavelet coefficients

iteration of StOMP

Sunday, May 27, 12

2 iterations of StOMP

Compression

Engineering

Results

SEP meeting 2012

StOMP

Sunday, May 27, 12

Clapp

gathers

Sensing

4 iterations of StOMP

Depth

Full volume

StOMP

Engineering

Results

Compression

Compressive

Sensing

Angle

gathers

SEP meeting 2012

Sunday, May 27, 12

1/20 volume size

StOMP

Engineering

Results

Compression

Sunday, May 27, 12

Clapp

Angle

gathers

Compressive

Sensing

Conclusions

- The cost and compressibility of offset based image-gather construction fits the compressive sensing guidelines.
- StOMP algorithm appears effective for large-scale inversion problems.
- Including phase encoding further improves results.