FWI with different boundaries

Xukai Shen*, Robert Clapp

SEP147 p159

2012 SEP Sponsor Meeting

May 23rd 2012

Outline

- 1. Introduction
- 2. Motivation
- 3. Synthetic Example
- 4. Conclusion

Outline

- 1. Introduction
- 2. Motivation
- 3. Synthetic Example
- 4. Conclusion

Full Waveform inversion (FWI): Iterative velocity estimation by matching modeled data to recorded data

Full Waveform inversion (FWI):

Iterative velocity estimation by matching modeled data to recorded data

Each iteration (gradient based methods)Gradient calculation

+

Step length calculation

FWI gradient calculation:

Source propagation , record source wavefield \mathbf{U}_s

 $t_0 \xrightarrow{1 \quad 1 \quad 0} \xrightarrow{j} t_1$

Source wavefield t=0.4s

Source wavefield t=2.8s

FWI gradient calculation:

Source propagation , record source wavefield \mathbf{U}_s

 t_0

Data residual propagation, correlate receiver wavefield \mathbf{U}_r , with \mathbf{U}_s

Residual wavefield t=2.8s

Residual wavefield t=2.0s

FWI step length calculation:

$$\mathbf{m}_1 = \mathbf{m}_0 + \alpha \cdot \mathbf{g}$$

Computational summary for 1 iteration:

```
4 wave propagations (2 for gradient
2 for step length)
+
1 wave field saving (gradient calculation)
```

Computational summary for 1 iteration:

Use random boundary (Clapp, 2010; Shen and Clapp, 2011) to reduce memory requirement!!!

Source wavefield t=0.4s

Source wavefield t=2.8s

Source wavefield t=0.4s

Source wavefield

Source wavefield

t=1.2s

Gradient

$$t = 0.4s$$

Computational summary for 1 iteration: (using random boundary)

```
6 wave propagations (4 for gradient 2 for step length)
```

2 wave field slices saving (gradient calculation)

 $nx*ny*nz*2=500*500*500*2 \sim 1G$

Computational summary for 1 iteration:

Trade off by using random boundary condition

More computation

Huge memory saving

Outline

- 1. Introduction
- 2. Motivation
- 3. Synthetic Example
- 4. Conclusion

Gradient calculation in FWI is very similar to RTM

Gradient calculation in FWI is very similar to RTM

Similar conclusion for RTM can be drawn for FWI gradient calculation

Gradient calculation in FWI is very similar to RTM

Similar conclusion for RTM can be drawn for FWI gradient calculation

What about the iterative process?

Outline

- 1. Introduction
- 2. Motivation
- 3. Synthetic Example
- 4. Conclusion

Synthetic example with three different boundary conditions:

- a. Absorbing boundary condition
- ь. Random boundary condition
- c. Constant (Zero randomness) boundary condition

Inversion parameter

160*540 grid points, 12 m spacing60 shots, 84 meter spacing7Hz peak frequency sourceReceivers everywhere on the surface

RMS Residual comparison

Central shot residual with absorbing boundary x (km) 1 t **(s)** 3 3 Iteration 0 Iteration 30 6 0 1 t (s) 2 3

Iteration 60 Iteration 160

Central shot residual with random boundary x (km)

Iteration 60 Iteration 160

Central shot residual with constant boundary x (km)

Iteration 60 Iteration 160

Iteration 60 Iteration 160

Edge shot residual with constant boundary x (km) 1 t (s) 2 2 3 3 Iteration 0 **Iteration 30** 6 5 0 1 t (s) 2 3 3

Iteration 60 Iteration 160

Outline

- 1. Introduction
- 2. Motivation
- 3. Synthetic Example
- 4. Conclusion

Conclusions

Waveform inversion using a:
Random boundary requires extra wave
propagations, but significantly reduces memory
requirements

Conclusions

Waveform inversion using a:

Random boundary requires extra wave propagations, but significantly reduces memory requirements

Random boundary is almost as accurate as when using an absorbing boundary

Conclusions

Waveform inversion using a:

Random boundary requires extra wave propagations, but significantly reduces memory requirements

Random boundary is almost as accurate as when using an absorbing boundary

Constant boundary is almost as accurate as when using an absorbing boundary, provided there are sufficient data constraints

Acknowledgements

SEP sponsors for the financial support of this research

Thank you

Questions & Suggestions