Enhanced salt-body segmentation by shape deformation

Yang Zhang and Adam D. Halpert

SEP147, p297 May, 2012

Outline

- Motivation: why do we propose a semi-automatic segmentation method?
- Problem: how to make most use of the limited amount of manual interpretation?
- Previous solution: cross-slice smearing
- New solution: boundary deformation
- GOM 3-D seismic image example
- Discussions & conclusion

Why subsalt areas are important?

 Subsalt areas have become key points of interests for oil and gas exploration

Automatic salt body picking

Seismic images are so noisy that it is *impossible* to let computer to do this job all on its own

Fully automatic methods are very unlikely

Human-input is essential

Improved segmentation after adding human input

3-D: Curse of dimensionality

Outline

- Motivation: why do we propose semi-automatic segmentation method?
- Problem: How to make most use of the limited amount of manual interpretation?
- Previous solution: cross-slice smearing
- New solution: boundary deformation
- GOM 3-D seismic image example
- Discussions & conclusion

Quick engineering to propagate manual picks: cross-line smearing

Segmentation on the slice that has picks

Segmentation 9 slices (270m) away from picks

Solve as a boundary deformation problem

- The boundary differences between neighboring slices are generally very small!
- Properly deform the salt boundary known from the template slice (which has picks) into the nearby target slice (without picks)
- Two criterions (Wang, 2001) for the deformation:
 - honor the available boundary information on the target slice
 - preserve the overall shape from the template slice

Deformation formulation (1)

- Parameterization
 - represent the contour of the template image (known) using an ordered list of **landmark points**: $V=\{v_1, v_2, ..., v_n\}$
 - constrain the landmarks, so that they can deform only along the normal direction

(Wang, 2001)

Preprocessing flow

Deformation formulation (2)

- Honor the available boundary information on the target slice
 - For each landmark v_i, the method first identifies a set of possible corresponding landmark points
 B_i = {v_i^(j), j=1,2,...,n_i} on the target slice, by examining some local features in the target

Use envelope to find potential boundary

Candidate points found at i=137

Deformation formulation (3)

- Randomly draw each v_i ' from the potential corresponding landmarks set B_i , to form set $V' = \{v_1', v_2', ..., v_n'\}$ for the target slice
- Deform the prior shape V to match V' while trying to keep the shape characteristics of V

Deformation as an optimization

- Deform the prior shape V to match V' while trying to keep the shape characteristics of V
- Formulated as an optimization problem of finding a transform $t: (x, y) \rightarrow (f(x, y), g(x, y)) = (x', y'),$ such that it minimize

$$\frac{1}{n} \sum_{i=1}^{n} Q(v_i', \mathbf{t}(v_i)) + \lambda \phi(\mathbf{t})$$

matching the chosen landmark V'

trade-off weight

preserving the global shape info from the template image

Run multiple optimizations

- Iterate to find the optimum V'
 - with an initial V', solve the optimization (can evolve to quadratic programming problem)
 - identify the outliers in the V→V' fitting
 - update V' = $\{v_1', V_2'_{, ...,} V_n'\}$ using the available candidates in B_i sets.
- In the end, we will retrieve the best candidate points in ${\rm V'}_{\rm opt}$ and the optimal mapping $t_{\rm opt}$

One iteration of updating V'

Before update

After update

3-D GOM seismic image result

- 12 slices, slice spacing 30 m
- Manual picking on 1st slice
- Deform sequentially from 1st to 12th slice
- Compare old and new method

1st slice, cross-slice smearing

1st slice, deform

4th slice, cross-slice smearing

4th slice, deform

12th slice, cross-slice smearing

12th slice, deform

Discussion & Conclusion

- Multiple salt-bodies
 - Extension to multiple contours is straightforward
- Computational cost
 - Every deformation involves solving a few (~10)
 quadratic programming problems of size
 n = #landmarks
 - Take <1 min per slice, single thread
 - Memory requirement is low
- Parameter tuning, most importantly, the λ parameter

More application scenarios

- Assist the manual horizon picking process during the tomography iterations.
 - the reflector geometry changes slightly with each velocity update

- Acknowledge
 - WesternGeco

References

- Song Wang, Weiyu Zhu and Zhi-Pei Liang, "Shape deformation: SVM regression and application to medical image segmentation", Proceedings. Eighth IEEE International Conference on, vol.2, pp.209-216, ICCV 2001.
- F. L. Bookstein, "Principal warps: Thin-plate splines and the decomposition of deformations", IEEE Trans. PAMI, 11:567

 – 585, June 1989.
- Halpert, A., R. G. Clapp and B. L. Biondi, "Interpreter guidance for automated seismic image segmentation", 74th Annual International Conference and Exhibition, EAGE 2011.
- Halpert, A., "Interpreter input for seismic image segmentation",
 SEP report 143, 2011.

How to improve it?

- Define better ways to find candidates in the input images.
- Assign weight to the candidates based on our confidence of the pick.
- Gradient based optimization method (e.g. hybrid norm solver) so that we don't need to do Quadratic Programming multiple times.