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 Motivation: why do we propose a semi-automatic 
segmentation method? 

 Problem: how to make most use of the limited 
amount of manual interpretation? 

 Previous solution: cross-slice smearing 

 New solution: boundary deformation 
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 Discussions & conclusion 
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Why subsalt areas are important? 
 Subsalt areas have become key points of interests for oil 

and gas exploration   
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(from BOEM.gov) 
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Automatic salt body picking 
Seismic images are so noisy that it is impossible to let 
computer to do this job all on its own 
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Fully automatic methods are very unlikely 
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(Halpert,2011) 



Human-input is essential 
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(Halpert,2011) 



Improved segmentation after  
adding human input 
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(Halpert,2011) 



3-D: Curse of dimensionality 
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(Halpert,2011) 
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Quick engineering to propagate manual picks: 
cross-line smearing 
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Segmentation on the slice that has picks 

(Halpert,2011) 



Segmentation 9 slices (270m) away from picks 

12 

(Halpert,2011) 
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Solve as a boundary deformation problem 

 The boundary differences between neighboring slices are 
generally very small! 

 

 Properly deform the salt boundary known from the template 
slice (which has picks) into the nearby target slice (without 
picks) 

 Two criterions (Wang,2001) for the deformation: 

 honor the available boundary information on the target slice 

 preserve the overall shape from the template slice 
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Deformation formulation (1) 
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 Parameterization  

 represent the contour of the template image (known) using 
an ordered list of landmark points:  V={v1,v2, …, vn} 

 constrain the landmarks, so that they can deform only along 
the normal direction 

 

 

(Wang, 2001) 



Preprocessing flow 
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Deformation formulation (2) 

Honor the available boundary information on 
the target slice 

 For each landmark vi , the method first identifies a 
set of possible corresponding landmark points  
Bi = {vi

(j), j=1,2,...,ni} on the target slice, by 
examining some local features in the target 
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Use envelope to find potential boundary 
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Target slice 



Candidate points found at i=137 
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Deformation formulation (3) 
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 Randomly draw each vi' from the potential corresponding 
landmarks set Bi , to form set V' = {v1',v2', …, vn'} for the target 
slice 

 Deform the prior shape V to match V' while trying to keep 
the shape characteristics of V 

 



Deformation as an optimization 
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 Deform the prior shape V to match V' while trying to keep the 
shape characteristics of V 

 Formulated as an optimization problem of finding a transform 

t: (x,y)(f(x,y),g(x,y))=(x',y'),  
such that it minimize 

 

 

matching the  
chosen landmark V’ 

preserving the global 
shape info from the 

template image   
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Run multiple optimizations 

 Iterate to find the optimum V' 

 with an initial V', solve the optimization (can evolve to 
quadratic programming problem) 

 identify the outliers in the VV' fitting 

 update V' = {v1', V2', …, Vn'} using the available candidates in 
Bi sets. 

 

 In the end, we will retrieve the best candidate points in 

V'opt and the optimal mapping topt 
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One iteration of updating V' 

Target slice 

original V' 

updated V' 

outlier in V 



Before update 
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After update 
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3-D GOM seismic image result 

 12 slices, slice spacing 30 m 

 Manual picking on 1st slice 

 Deform sequentially from 1st to 12th slice 

 Compare old and new method 
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1st slice, cross-slice smearing 
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1st slice, deform 
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4th slice, cross-slice smearing 
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4th slice, deform 
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12th slice, cross-slice smearing 
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12th slice, deform 
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Discussion & Conclusion 

 Multiple salt-bodies 

 Extension to multiple contours is straightforward 

 Computational cost 

 Every deformation involves solving a few (~10) 
quadratic programming problems of size  
n = #landmarks 

 Take <1 min per slice, single thread 

 Memory requirement is low 

 Parameter tuning, most importantly, the λ parameter 
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More application scenarios 

Assist the manual horizon picking process 
during the tomography iterations.  

 the reflector geometry changes slightly with 
each velocity update 
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How to improve it? 

 

 Define better ways to find candidates in the input images. 

 Assign weight to the candidates based on our confidence 
of the pick. 

 Gradient based optimization method (e.g. hybrid norm 
solver) so that we don’t need to do Quadratic 
Programming multiple times. 
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