

Sparse log-decon results

Antoine Guitton

Geolmaging Solutions Inc. – Stanford University

Jon Claerbout

Stanford University

Our Statement

Polarity becomes apparent when deconvolution removes the correct source wavelet

Updates on the methodology

- Non-linear inversion is now done with Quasi-Newton L-BFGS solver
 - Faster convergence
- Non-linear inversion introduces regularization:
 - Penalize coefficients at long lags
 - Enforce symmetry of the filter coefficients if needed (guarantees Ricker-like wavelet).

The inversion: hyperbolic function

• **f**: filter in time domain $\mathbf{f} = \mathcal{F}^{-1}e^{\mathcal{F}(\mathbf{u})}$

$$\mathbf{f} = \mathcal{F}^{-1} e^{\mathcal{F}(\mathbf{u})}$$

• Residual for trace $d_k = r_k = d_k * f$

$$\mathbf{r}_k = \mathbf{d}_k * \mathbf{f}$$

• Objective function
$$\mathcal{H}(\mathbf{u}) = \sum_{\substack{k=1 \ ntraces}}^{ntraces} \sum_{j=1}^{nt} \sqrt{1 + r_{jk}^2} - 1$$

Gradient

$$abla \mathcal{H}(\mathbf{u}) = \sum_{k=1}^{\infty} \ \overline{\mathbf{r}_k} * \mathtt{softclip}(\mathbf{r}_k)$$

The inversion: L2 norm

- **f**: filter in time domain $\mathbf{f} = \mathcal{F}^{-1}e^{\mathcal{F}(\mathbf{u})}$
- Residual for trace d_k $r_k = d_k * f$
- Objective function $\mathcal{H}_{\ell^2}(\mathbf{u}) = \sum_{\substack{k=1 \ ntraces}}^{ntraces} \sum_{j=1}^{nt} r_{jk}^2$
- Gradient

$$abla \mathcal{H}_{\ell^2}(\mathbf{u}) = \sum_{k=1}^{\infty} \ \overline{\mathbf{r}_k} * \mathbf{r}_k$$

The inversion: L1 norm

- **f**: filter in time domain $\mathbf{f} = \mathcal{F}^{-1}e^{\mathcal{F}(\mathbf{u})}$
- Residual for trace d_k $r_k = d_k * f$
- Objective function $\mathcal{H}_{\ell^1}(\mathbf{u}) = \sum_{\substack{k=1 \ ntraces}}^{ntraces} \sum_{j=1}^{nt} |r_{jk}|$
- Gradient

$$abla \mathcal{H}_{\ell^1}(\mathbf{u}) = \sum_{k=1}^{\infty} \ \overline{\mathbf{r}_k} * \mathtt{sign}(\mathbf{r}_k)$$

What we are showing today

• The log-decon result: $\mathbf{r}_k = \mathbf{d}_k * \mathbf{f}$

• The wavelet in the time domain: $\mathbf{w} = \mathcal{F}^{-1}e^{-\mathcal{F}(\mathbf{u})}$

Ricker decon vs. Sparse log-decon

Ricker decon:

- Filter coefficients are constrained (odd part goes smoothly to zero)
- Wavelet is Ricker-like
- Analytical (fast), less accurate
- Sparse log-decon:
 - Filter coefficients don't need to be constrained
 - Wavelet can have any shape
 - Optimization (slow), more accurate

Data Locations

California: Input

California: Ricker decon

GoM: Input bubbles hard **bottom salt**

W GoM: Ricker decon bubbles hard **bottom salt**

Baja: Input

Baja: Inversion

Cascadia - a: Input

Cascadia - b: Input

Cascadia - b: Ricker decon

Cascadia - b: Inversion

Australia: Input

Australia: Ricker decon

Australia: Inversion

Conclusions

- Sparse-decon yields similar to better results than Ricker-decon approach
 - Accommodate difficult "un-Ricker" wavelets
 - Usually cleaner
- Sparse-decon results are not always sparse!
 - our assumption is often wrong
- Sparse-decon yields very good wavelets
 - Polarity becomes very obvious
- Sparse-decon needs to be improved
 - Non-stationarity needed (angle,time,etc...)

Acknowledgments

