Angle gather recovery using iterative thresholding

Outline

- Background
- IST algorithm
- Modifications

Receiver wavefield

 Source wavefield

X

Z

X

Visual for angle gather construction

Receiver wavefield

 Source wavefield

X

Z

X

Visual for angle gather construction

Receiver wavefield

 Source wavefield

Z

X

Visual for angle gather construction

Receiver wavefield

 Source wavefield

X

Z

X

Visual for angle gather construction

Source wavefield

X

Subsurface Offset

Visual for angle gather construction

Receiver wavefield

X

Source wavefield

Subsurface Offset

Visual for angle gather construction

Receiver wavefield

X

Source wavefield

Z

Subsurface Offset

Visual for angle gather construction

Read/writes required

Correcting for cache miss ratio

Storing checkpoints

Propagation Imaging

Hold in same memory

Store to disk/(transpose)/

 compute

Propagation Imaging

Single shift gathers

Hold at same memory level

Store to disk/transpose/ compute

Propagation Imaging

Multi-shift gathers

Sampling Example

Time domain $f(t)$

Measure M samples (red circles = samples)

Frequency domain $\hat{f}(\omega)$

K nonzero components
$\underset{\text { Romberg }}{\#}: \hat{f}(\omega)$ Wakin $(2007)=K$

ℓ_{1} Reconstruction

Reconstruct by solving
$\min _{g}\|\hat{g}\|_{\ell_{1}}:=\min \sum_{\omega}|\hat{g}(\omega)|$ subject to $g\left(t_{m}\right)=f\left(t_{m}\right), m=1, \ldots, M$

original $\hat{f}, S=15$

given $m=30$ time-dom. samples

perfect recovery

Example: Sparse Image

- Take $M=100,000$ incoherent measurements $y=\Phi f_{a}$
- $f_{a}=$ wavelet approximation (perfectly sparse)
- Solve

$$
\min \|\alpha\|_{\ell_{1}} \quad \text { subject to } \quad \Phi \Psi \alpha=y
$$

$\Psi=$ wavelet transform

original (25k wavelets)

perfect recovery
Romberg \& Wakin (2007)

- You want the dataset d
- You know that d transforms to something sparse (m) by applying the operator L'
- You record a random subset of d, dr

Compressive sensing

$$
0 \approx \mathrm{r} \underset{1}{=} \mathrm{d}_{\mathrm{r}}-\mathrm{Lm}
$$

r Residual $\overline{=}$ L1 norm
d Sparse data m Sparse model

L Transform into/from sparse basis

A - low pass filter (scaling)
B- high pass filter (wavelet)

Wavelet transform

Original

Multi-D wavelet transform

Multi-D wavelet transform

Wavelet transform
Multi-D wavelet transform

Multi-D wavelet transform

Wavelet transform
Multi-D wavelet transform

Multi-D wavelet transform

Wavelet transform
Multi-D wavelet transform

Multi-D wavelet transform

Wavelet transform Multi-D wavelet transform

Multi-D wavelet transform

$$
\begin{aligned}
& \mathbf{r}=\mathbf{d}-\mathbf{L}_{\mathbf{x}}^{\mathbf{0}} \\
& \mathbf{g}=\mathbf{L}^{\mathrm{T}} \mathbf{r} \\
& \mathbf{h}=\mathbf{L g}_{\mathbf{g}} \\
& \alpha=-\frac{\mathbf{r h}^{\mathbf{T}}}{\mathbf{h h}^{\mathbf{T}}} \\
& \mathbf{r}+=\alpha \mathbf{h} \\
& \mathbf{x}_{\mathbf{i}}+=\alpha \mathbf{g}
\end{aligned}
$$

Steepest descent iteration

$$
\begin{aligned}
& \mathbf{r}=\mathbf{d}-\mathbf{L} \mathbf{x}_{\mathbf{0}} \\
& \xrightarrow{\text { cin }} \\
& \begin{array}{l}
\mathbf{g}=\mathbf{L}^{\mathbf{T}} \mathbf{r} \\
\mathbf{h}=\mathbf{L}
\end{array} \\
& r^{T} \\
& \alpha=-\frac{\mathbf{h h}^{\mathbf{T}}}{} \\
& \mathbf{r}+=\alpha \mathbf{h} \\
& \mathbf{x}_{\mathbf{i}}+=\alpha \mathbf{g}
\end{aligned}
$$

randomly

d sampled
data

Steepest descent iteration

$$
\begin{aligned}
& \mathrm{r}=\mathrm{d}-\mathrm{Lx}_{0} \\
& \xrightarrow{\text { cin }} \\
& \begin{array}{l}
\mathbf{g}=\mathbf{L}^{\mathbf{T}} \mathbf{r} \\
\mathbf{h}=\mathbf{L}
\end{array} \\
& \alpha=-\frac{\mathbf{r h}^{\mathbf{T}}}{\mathbf{h h}^{\mathbf{T}}} \\
& \mathbf{r}+=\alpha \mathbf{h} \\
& \mathbf{x}_{\mathbf{i}}+=\alpha \mathbf{g}
\end{aligned}
$$

n-d wavelet

transform
L
followed by masking

Steepest descent iteration

$$
\begin{aligned}
& \text { i } \\
& \longrightarrow \mathrm{h}=\mathrm{d}-\alpha \mathrm{Lx}_{\mathrm{i}} \\
& \mathbf{x}_{\mathbf{i}+\mathbf{1}}=\mathbf{x}_{\mathbf{i}}+\alpha \mathbf{L}^{\mathrm{T}} \mathbf{h}
\end{aligned}
$$

Landweber iteration

i

Landweber iteration

$$
\begin{aligned}
& \mathbf{x} \longrightarrow \text { random } \\
& \mathbf{y}=\mathbf{L}_{\mathbf{x}} \\
& \mathbf{g}=\mathbf{L}^{\mathbf{T}} \mathbf{y} \\
& \alpha=\frac{1}{\mathbf{g}^{\mathbf{T}} \mathbf{g}} \\
& \mathbf{x}=\alpha \mathbf{g}
\end{aligned}
$$

Power iteration

Thresholding

 $\mathbf{h}=\mathbf{d}-\alpha \mathbf{L x}_{\mathbf{i}}$
 $\mathbf{x}_{\mathbf{i}+\mathbf{1}}=\mathbf{x}_{\mathbf{i}}+\alpha \mathbf{L}^{\mathbf{T}} \mathbf{h}$ where $x_{i+1}[j]<\lambda_{k}$ $x_{i+1}[j]=0$

Iterative thresholding

Thresholding scheme

100% offsets

20\% recovery result

Angle

100\% offset angle result

Angle

20\% recovery (angle domain)

Angle

10\% recovery (angle domain)

Subsurface offset

Thresholding scheme

Subsurface offset

Thresholding scheme

Subsurface offset

Thresholding scheme

Subsurface offset

Subsurface offset

Thresholding scheme

Subsurface offset

10\% standard

Subsurface offset

10\% cone

Full offsets

Angle

10\% standard (angle domain)

10\% cone (angle domain)

Angle

100\% angle result

Angle

5\% cone angle result

Original

Multi-D wavelet transform

Multi-D wavelet transform

Original Lowest pass

Multi-D wavelet transform

Original

N-D wavelet transform

Multi-D wavelet transform

Original

Highest pass

Multi-D wavelet transform

Original

Highest pass

Original

Highest pass

Original

Highest pass

Multi-D wavelet transform

Original

Highest pass

Multi-D wavelet transform

Thresholding scheme

$$
\begin{aligned}
& \mathbf{x}=\mathbf{L}^{\mathrm{T}} \mathbf{d} \\
& p=.003 \frac{l_{\text {high }, \text { size }}}{l_{\text {size }}}
\end{aligned}
$$

$Q(\mathbf{x}, \mathbf{m})$
Return the m value percentile value of \mathbf{X}

Level based thresholding

Subsurface offset

5% cone offsets

5\% multi-level offsets

Full offsets

Angle

5\% cone result

5\% multi-level angle

Angle

100\% angle result

5\% multi-level angle

3\% multi-level angle

5\% multi-level angle

5\% multi-level angle

- IST is an effective approach to achieve L_{0} / L_{1} solution to this subsurface offset estimation problem.
- Modifications to the sampling/level based thresholding allows a higher level of compression.

Summary

- John Washbourne's talk last year which led me to retry this method
- Total SA for providing the data

Acknowledgements

