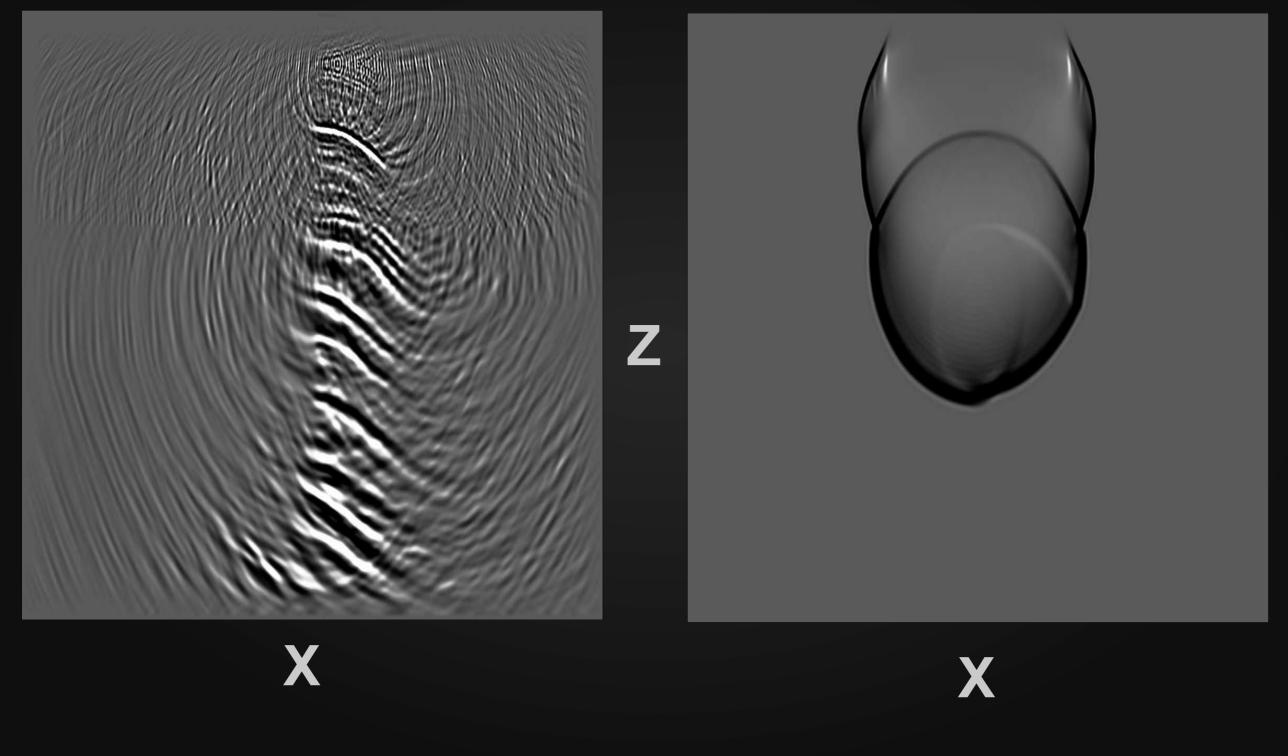
Angle gather recovery using iterative thresholding

SEP149-79

Outline

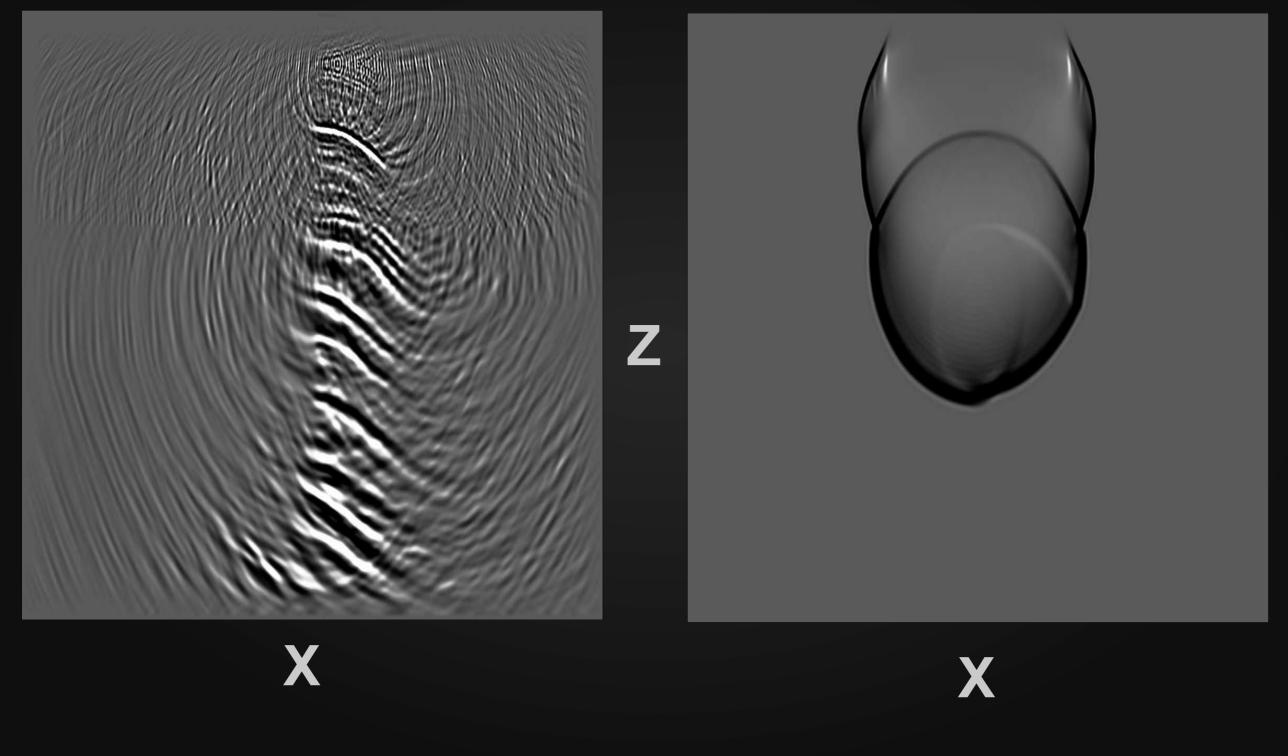
- Background
- IST algorithm
- Modifications

Source wavefield



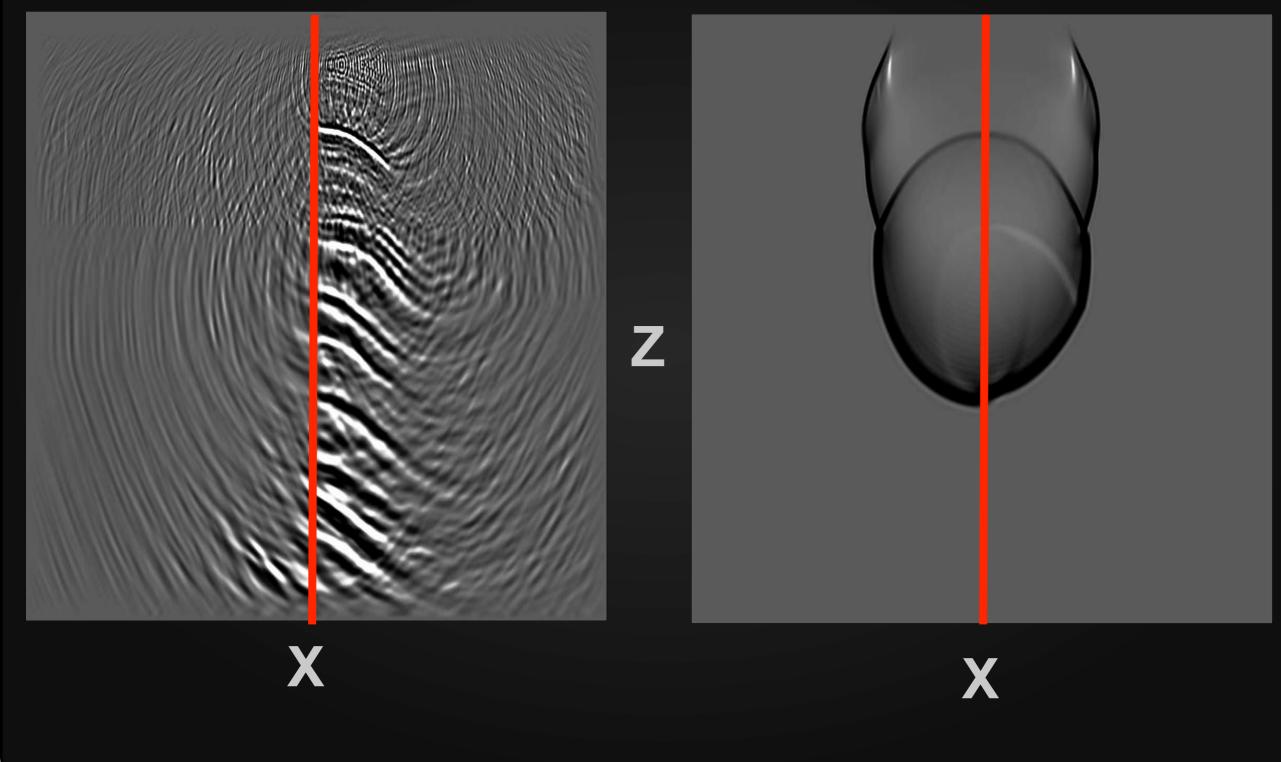
Visual for angle gather construction

Source wavefield



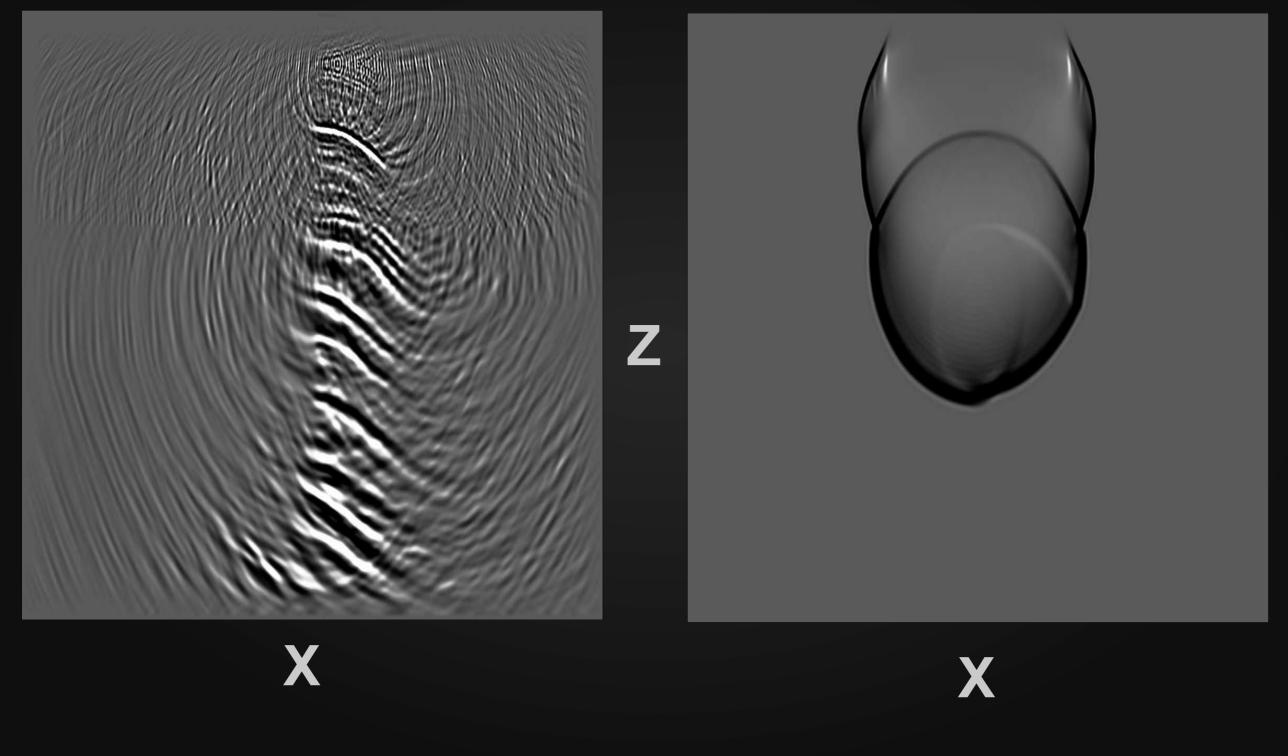
Visual for angle gather construction

Source wavefield



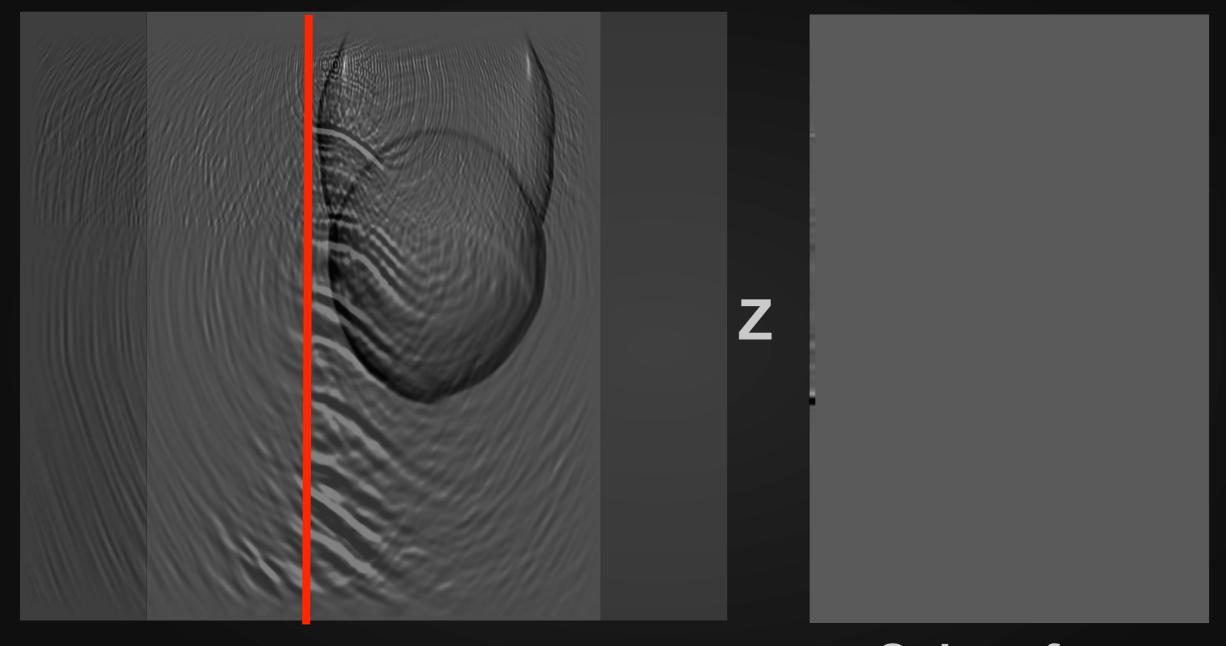
Visual for angle gather construction

Source wavefield



Visual for angle gather construction

Source wavefield

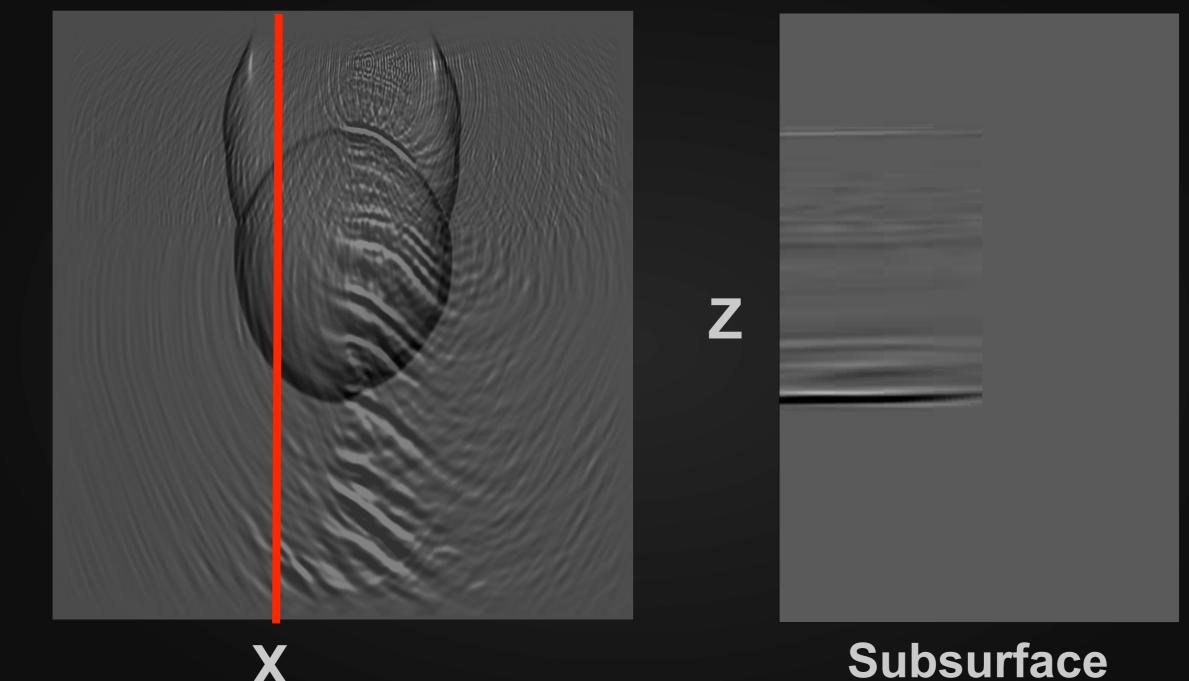


Subsurface Offset

Visual for angle gather construction

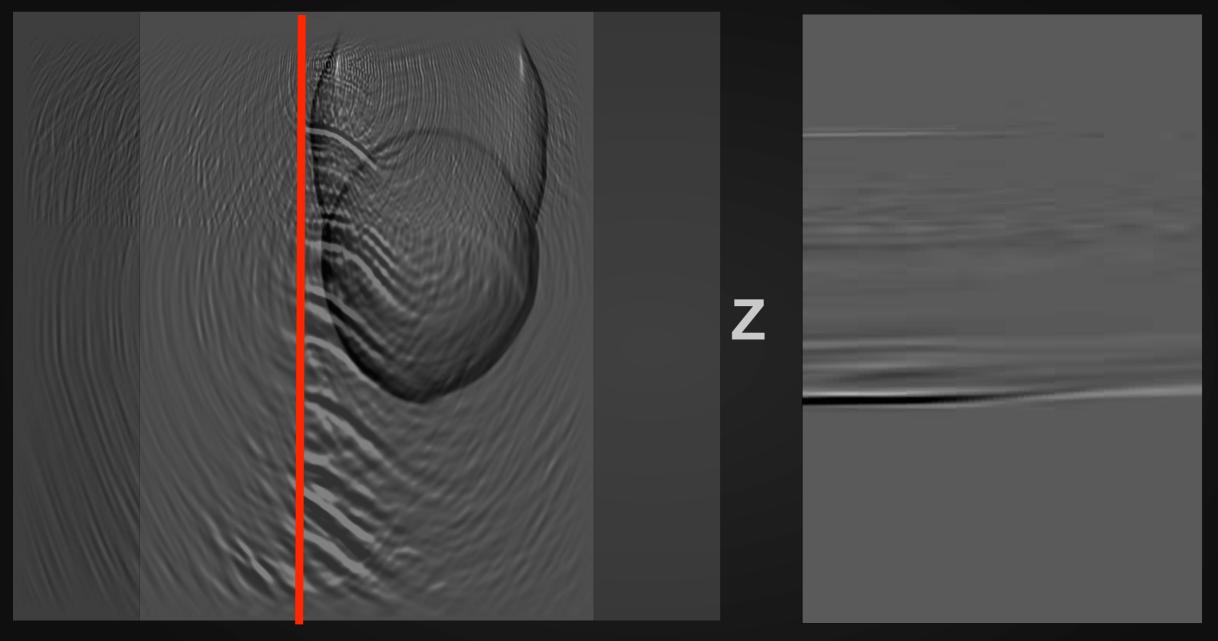
Source wavefield

Offset



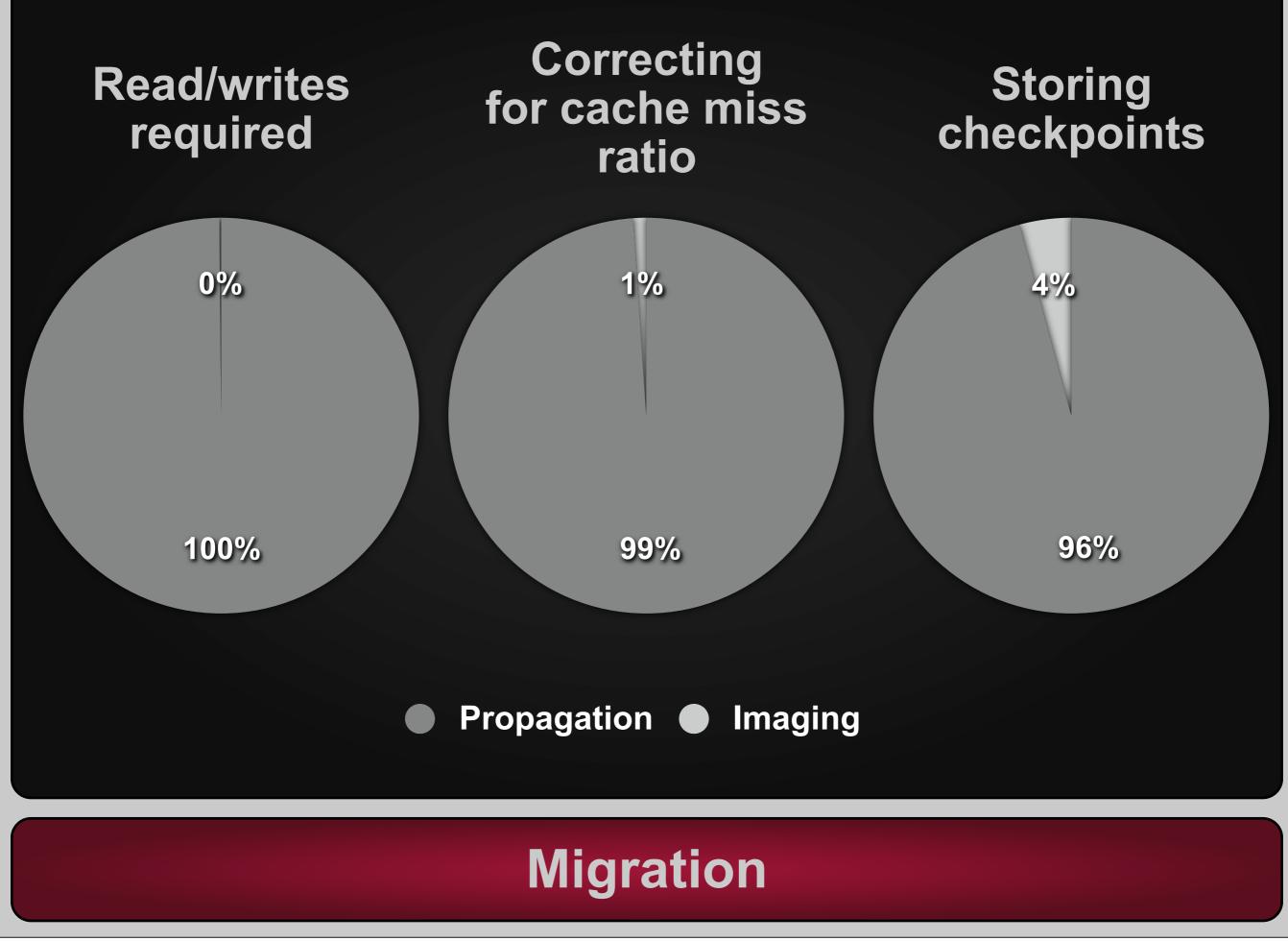
Visual for angle gather construction

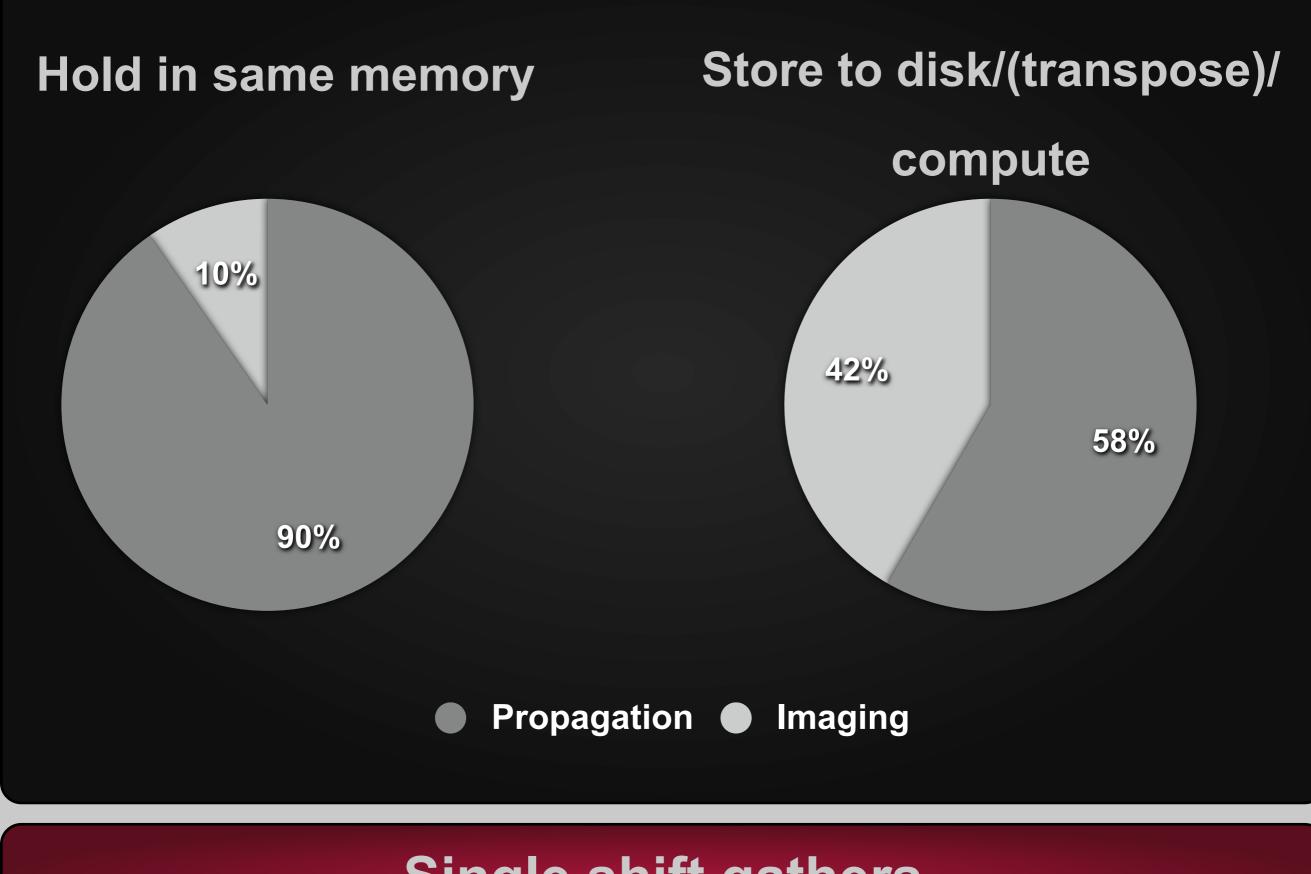
Source wavefield



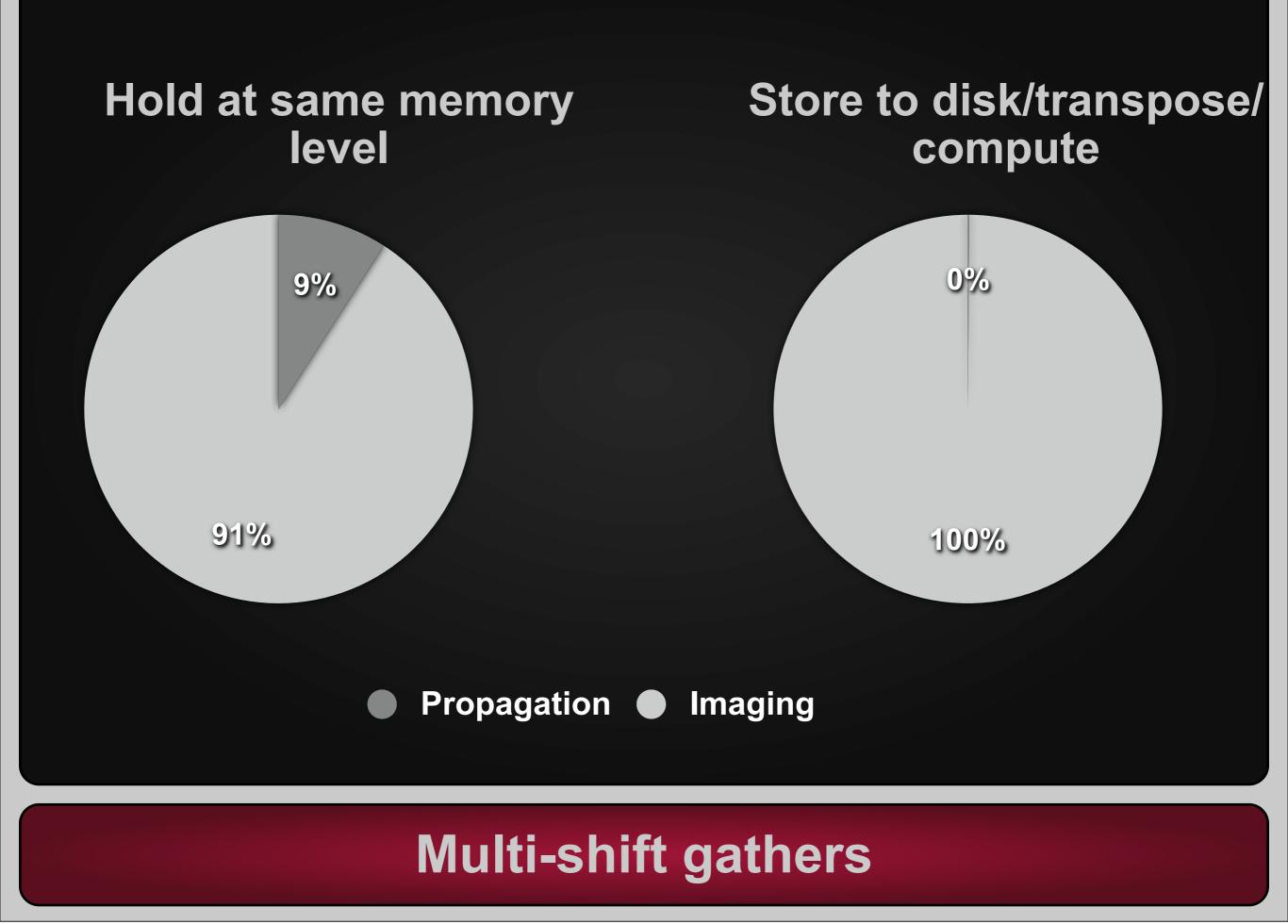
Subsurface Offset

Visual for angle gather construction

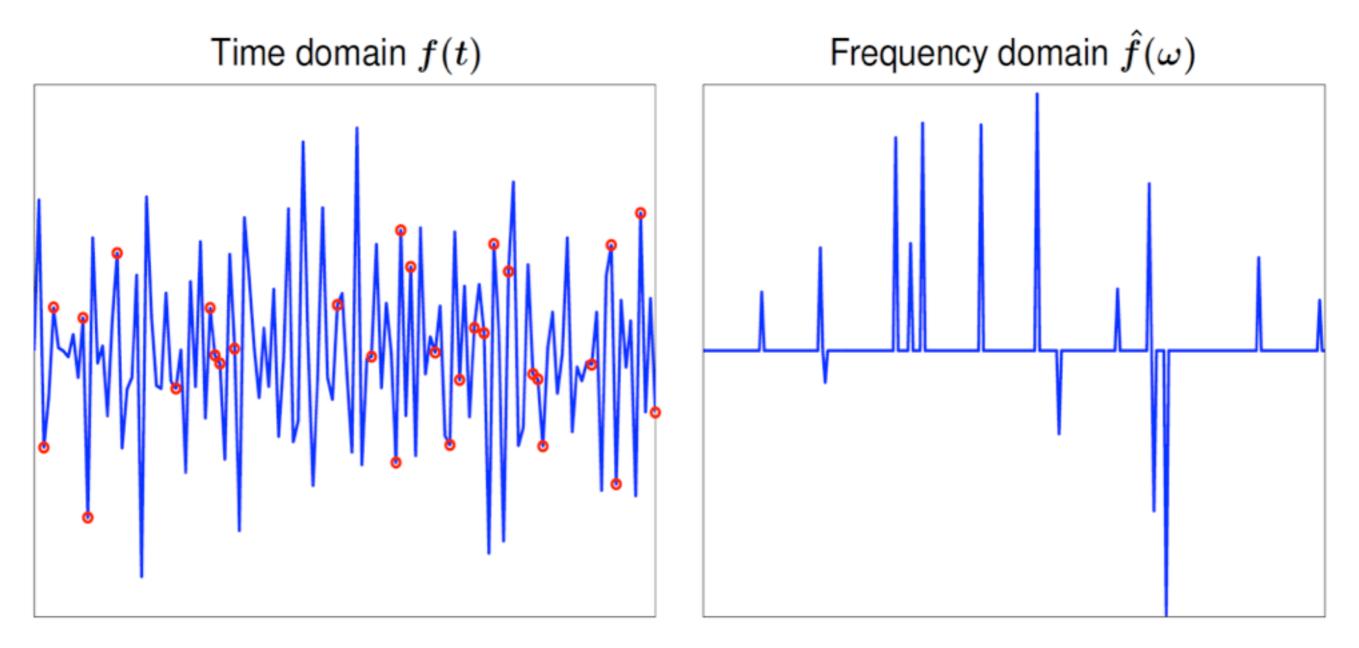




Single shift gathers



Sampling Example



Measure M samples (red circles = samples) *K* nonzero components

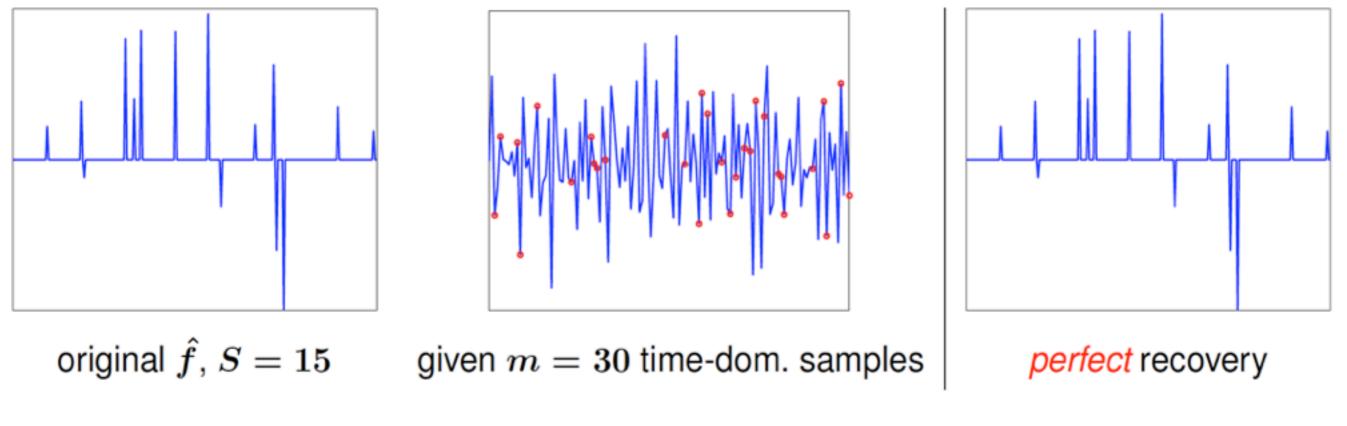
$$\#\{\omega: \hat{f}(\omega) \neq 0\} = K$$
Romberg & Wakin (2007)

Clapp

ℓ_1 Reconstruction

Reconstruct by solving

 $\min_{g} \| \hat{g} \|_{\ell_1} := \min \ \sum_{\omega} | \hat{g}(\omega) |$ subject to $g(t_m) = f(t_m), \ m = 1, \dots, M$



Romberg & Wakin (2007)

Example: Sparse Image

- Take M = 100,000 incoherent measurements $y = \Phi f_a$
- f_a = wavelet approximation (perfectly sparse)
- Solve

 $\min \ \|\alpha\|_{\ell_1} \quad \text{subject to} \quad \Phi\Psi\alpha=y$

 Ψ = wavelet transform

original (25k wavelets)

perfect recovery Romberg & Wakin (2007)

- You want the dataset d
- You know that d transforms to something sparse (m) by applying the operator L'
- You record a random subset of d, dr

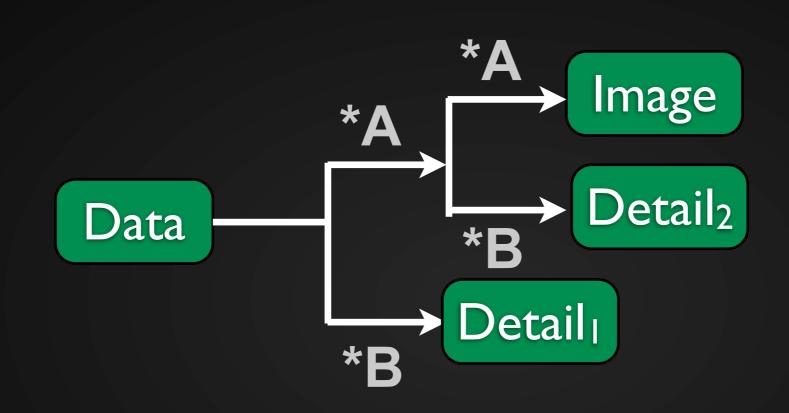
Compressive sensing

$\mathbf{0} \approx \mathbf{r} = \mathbf{d}_{\mathbf{r}} - \mathbf{L}\mathbf{m}$

r Residual = L1 norm

d Sparse data m Sparse model L Transform into/from sparse basis

Compressive sensing in SEP speak

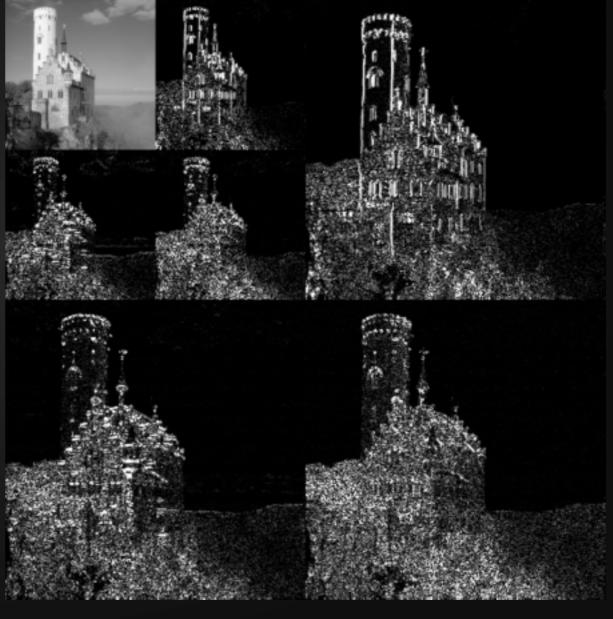


A - low pass filter (scaling)B- high pass filter (wavelet)

Wavelet transform

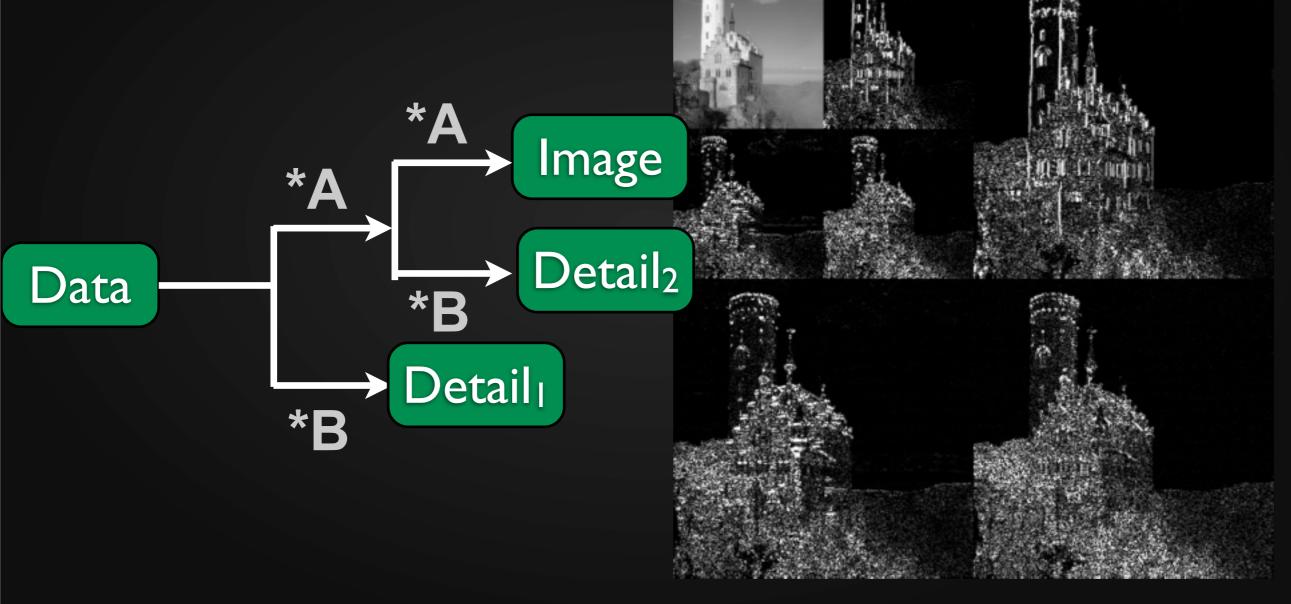
Original

Multi-D wavelet transform



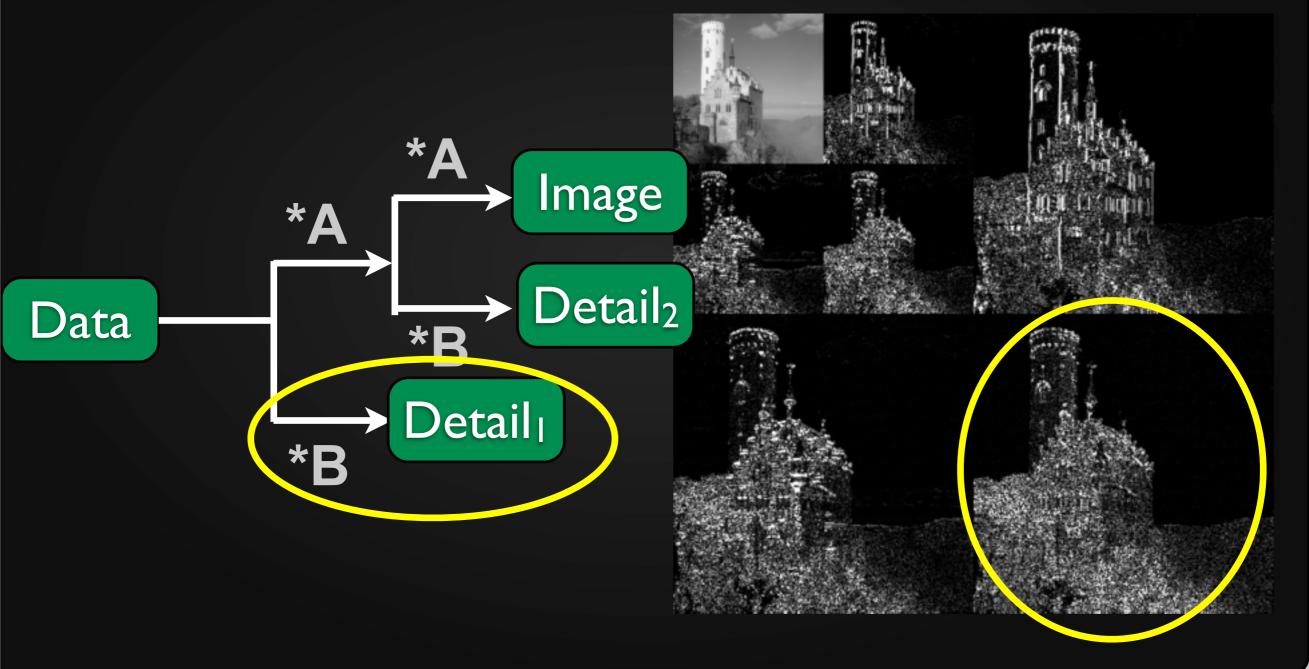
Multi-D wavelet transform

Wavelet transform Multi-D wavelet transform



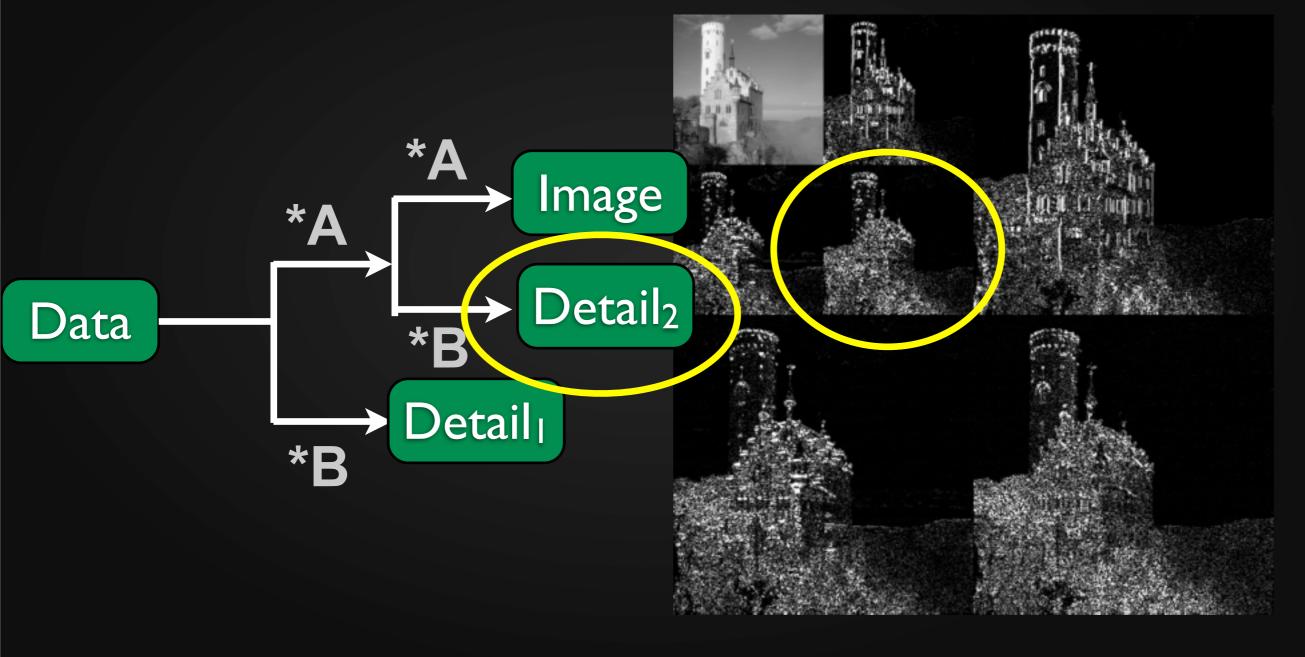
Multi-D wavelet transform

Wavelet transform Multi-D wavelet transform

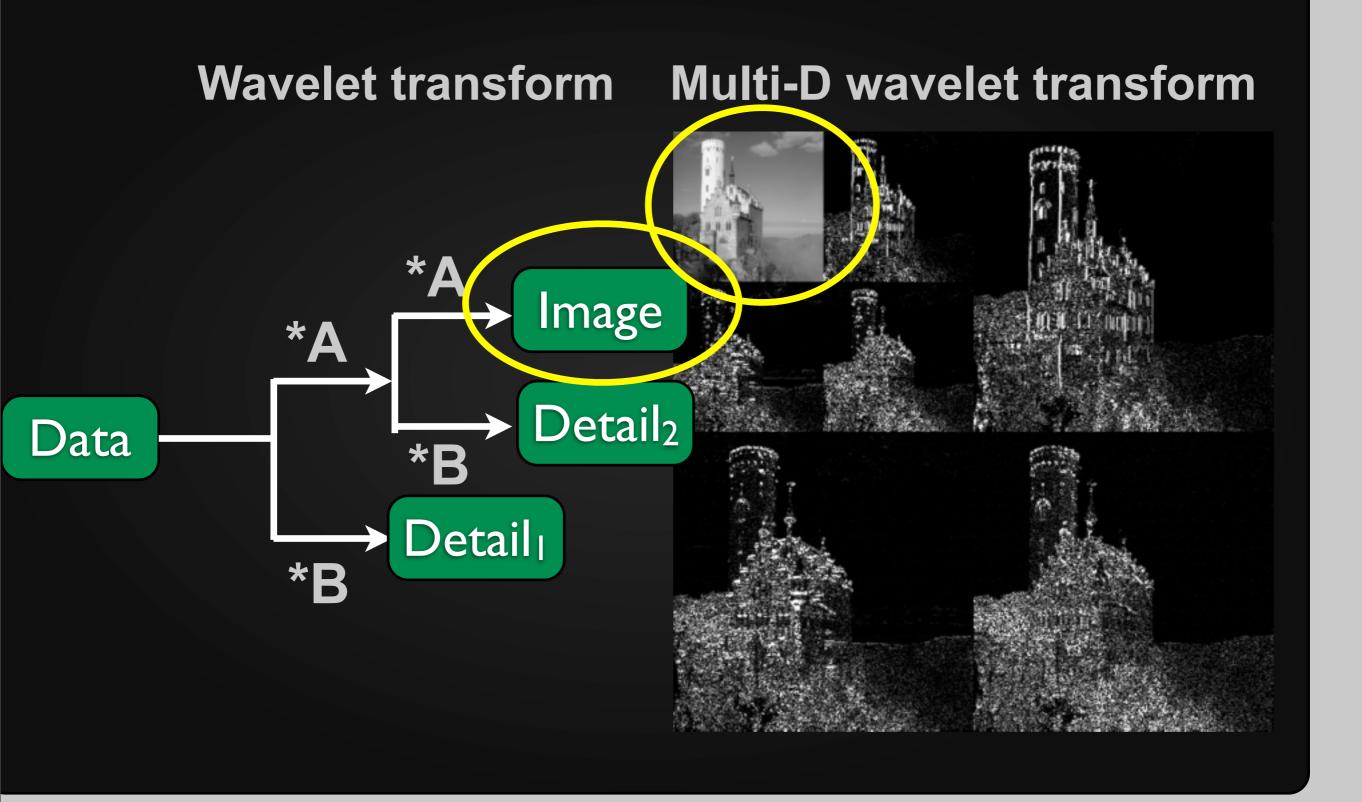


Multi-D wavelet transform

Wavelet transform Multi-D wavelet transform



Multi-D wavelet transform



Multi-D wavelet transform

 $\mathbf{r} = \mathbf{d} - \mathbf{L}\mathbf{x}_0$ $\mathbf{g} = \mathbf{L}^{\mathbf{T}}\mathbf{r}$ $\mathbf{\tilde{h}} = \mathbf{Lg}$ rh $\mathbf{r} + = \alpha \mathbf{h}$ $\mathbf{x_i} + = \alpha \mathbf{g}$

Steepest descent iteration

 $\mathbf{r} = \mathbf{d} - \mathbf{L}\mathbf{x}_0$ $\mathbf{g} = \mathbf{L}^{\mathbf{T}} \mathbf{r}$ $\mathbf{h} = \mathbf{L}\mathbf{g}$ $\mathbf{r} + = \alpha \mathbf{h}$ $\mathbf{x_i} + = \alpha \mathbf{g}$

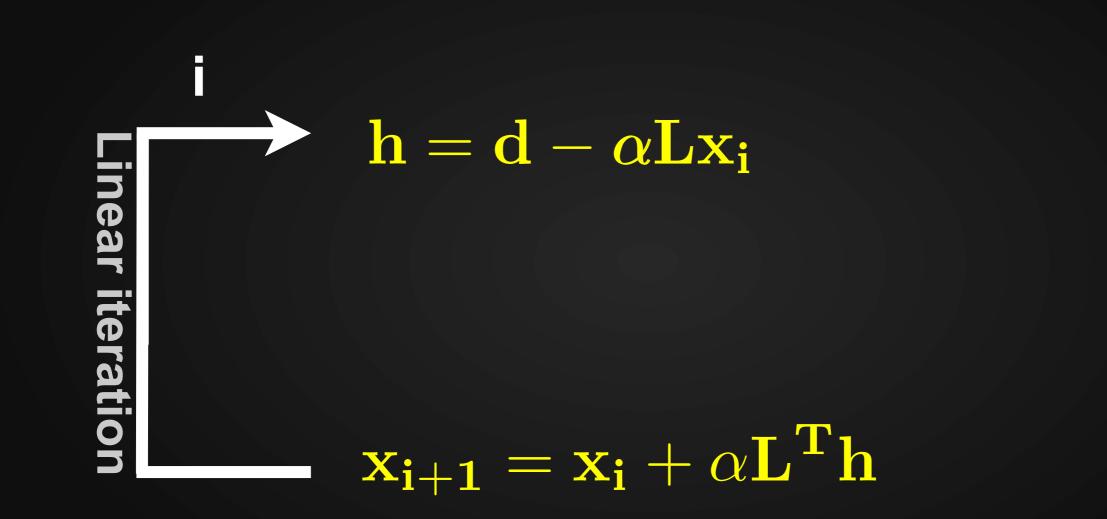
d sampled data

Steepest descent iteration

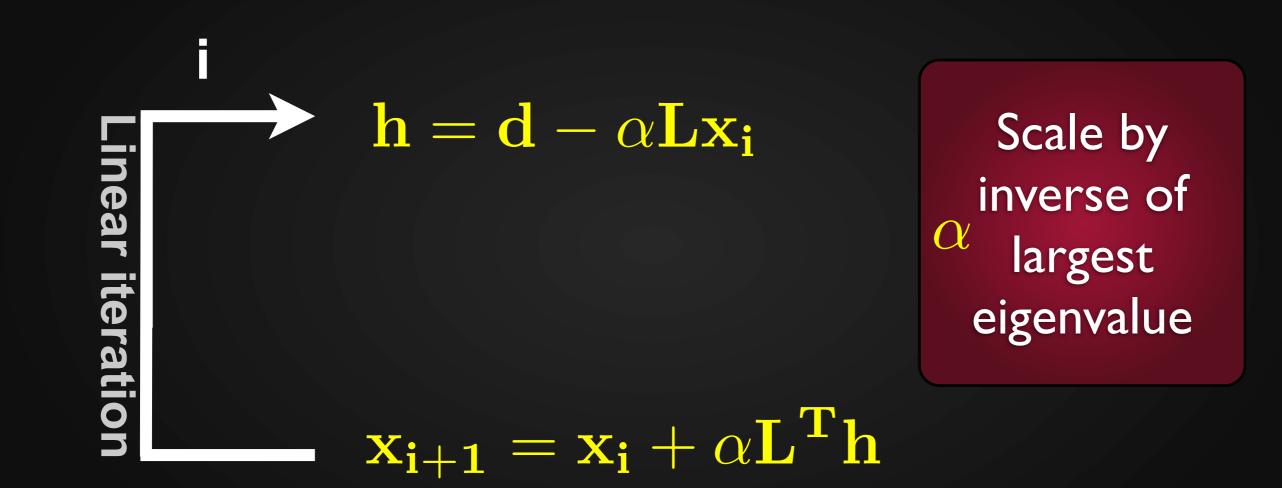
 $\mathbf{r} = \mathbf{d} - \mathbf{L}\mathbf{x}_0$ $\mathbf{g} = \mathbf{L}^{\mathbf{T}}\mathbf{r}$ $\mathbf{h} = \mathbf{L}\mathbf{g}$ $\mathbf{r} + = \alpha \mathbf{h}$ $\mathbf{x_i} + = \alpha \mathbf{g}$

n-d wavelet transform followed by masking

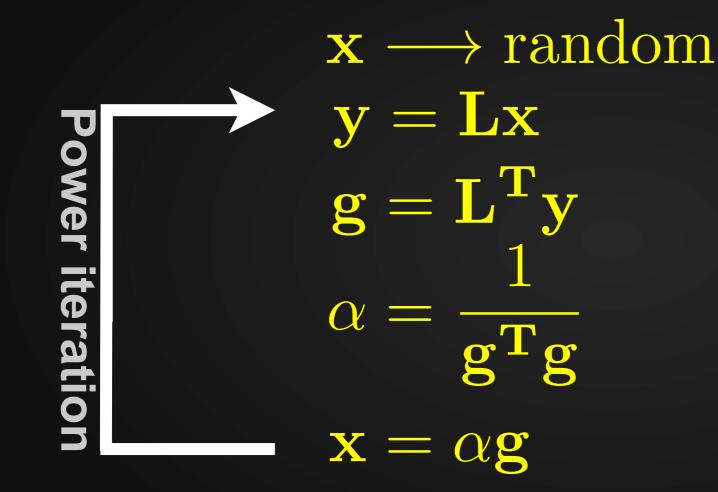
Steepest descent iteration



Landweber iteration

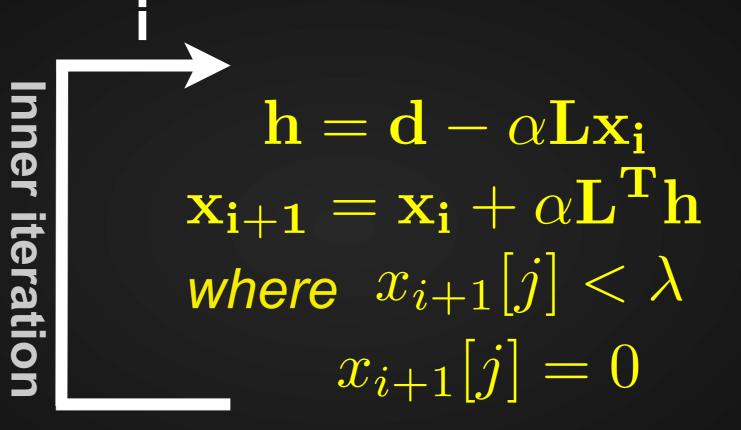


Landweber iteration

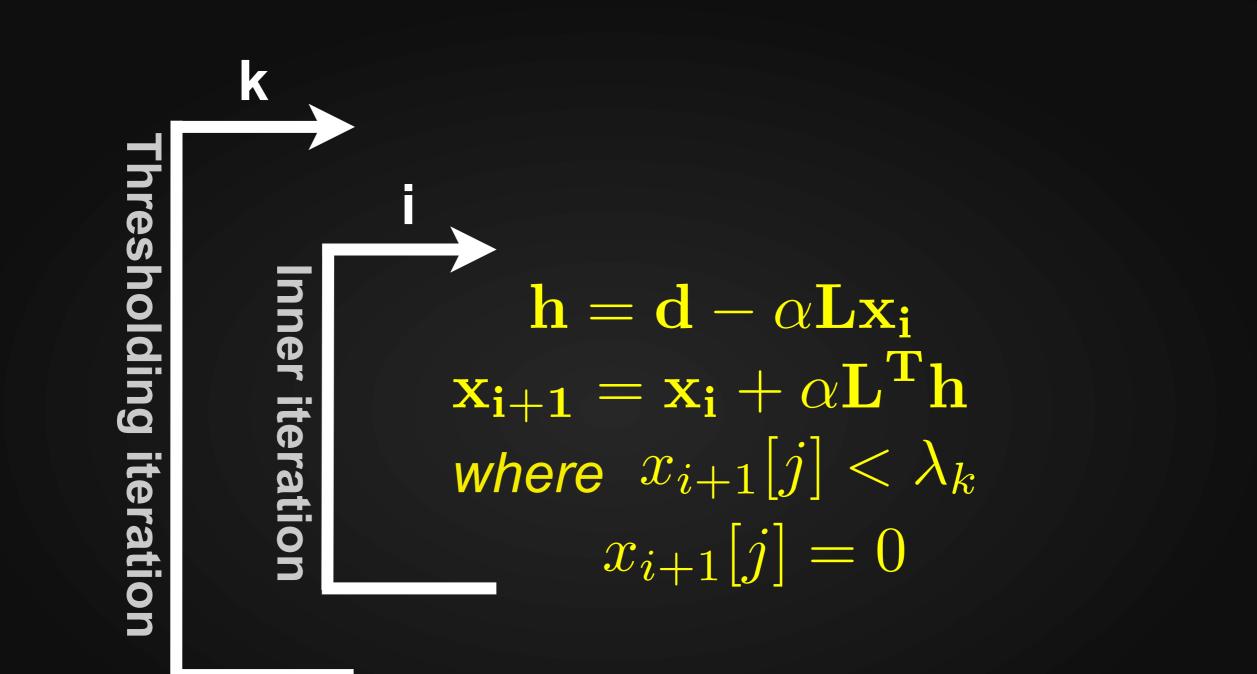


Scale by inverse of largest eigenvalue

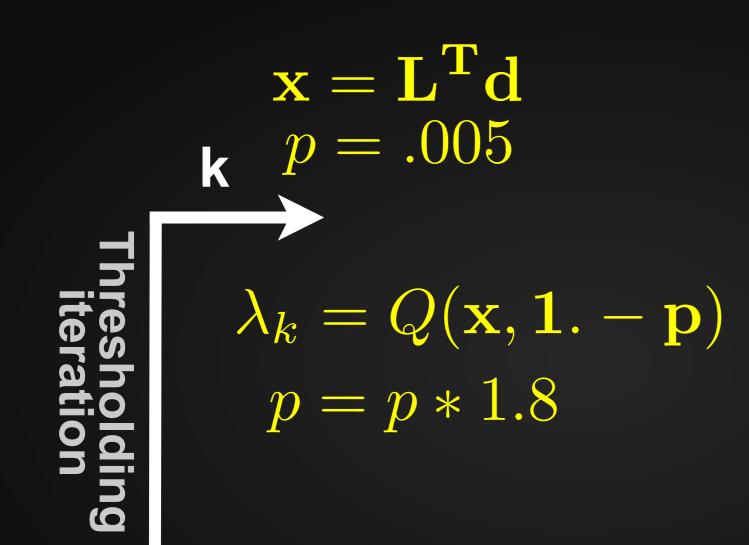
Power iteration



Thresholding

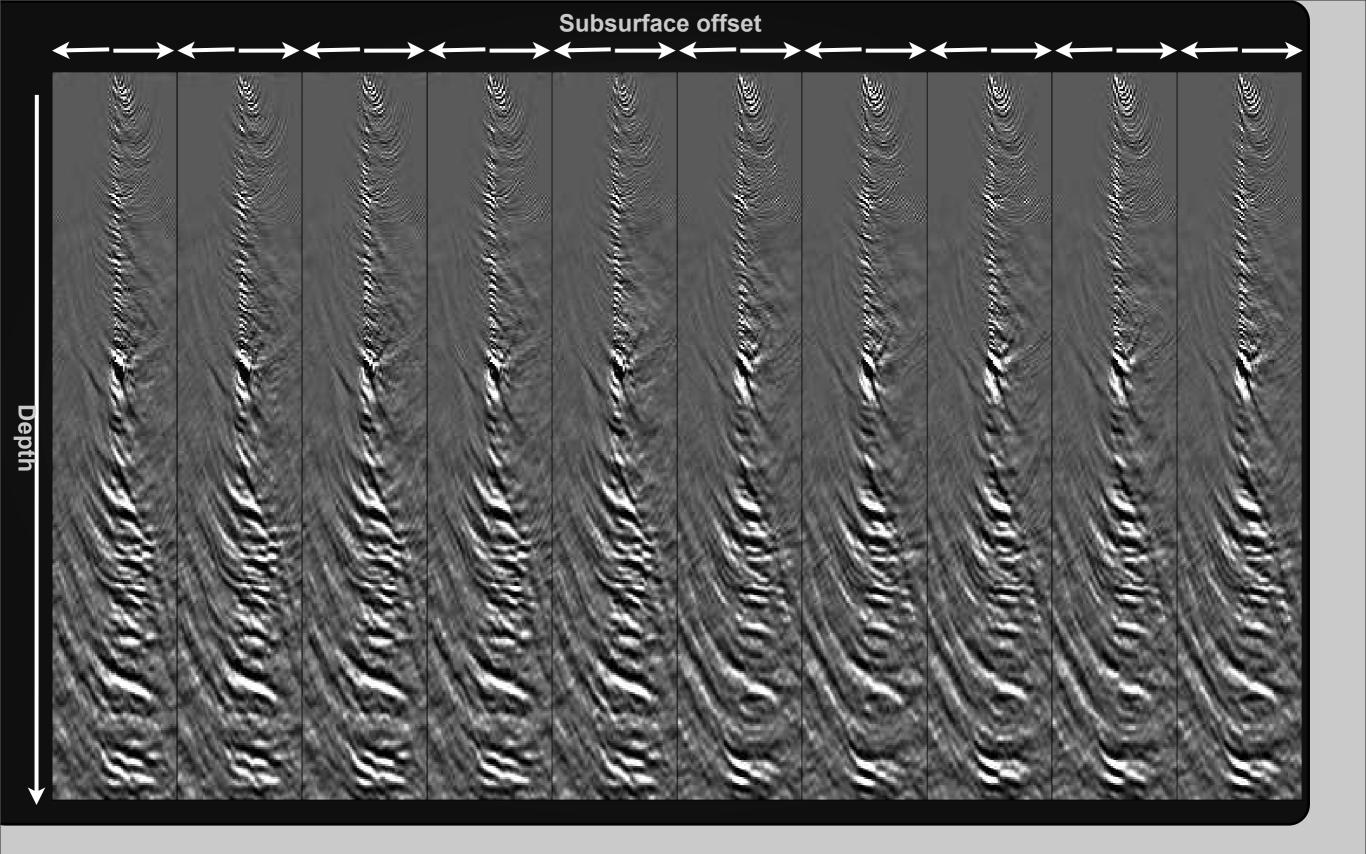


Iterative thresholding

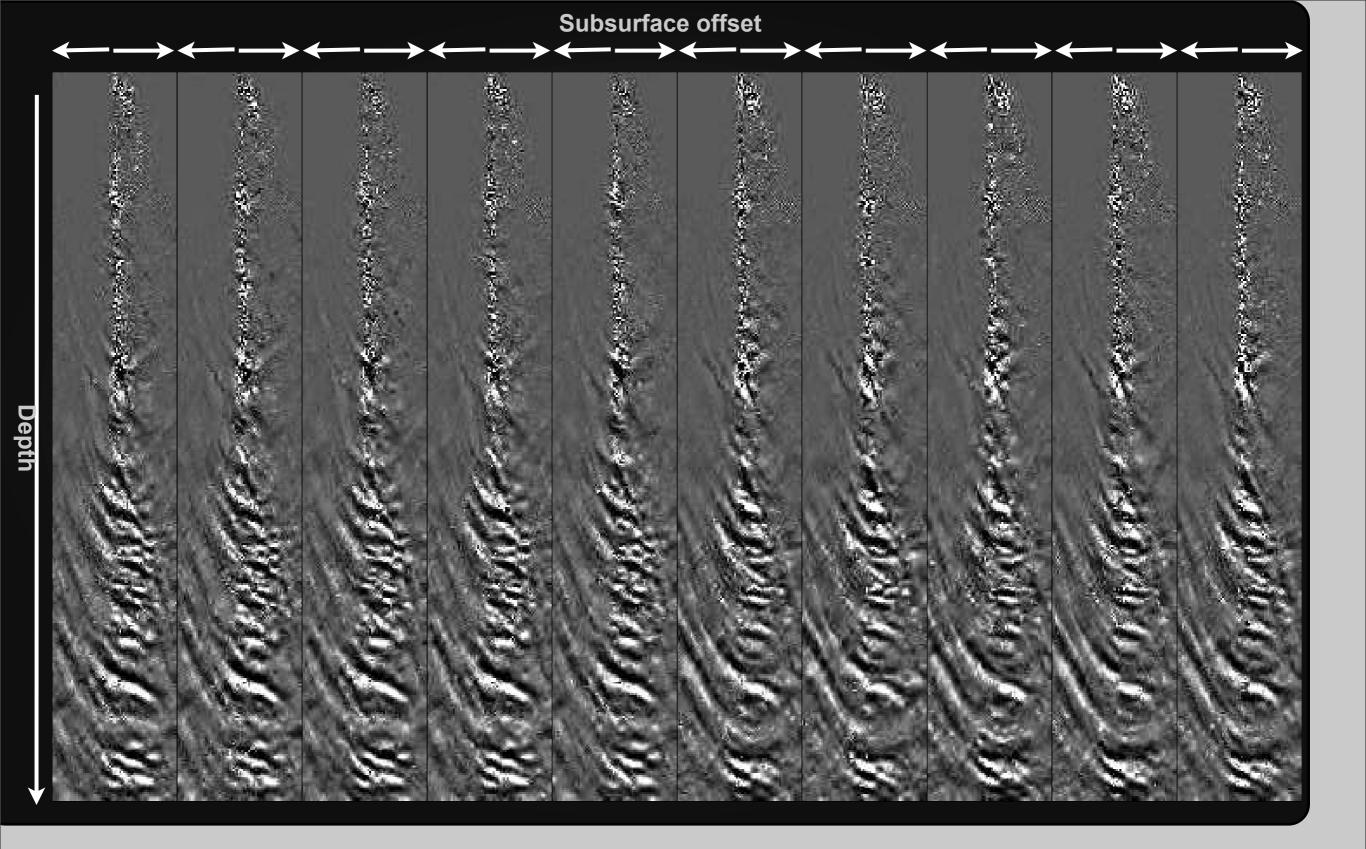


Q(x, m) Return the m value percentile value of X

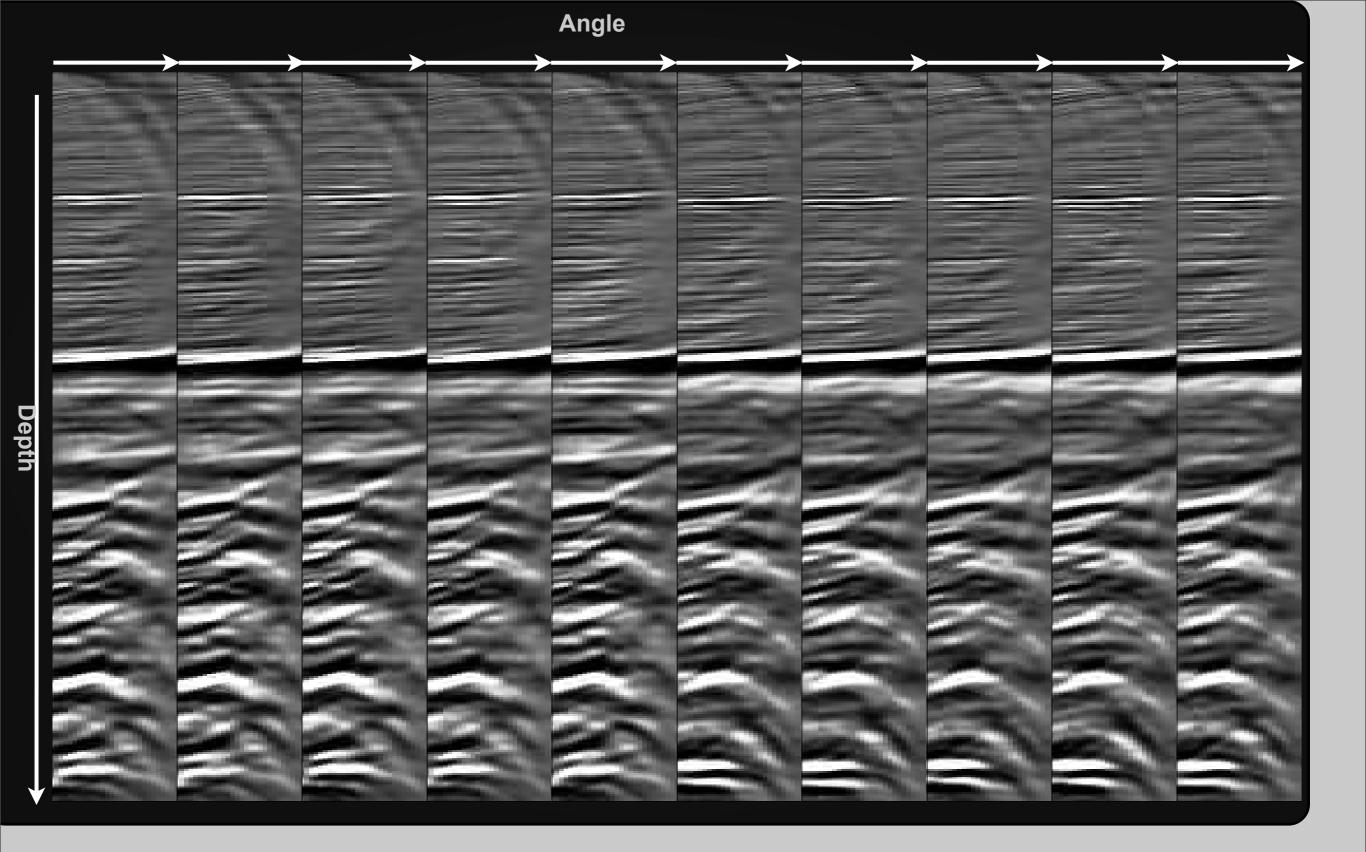
Thresholding scheme



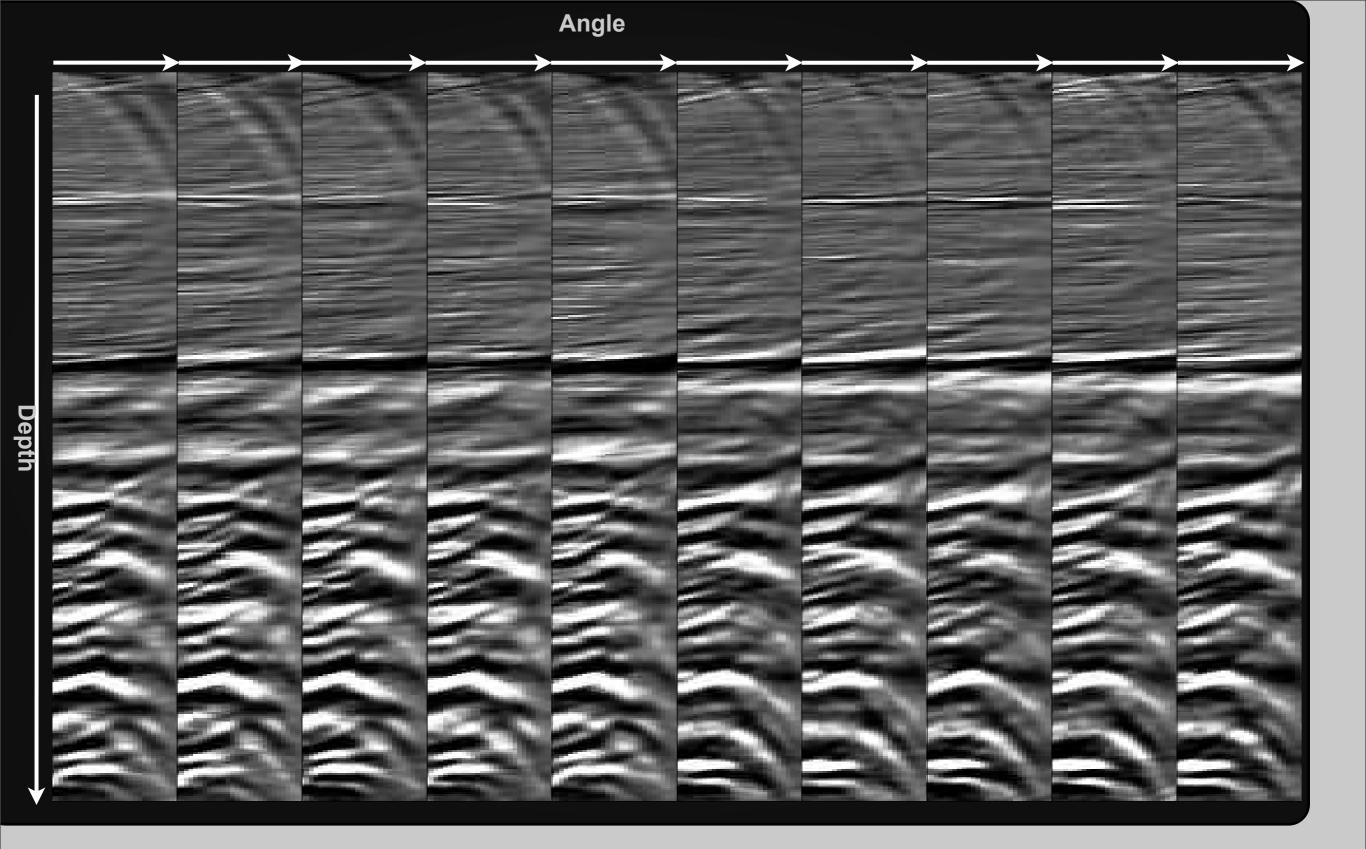
100% offsets



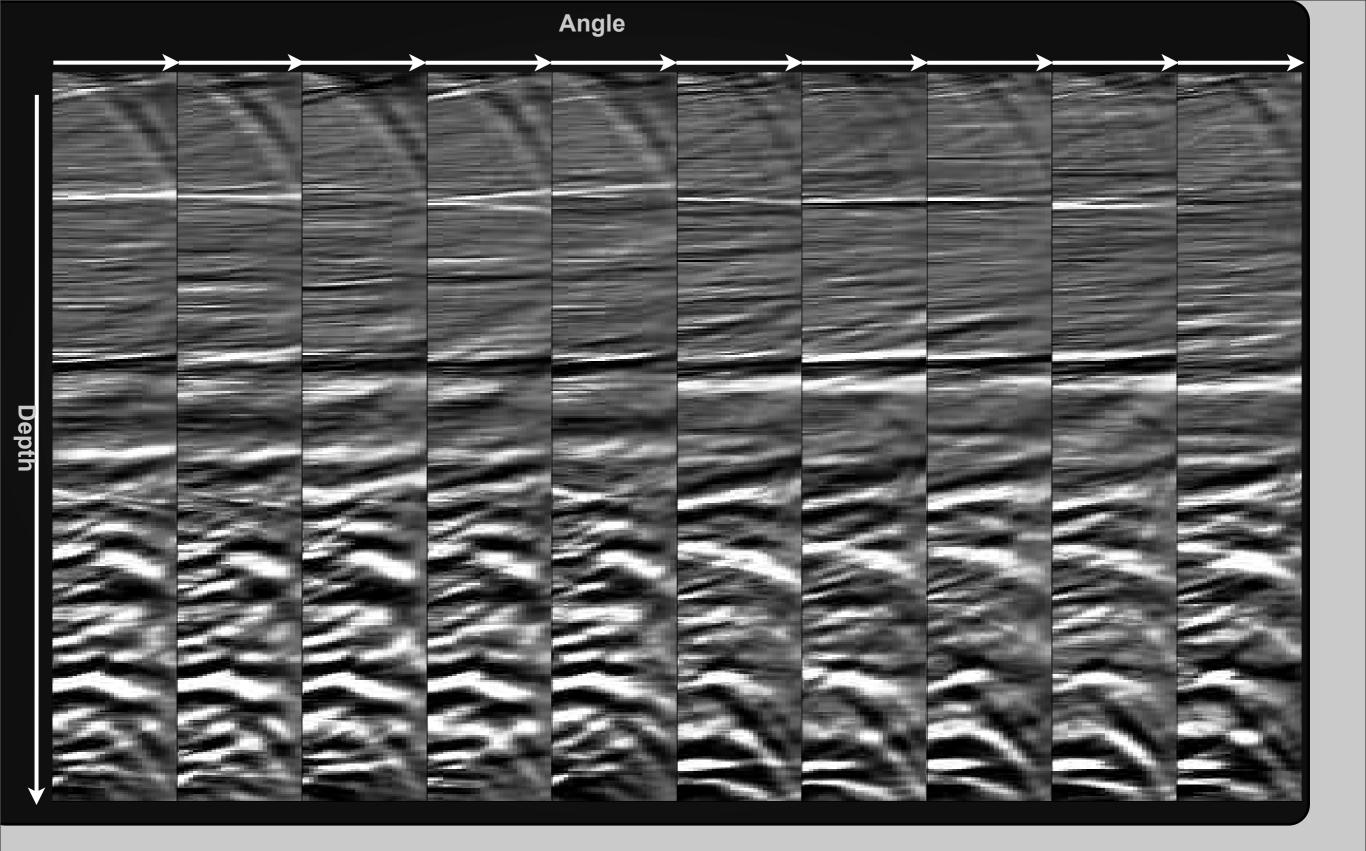
20% recovery result



100% offset angle result



20% recovery (angle domain)

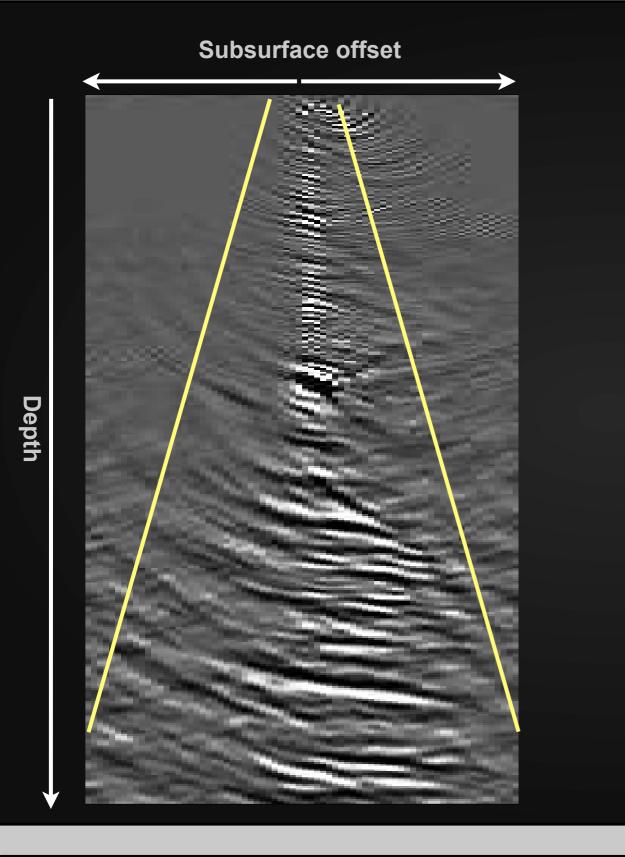


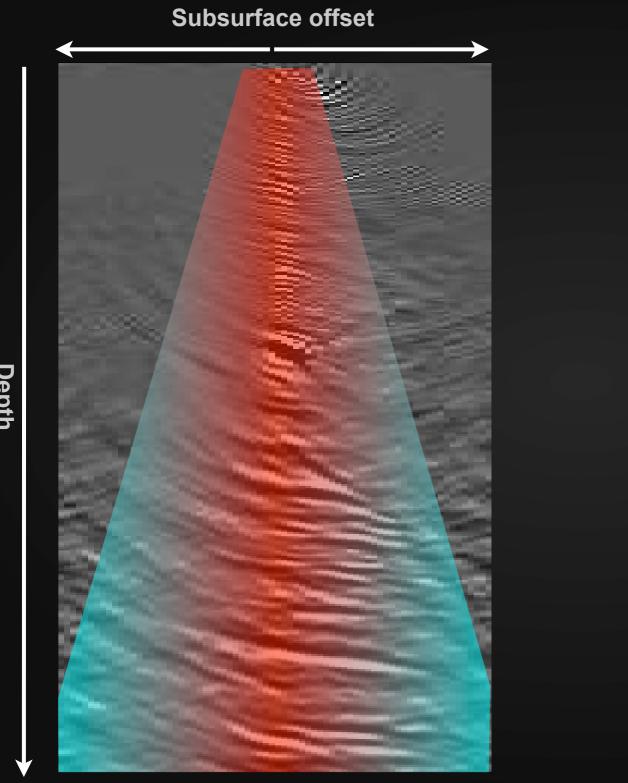
10% recovery (angle domain)

Subsurface offset

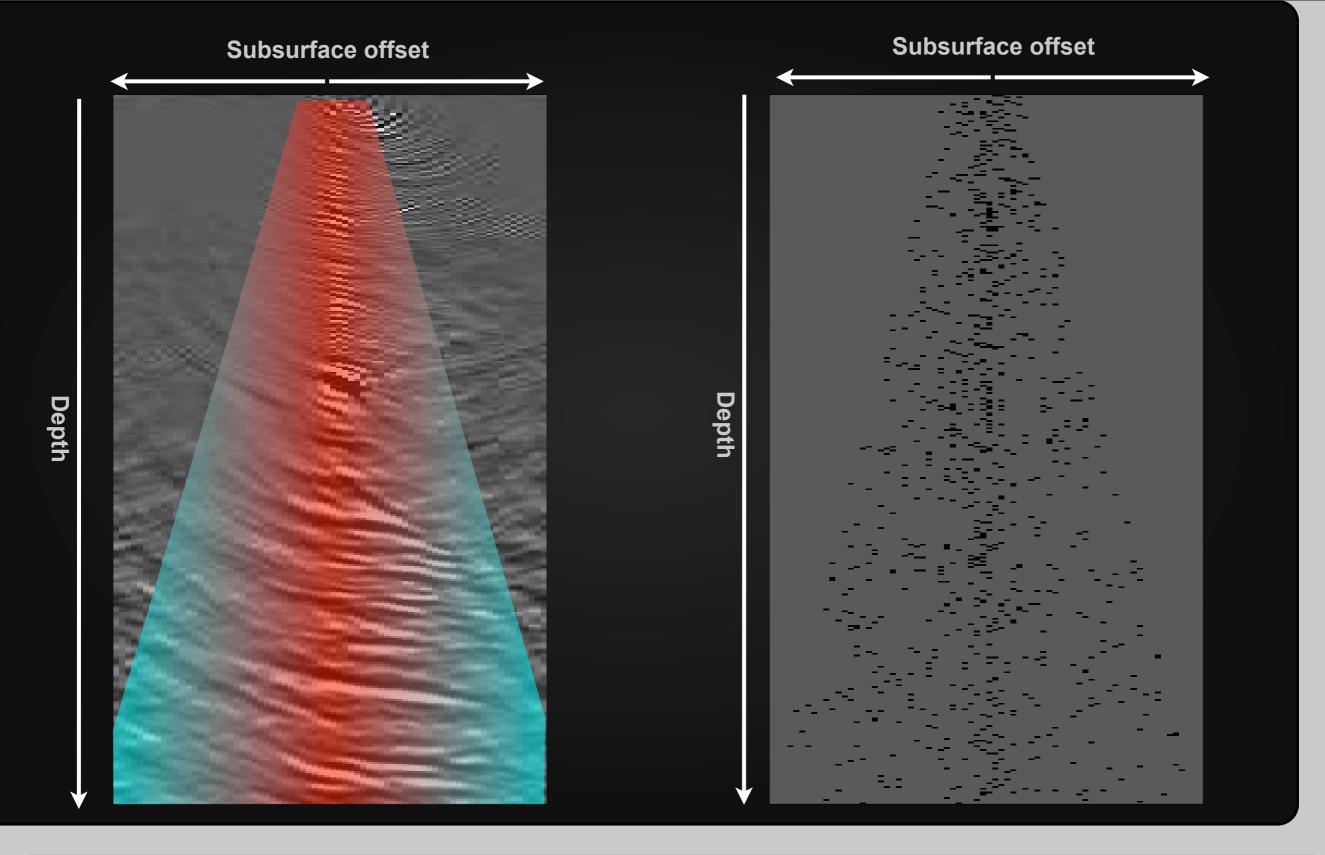
Thresholding scheme

Depth

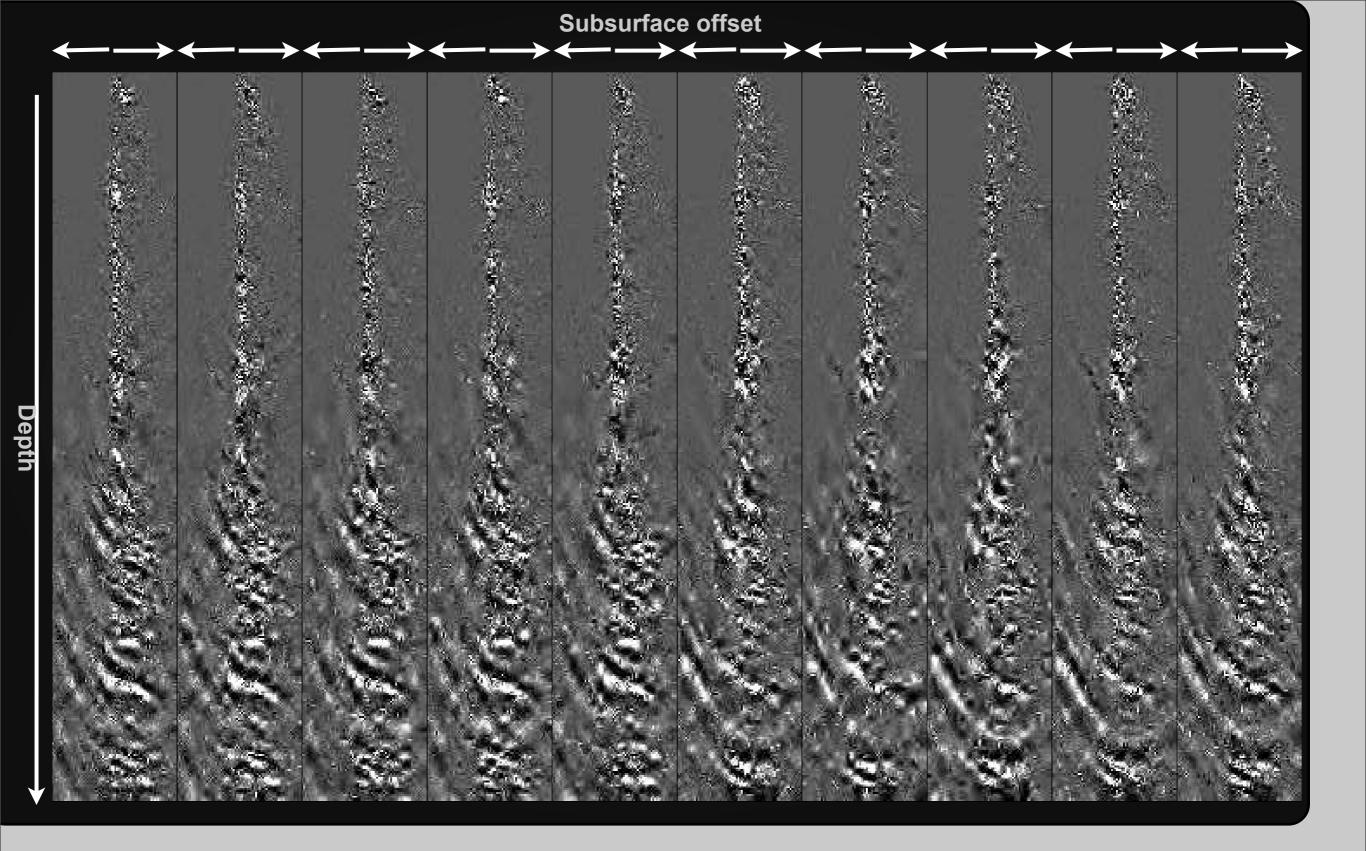




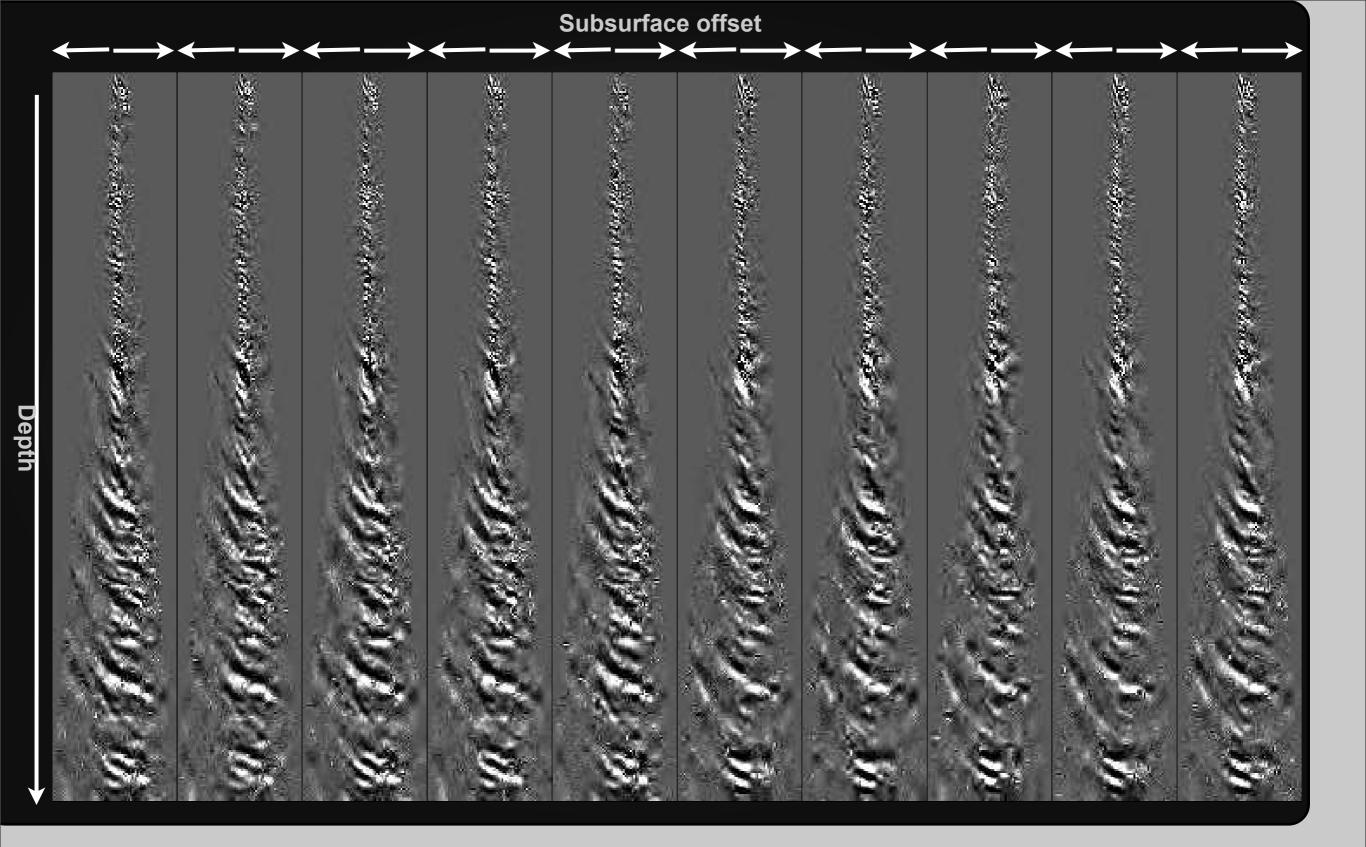
Thresholding scheme



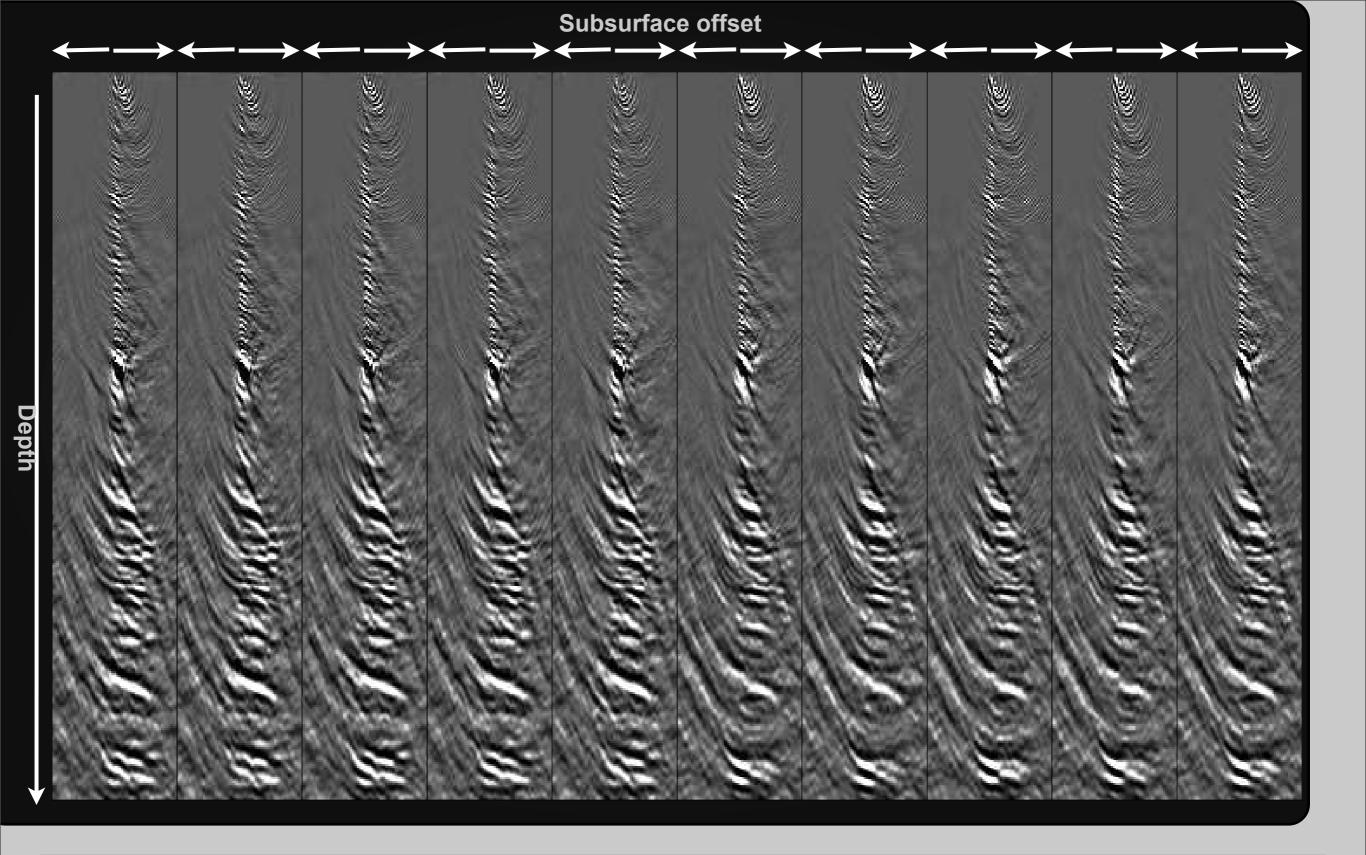
Thresholding scheme



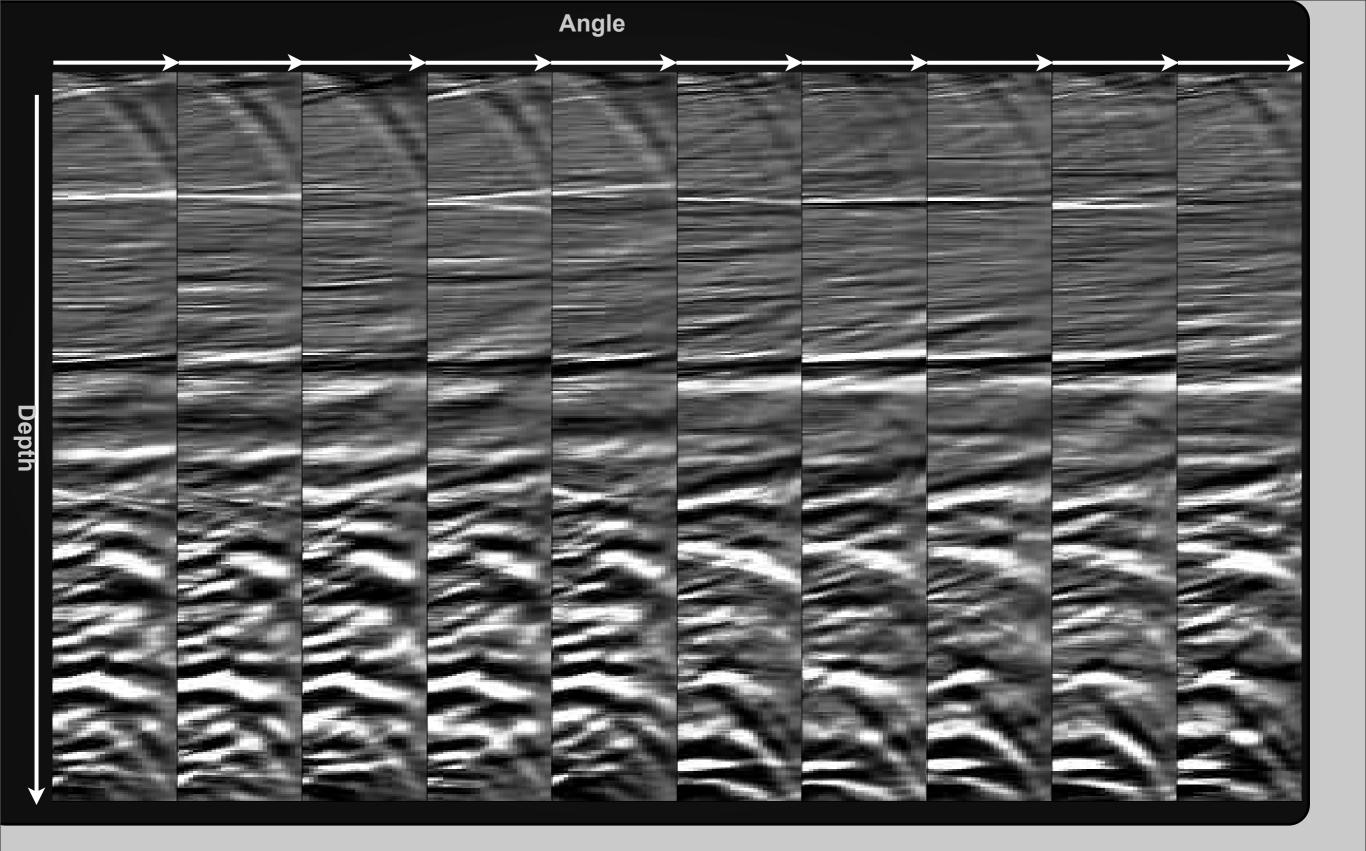
10% standard



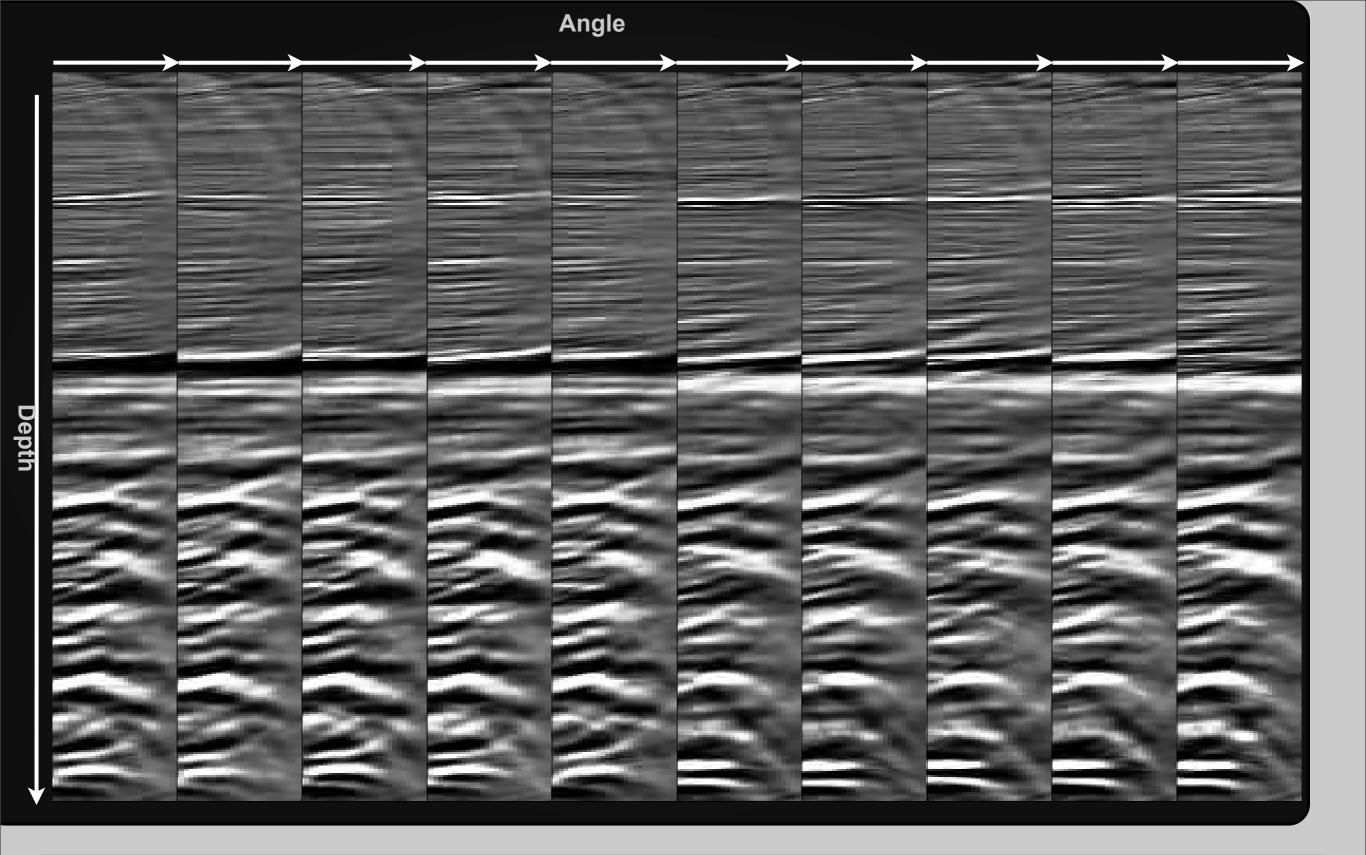
10% cone



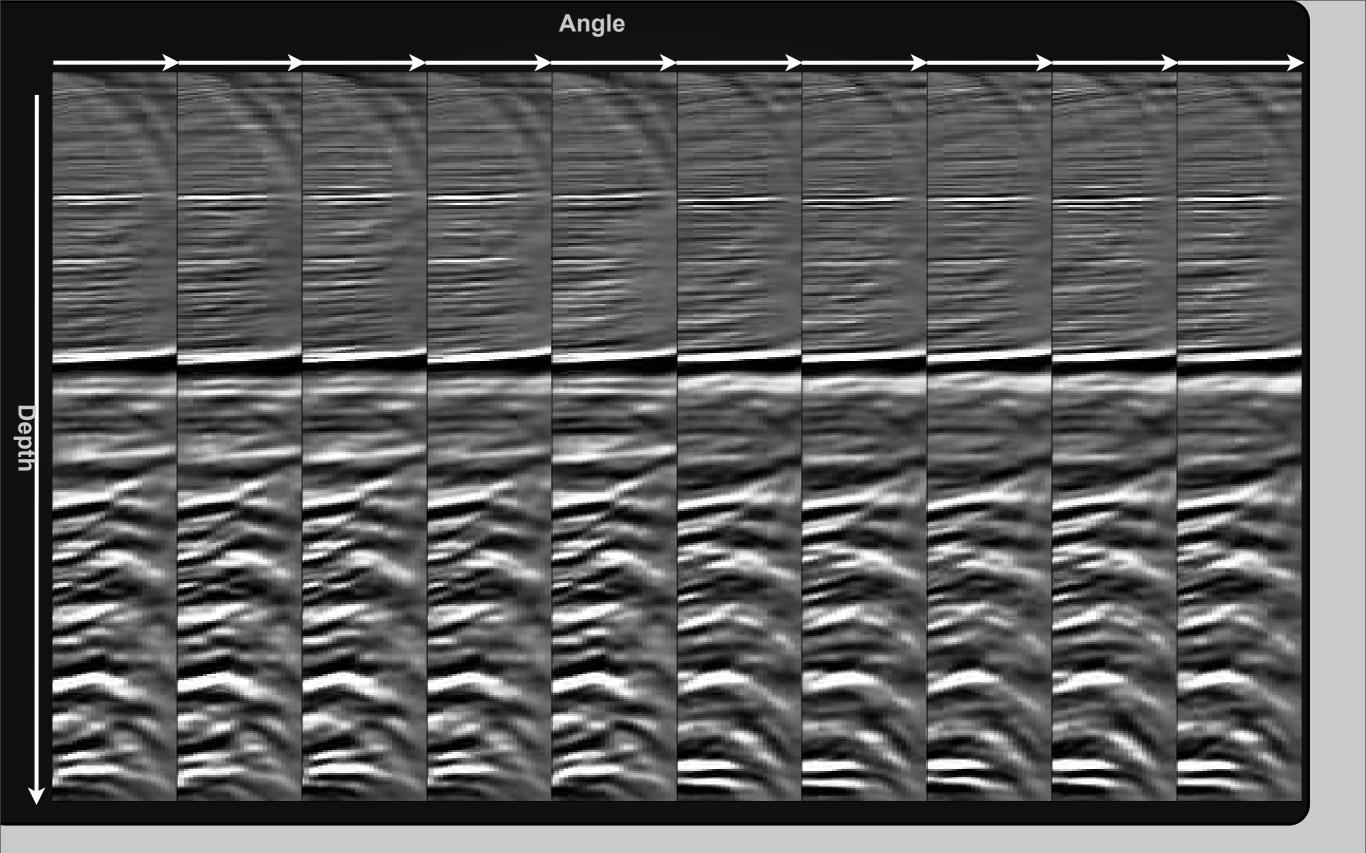
Full offsets



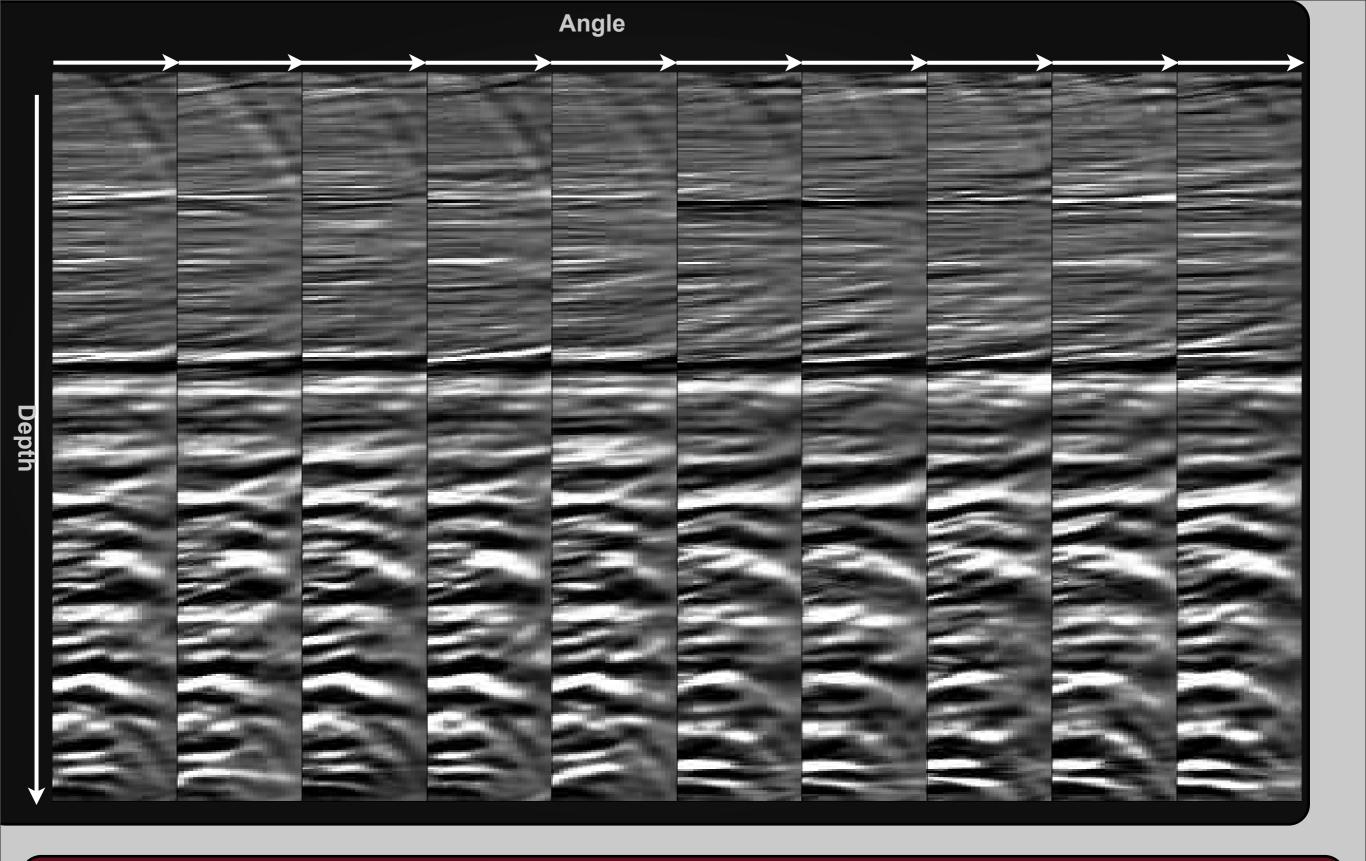
10% standard (angle domain)



10% cone (angle domain)

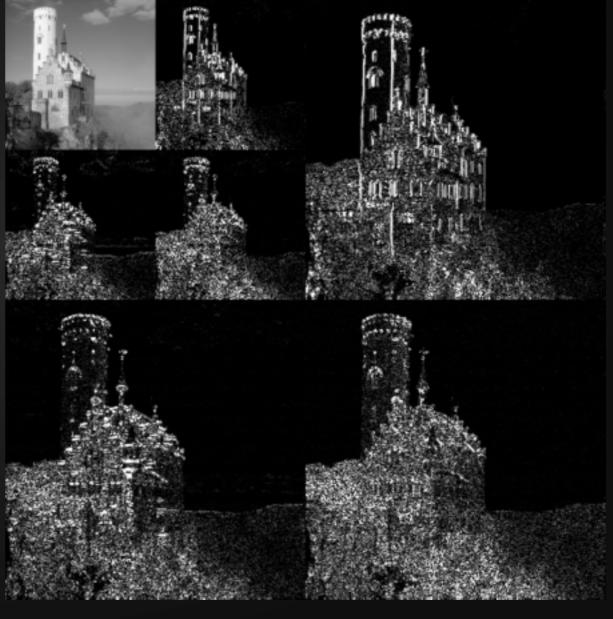


100% angle result



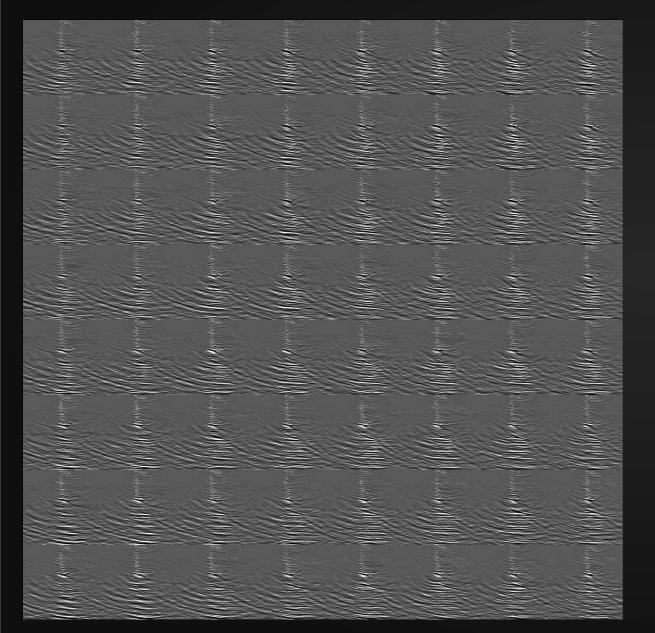
5% cone angle result

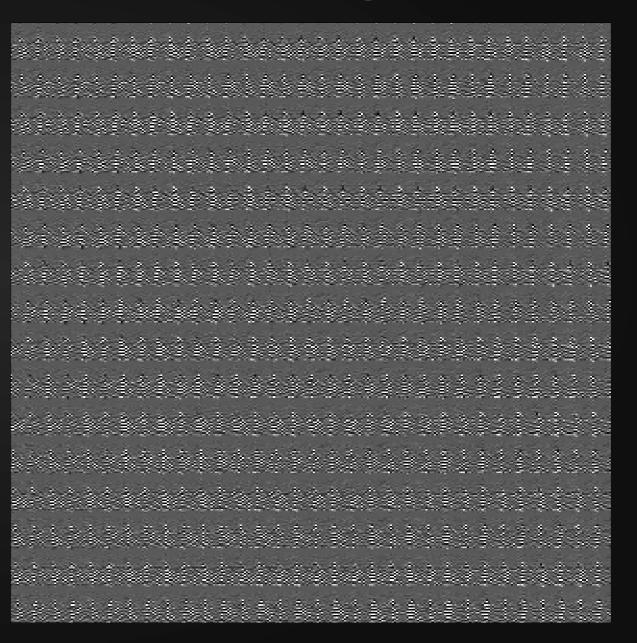
Multi-D wavelet transform



Multi-D wavelet transform

Lowest pass



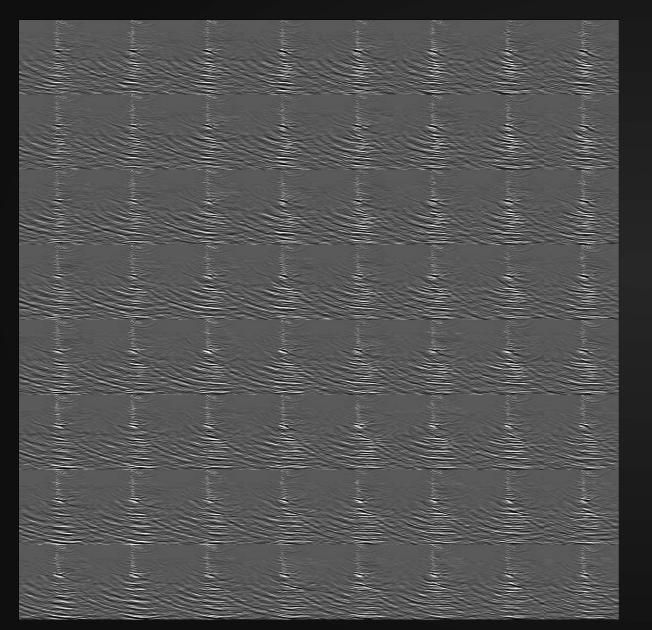


Multi-D wavelet transform

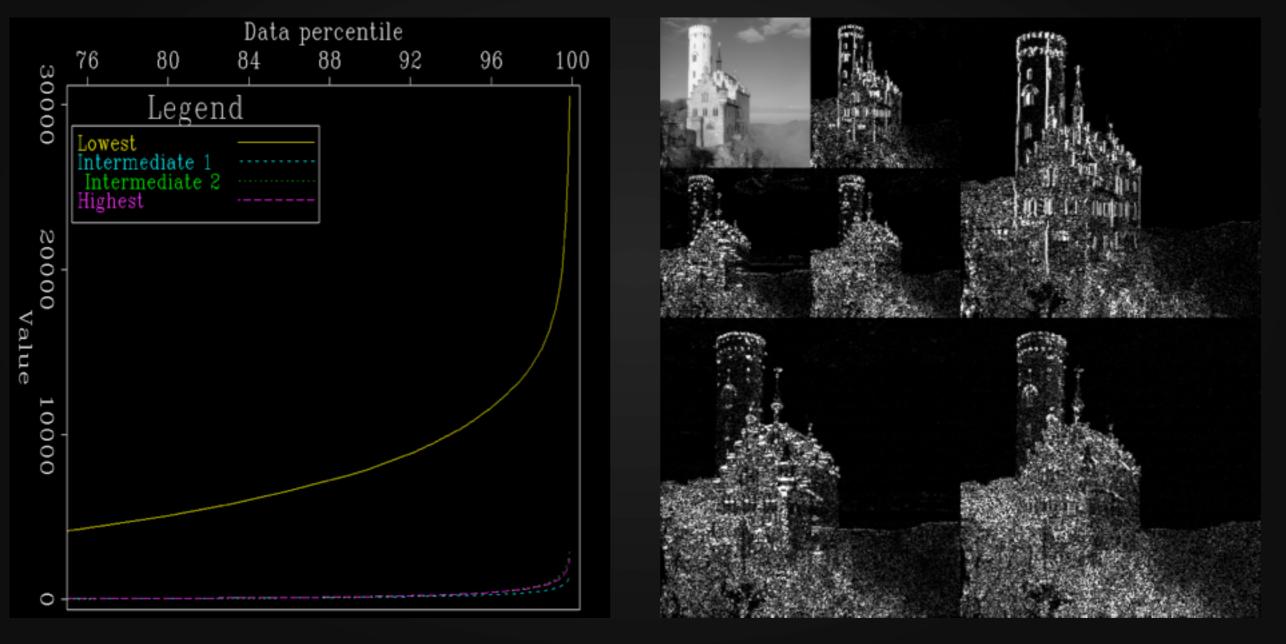
N-D wavelet transform

Multi-D wavelet transform

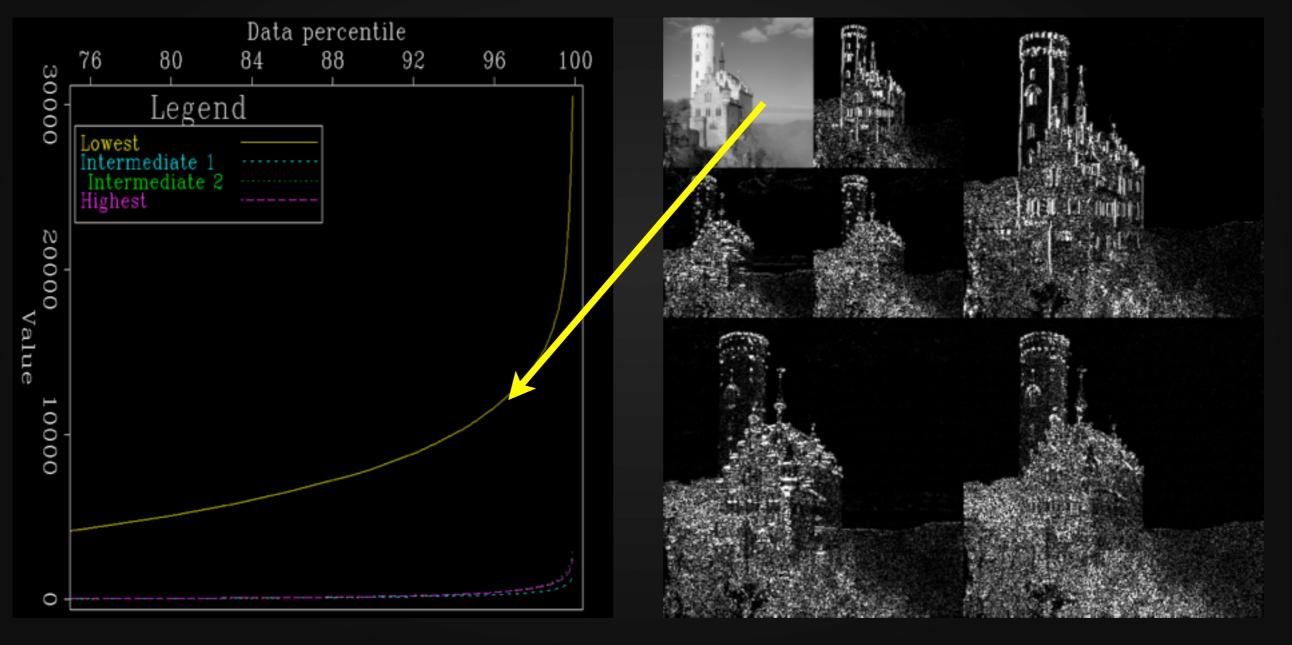
Highest pass



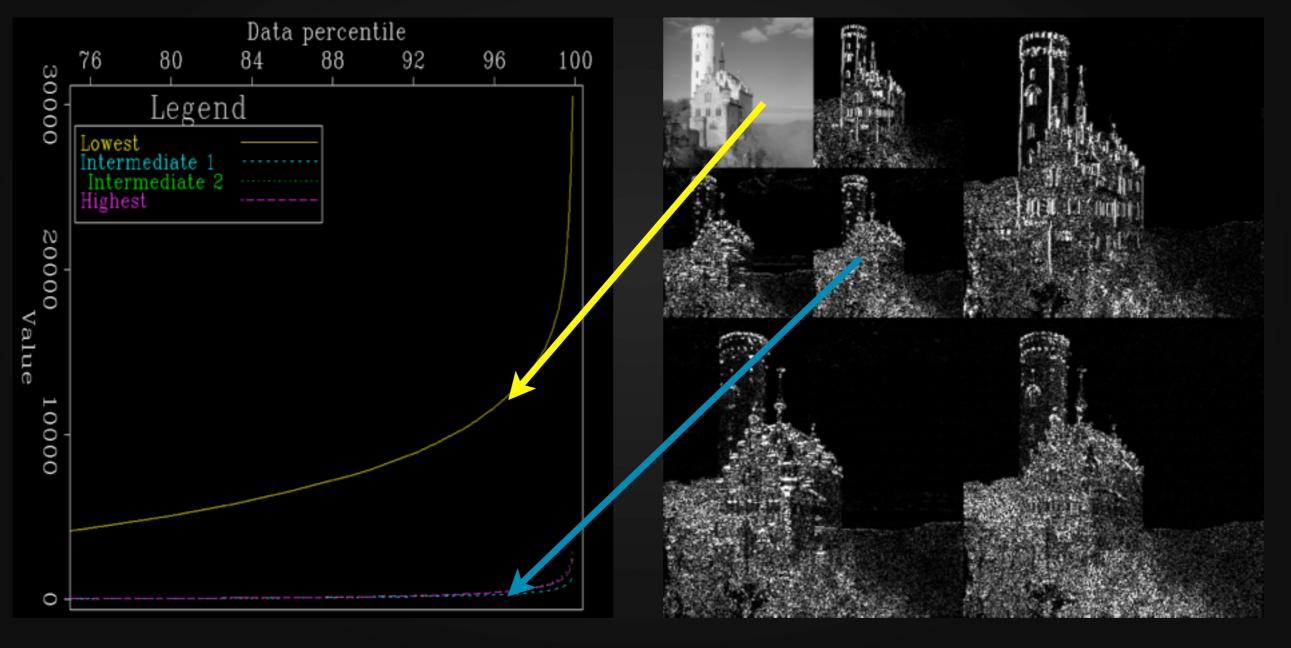
Multi-D wavelet transform



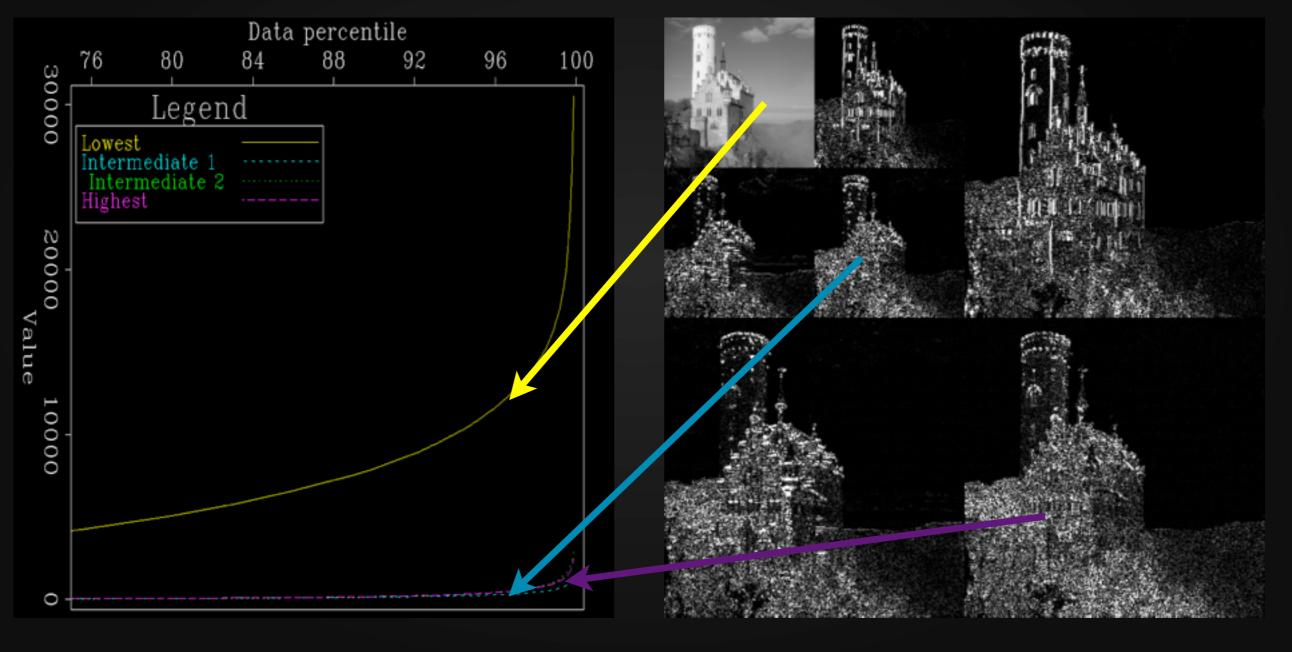
Multi-D wavelet transform



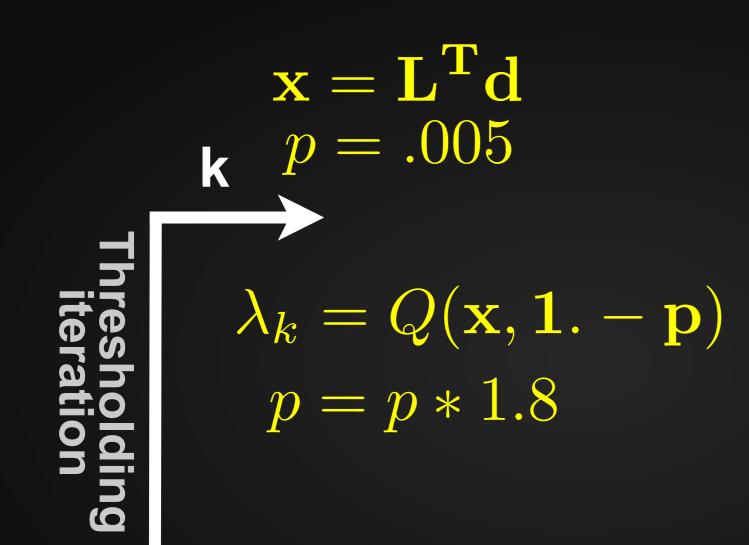
Multi-D wavelet transform



Multi-D wavelet transform



Multi-D wavelet transform

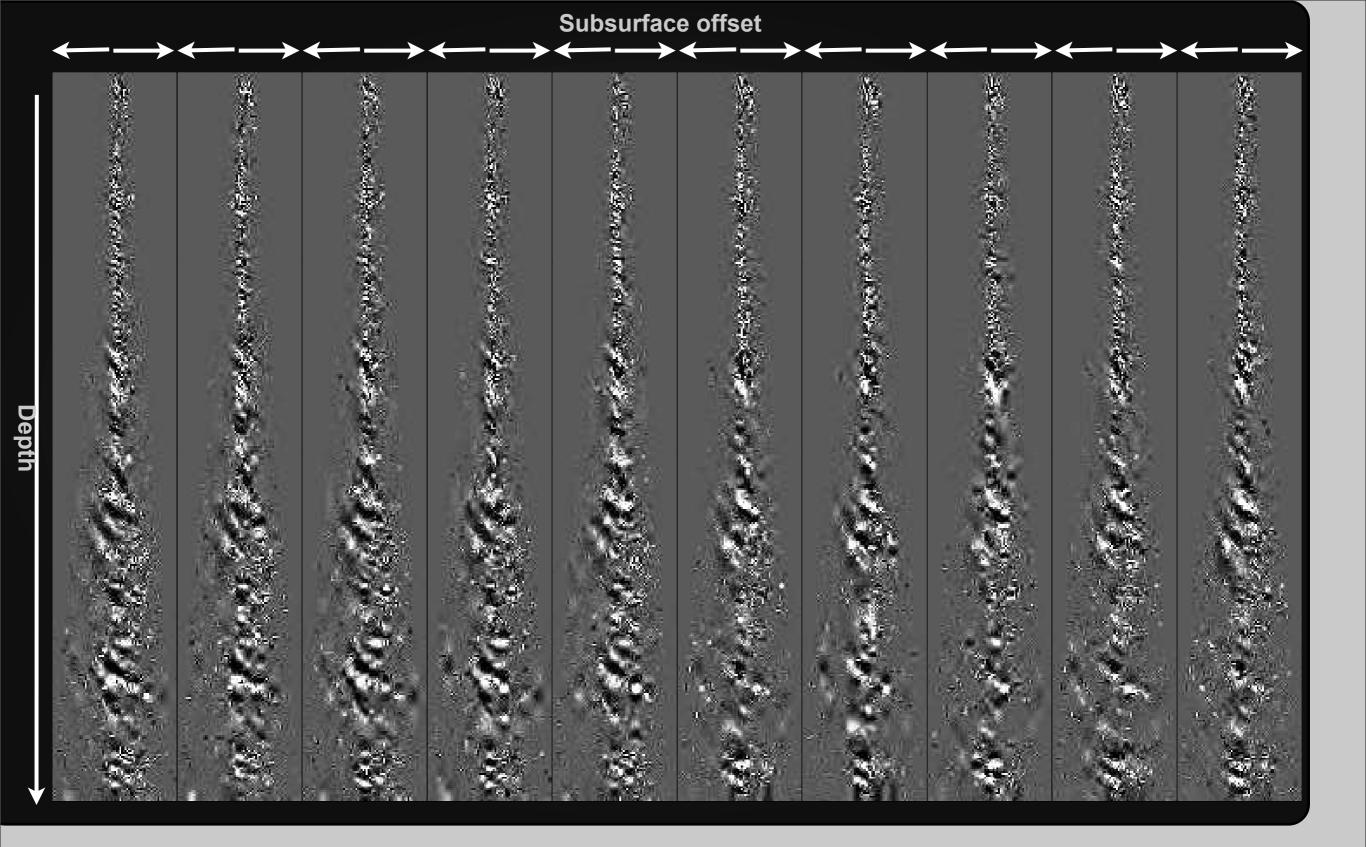


Q(x, m) Return the m value percentile value of X

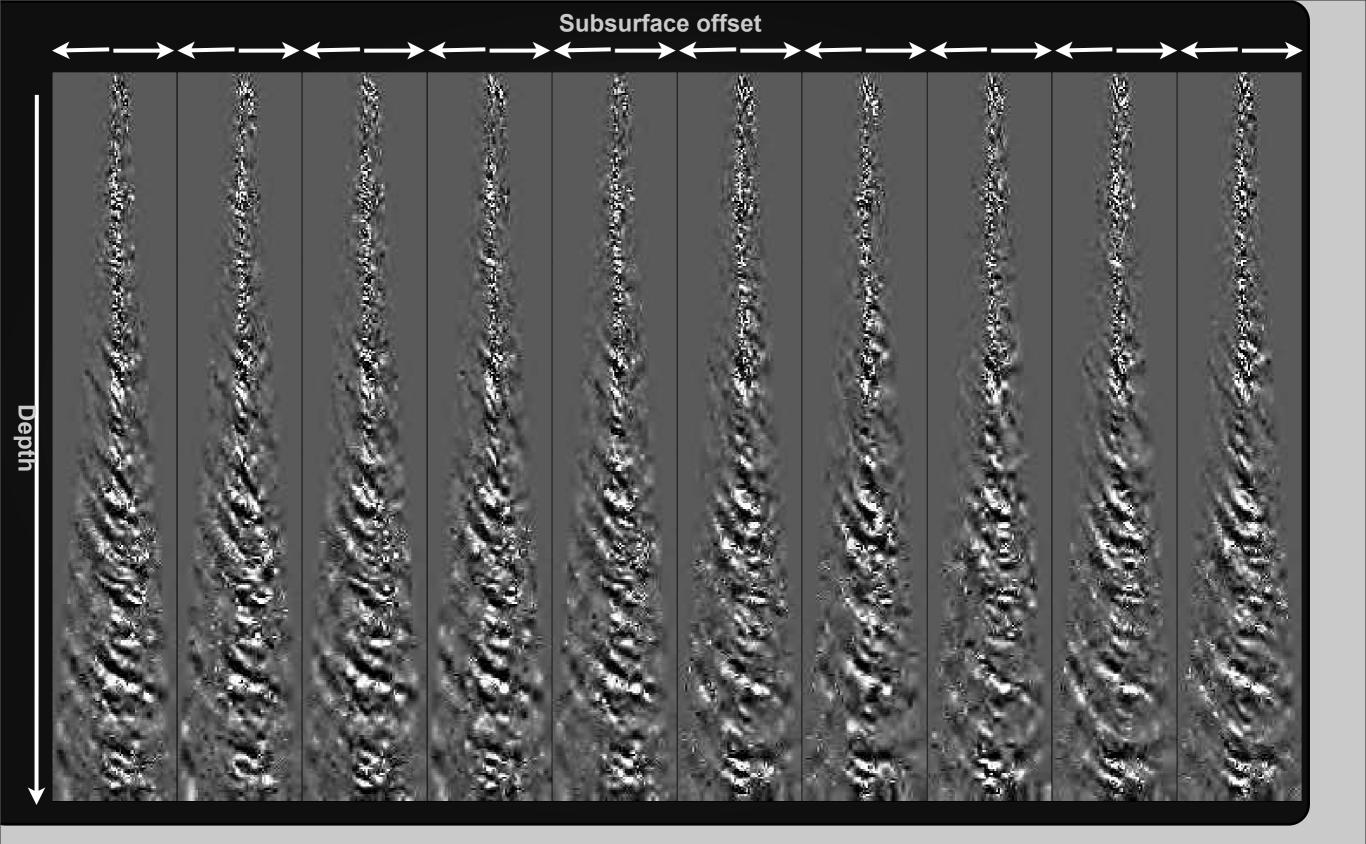
Thresholding scheme

 $\mathbf{x} = \mathbf{L}^{\mathbf{T}}\mathbf{d}$ p = .003 $l_{\mathrm{high},\mathrm{size}}$ l_{size} k $Q(\mathbf{x}, \mathbf{m})$ Return the m $\lambda_{k,l} = Q(\mathbf{x}, \mathbf{1}, -\mathbf{p})$ value percentile p = p * 1.8value of X

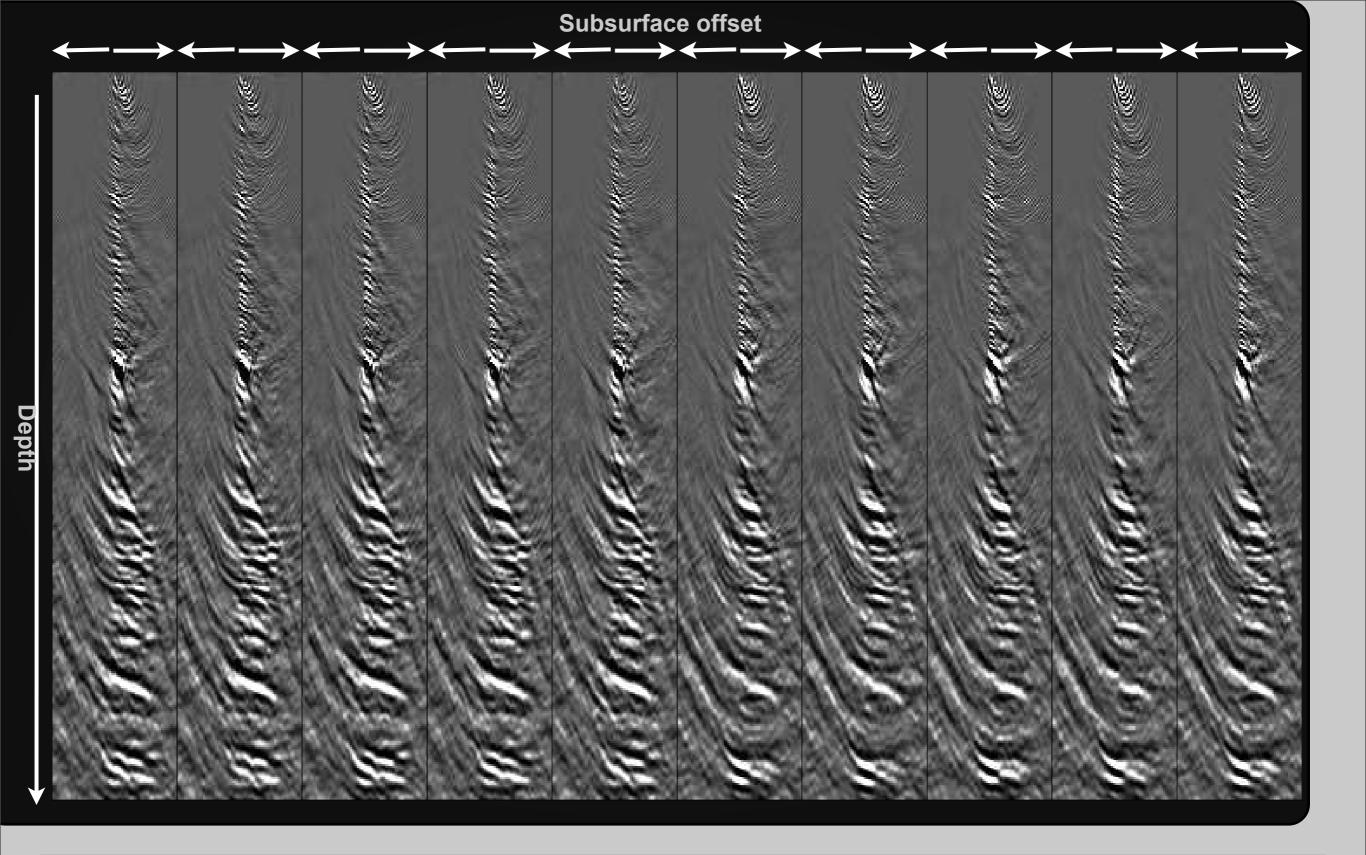
Level based thresholding



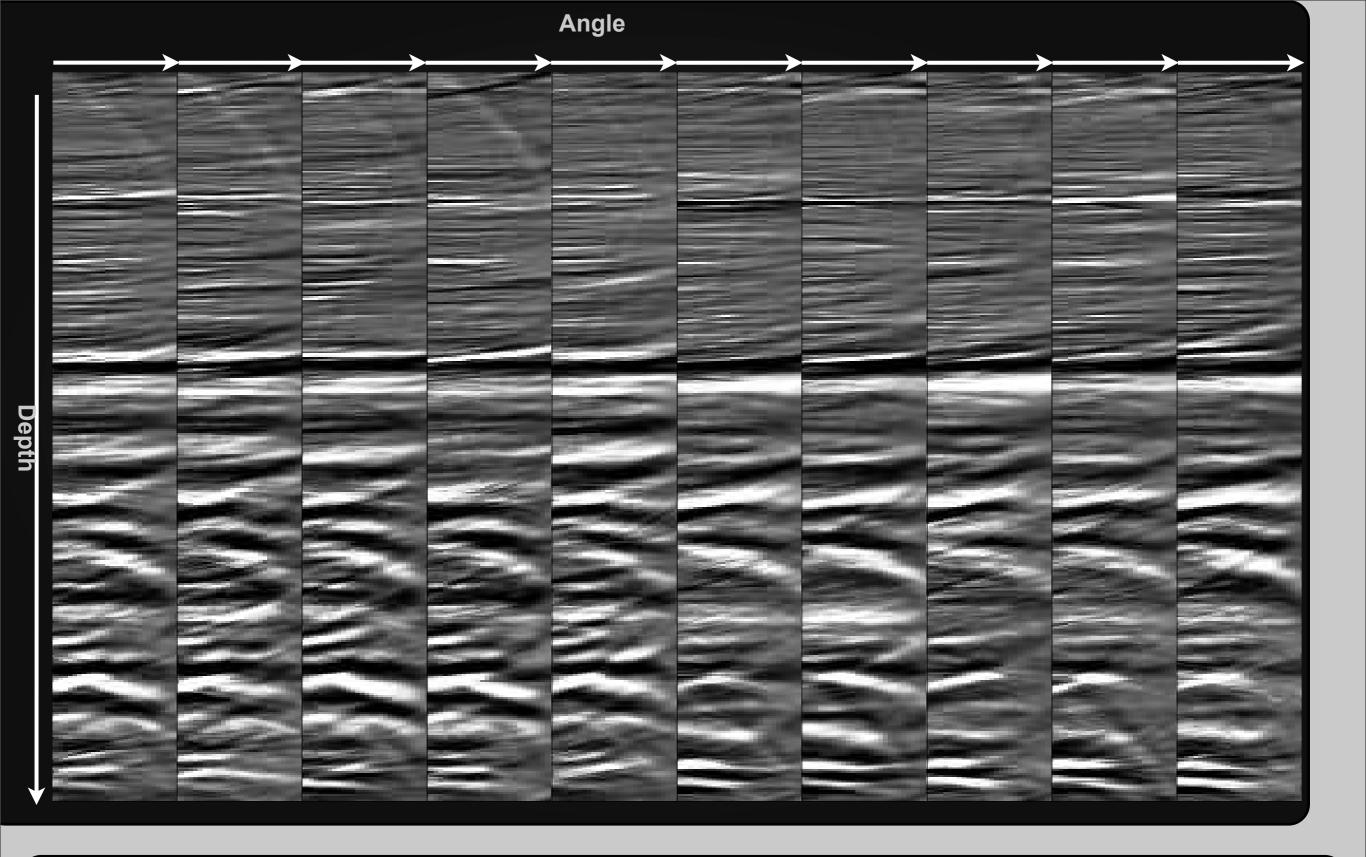
5% cone offsets



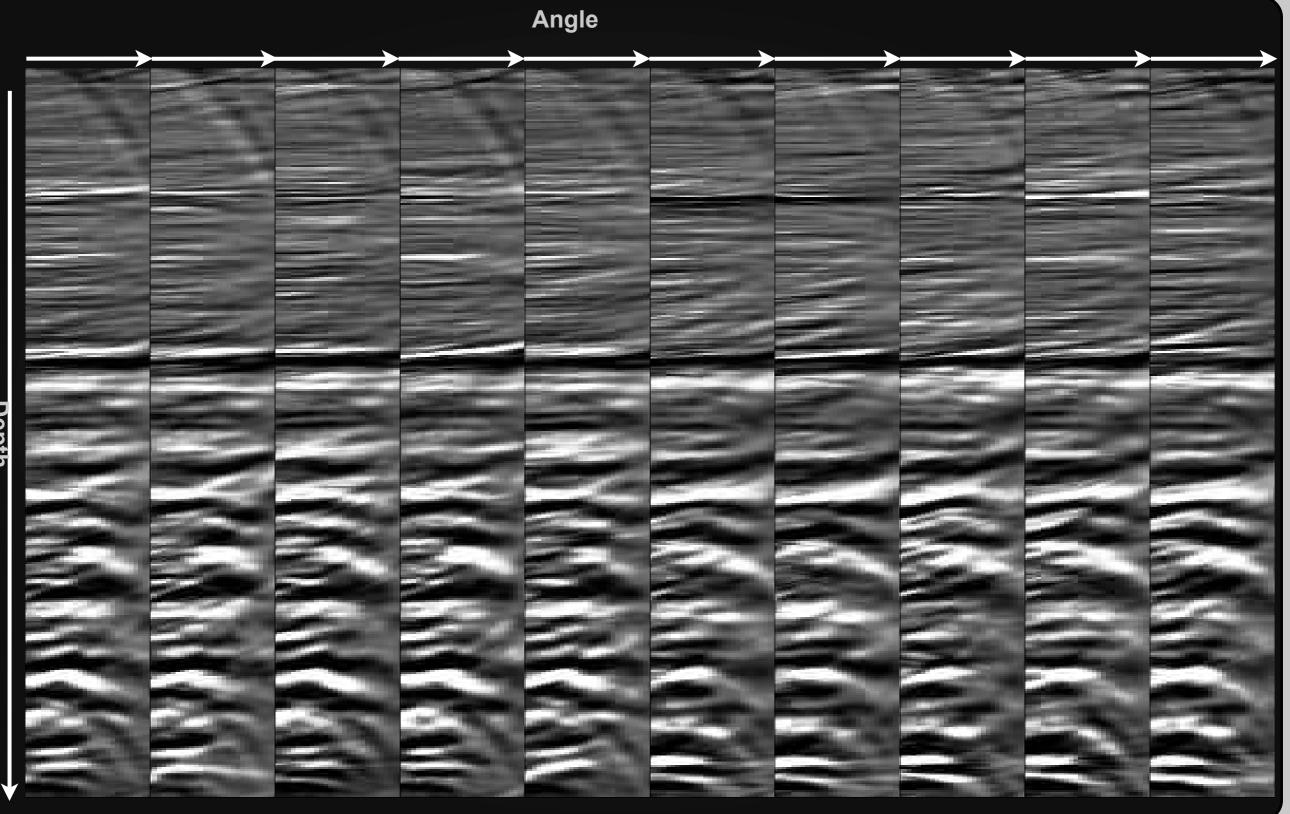
5% multi-level offsets

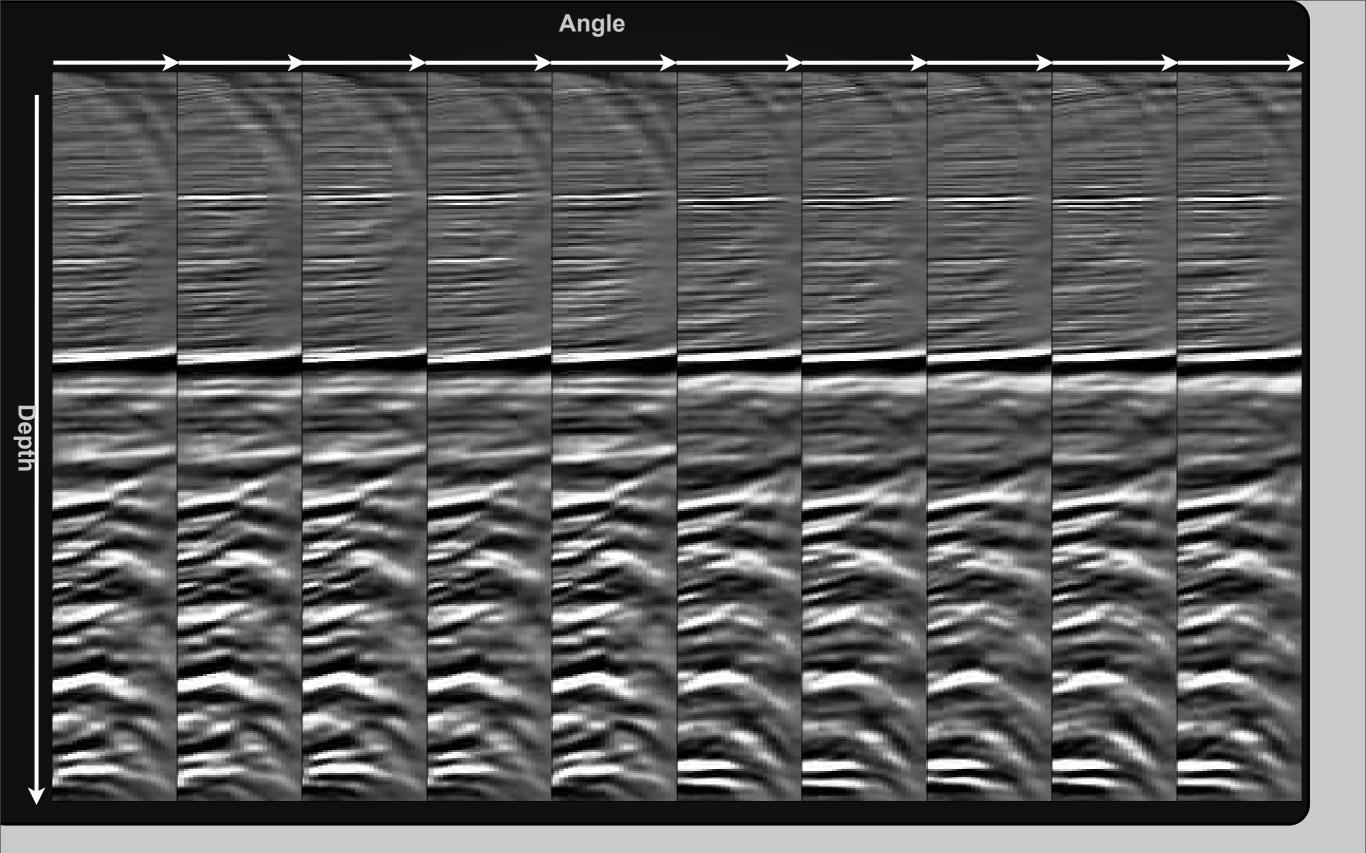


Full offsets

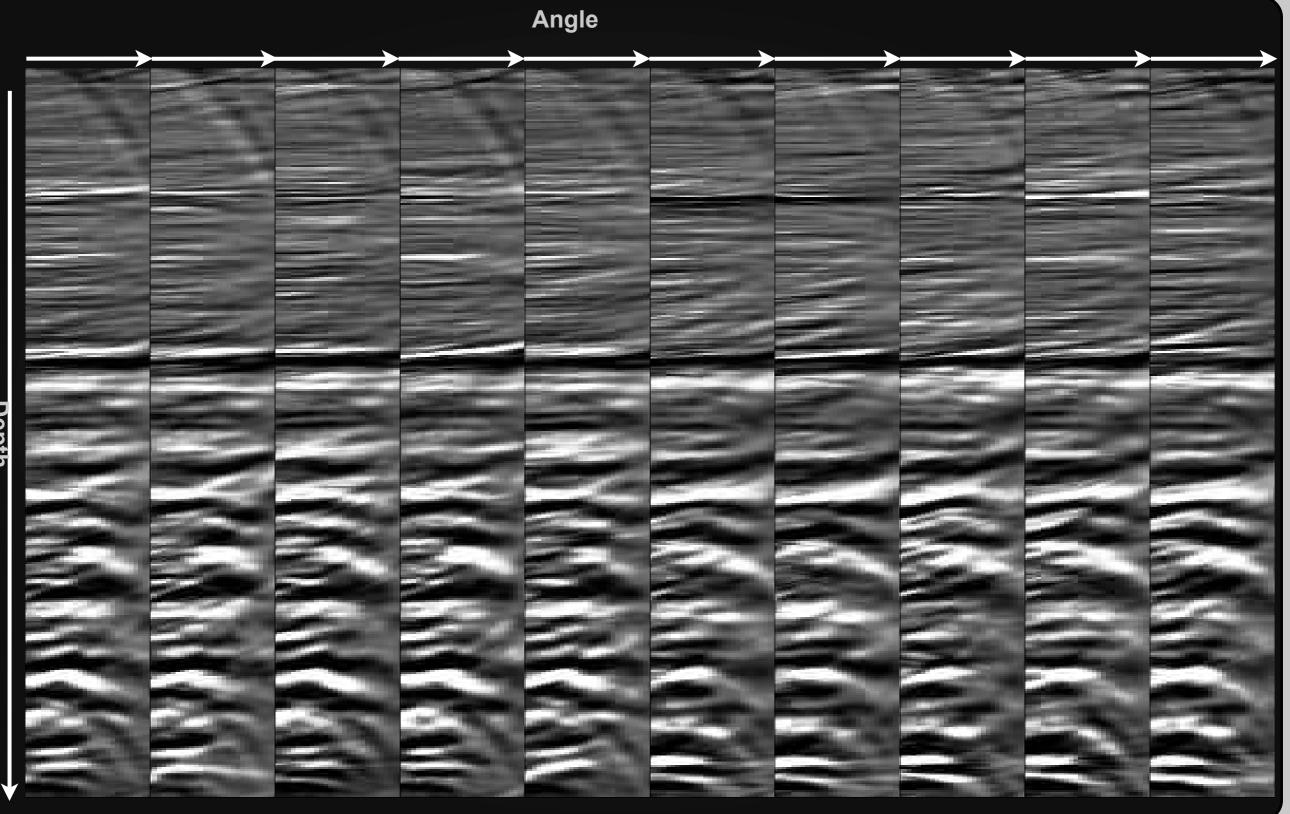


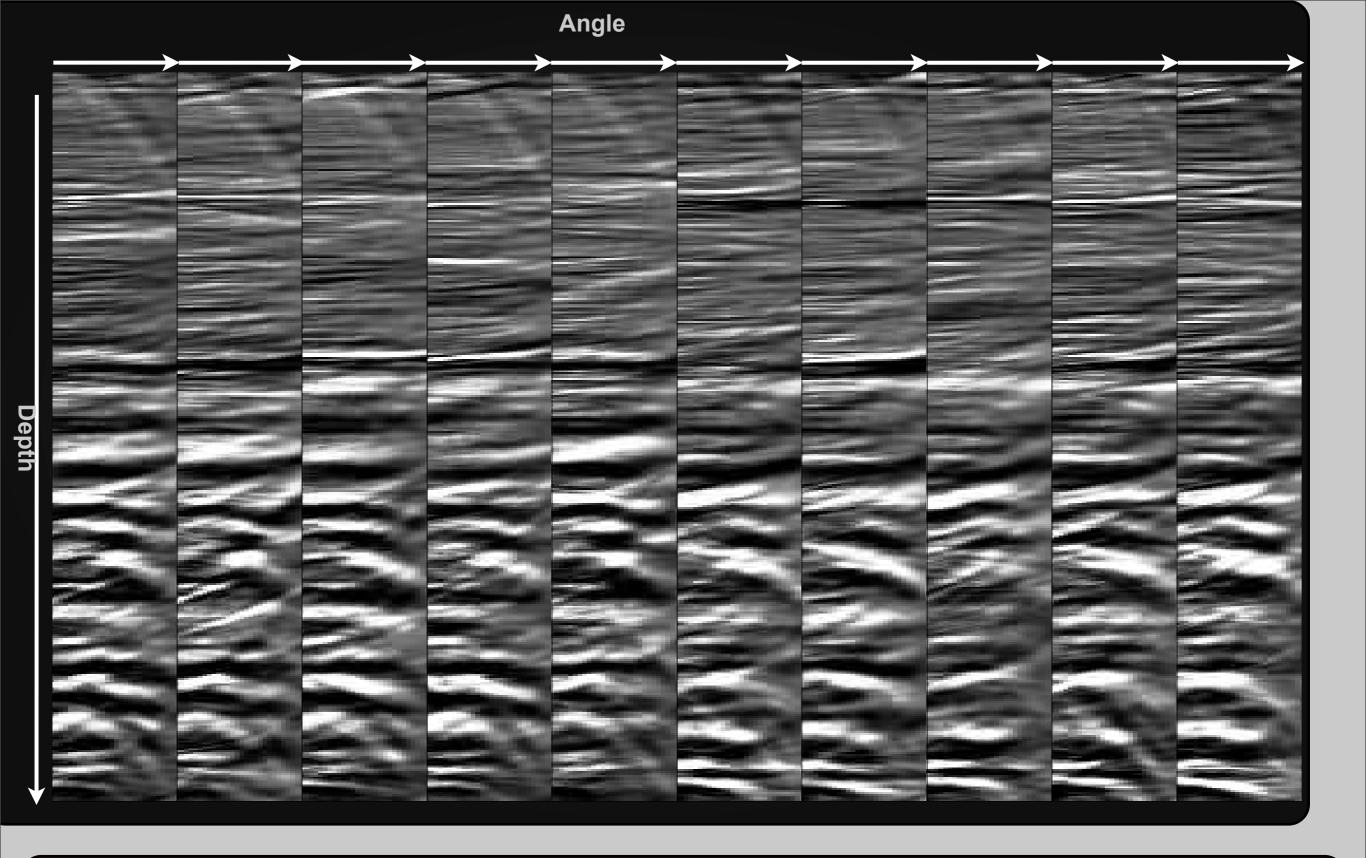
5% cone result

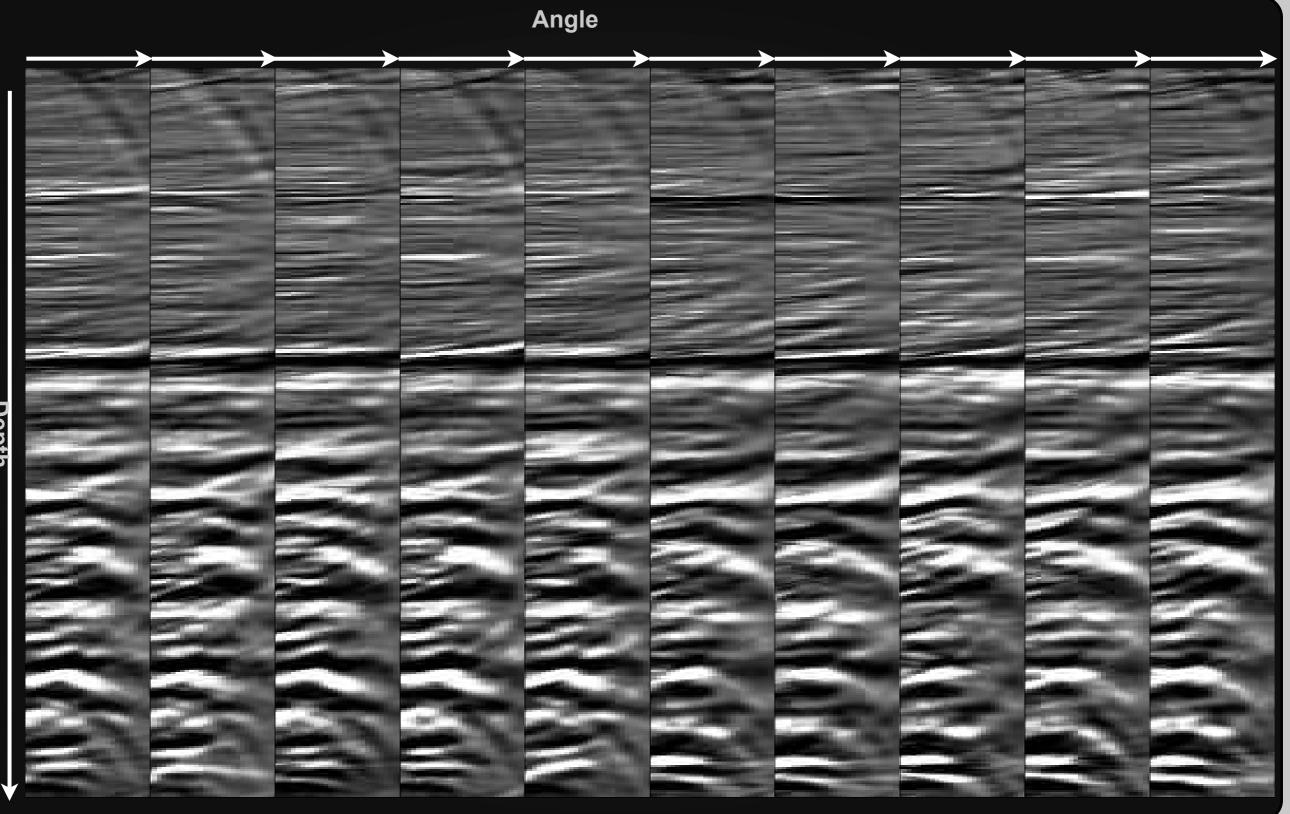


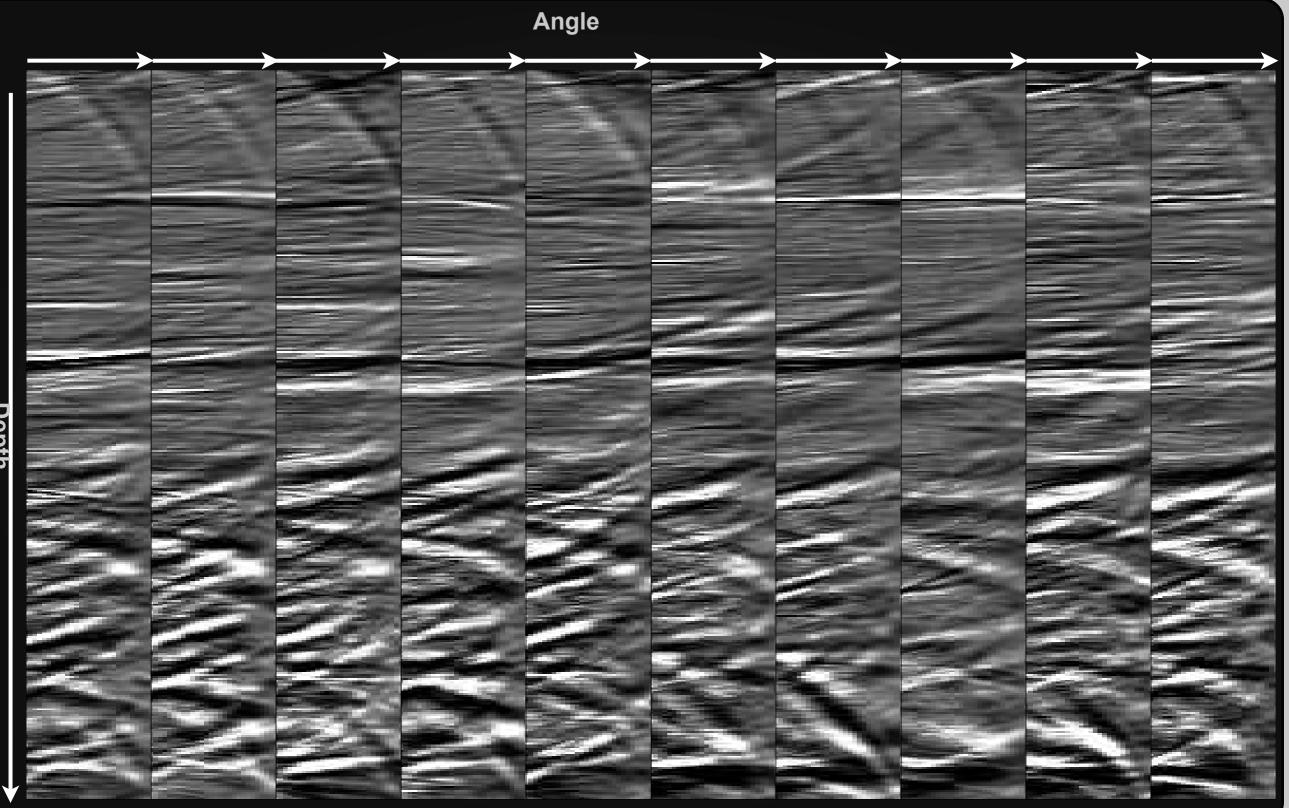


100% angle result









- IST is an effective approach to achieve L_0/L_1 solution to this subsurface offset estimation problem. Modifications to the sampling/level based thresholding allows a higher level of compression.

John Washbourne's talk last year which led me to retry this method
Total SA for providing the data

Acknowledgements