Angle gather recovery using iterative thresholding

SEP149-79

Outline

- Background
- IST algorithm
- Modifications

Source wavefield

Visual for angle gather construction

Source wavefield

Visual for angle gather construction

Source wavefield

Visual for angle gather construction

Source wavefield

Visual for angle gather construction

Source wavefield

Subsurface Offset

Visual for angle gather construction

Source wavefield

Offset

Visual for angle gather construction

Source wavefield

Subsurface Offset

Visual for angle gather construction

Single shift gathers

Sampling Example

Measure M samples (red circles = samples) *K* nonzero components

$$\#\{\omega: \hat{f}(\omega) \neq 0\} = K$$
Romberg & Wakin (2007)

Clapp

ℓ_1 Reconstruction

Reconstruct by solving

 $\min_{g} \| \hat{g} \|_{\ell_1} := \min \ \sum_{\omega} | \hat{g}(\omega) |$ subject to $g(t_m) = f(t_m), \ m = 1, \dots, M$

Romberg & Wakin (2007)

Example: Sparse Image

- Take M = 100,000 incoherent measurements $y = \Phi f_a$
- f_a = wavelet approximation (perfectly sparse)
- Solve

 $\min \ \|\alpha\|_{\ell_1} \quad \text{subject to} \quad \Phi\Psi\alpha=y$

 Ψ = wavelet transform

original (25k wavelets)

perfect recovery Romberg & Wakin (2007)

- You want the dataset d
- You know that d transforms to something sparse (m) by applying the operator L'
- You record a random subset of d, dr

Compressive sensing

$\mathbf{0} \approx \mathbf{r} = \mathbf{d}_{\mathbf{r}} - \mathbf{L}\mathbf{m}$

r Residual = L1 norm

d Sparse data m Sparse model L Transform into/from sparse basis

Compressive sensing in SEP speak

A - low pass filter (scaling)B- high pass filter (wavelet)

Wavelet transform

Original

Multi-D wavelet transform

Multi-D wavelet transform

Wavelet transform Multi-D wavelet transform

Multi-D wavelet transform

Wavelet transform Multi-D wavelet transform

Multi-D wavelet transform

Wavelet transform Multi-D wavelet transform

Multi-D wavelet transform

Multi-D wavelet transform

 $\mathbf{r} = \mathbf{d} - \mathbf{L}\mathbf{x}_0$ $\mathbf{g} = \mathbf{L}^{\mathbf{T}}\mathbf{r}$ $\mathbf{\tilde{h}} = \mathbf{Lg}$ rh $\mathbf{r} + = \alpha \mathbf{h}$ $\mathbf{x_i} + = \alpha \mathbf{g}$

Steepest descent iteration

 $\mathbf{r} = \mathbf{d} - \mathbf{L}\mathbf{x}_0$ $\mathbf{g} = \mathbf{L}^{\mathbf{T}} \mathbf{r}$ $\mathbf{h} = \mathbf{L}\mathbf{g}$ $\mathbf{r} + = \alpha \mathbf{h}$ $\mathbf{x_i} + = \alpha \mathbf{g}$

d sampled data

Steepest descent iteration

 $\mathbf{r} = \mathbf{d} - \mathbf{L}\mathbf{x}_0$ $\mathbf{g} = \mathbf{L}^{\mathbf{T}}\mathbf{r}$ $\mathbf{h} = \mathbf{L}\mathbf{g}$ $\mathbf{r} + = \alpha \mathbf{h}$ $\mathbf{x_i} + = \alpha \mathbf{g}$

n-d wavelet transform followed by masking

Steepest descent iteration

Landweber iteration

Landweber iteration

Scale by inverse of largest eigenvalue

Power iteration

Thresholding

Iterative thresholding

Q(x, m) Return the m value percentile value of X

Thresholding scheme

100% offsets

20% recovery result

100% offset angle result

20% recovery (angle domain)

10% recovery (angle domain)

Subsurface offset

Thresholding scheme

Depth

Thresholding scheme

Thresholding scheme

10% standard

10% cone

Full offsets

10% standard (angle domain)

10% cone (angle domain)

100% angle result

5% cone angle result

Multi-D wavelet transform

Multi-D wavelet transform

Lowest pass

Multi-D wavelet transform

N-D wavelet transform

Multi-D wavelet transform

Highest pass

Multi-D wavelet transform

Multi-D wavelet transform

Multi-D wavelet transform

Multi-D wavelet transform

Multi-D wavelet transform

Q(x, m) Return the m value percentile value of X

Thresholding scheme

 $\mathbf{x} = \mathbf{L}^{\mathbf{T}}\mathbf{d}$ p = .003 $l_{\mathrm{high},\mathrm{size}}$ l_{size} k $Q(\mathbf{x}, \mathbf{m})$ Return the m $\lambda_{k,l} = Q(\mathbf{x}, \mathbf{1}, -\mathbf{p})$ value percentile p = p * 1.8value of X

Level based thresholding

5% cone offsets

5% multi-level offsets

Full offsets

5% cone result

100% angle result

- IST is an effective approach to achieve L_0/L_1 solution to this subsurface offset estimation problem. Modifications to the sampling/level based thresholding allows a higher level of compression.

John Washbourne's talk last year which led me to retry this method
Total SA for providing the data

Acknowledgements