WAVE-EQUATION MIGRATION Q ANALYSIS (WEMQA)

Yi Shen SEP149 P317-330

OUTLINE

- Introduction:
 - Why estimate Q?
 - Current methods and new method
- Theory
 - Image space method
 - Wave-equation based tomography
 - Inversion
- Numerical tests
- Conclusion

INTRODUCTION

In seismic imaging

- Enhances image quality/sharpness
- Improves velocity analysis
- Better interprets the effects of AVO and anisotropy

• In seismic-acquisition design

• Helps determine how much signal may reach the target

In reservoir characterization

• Determines the contents of a reservoir (e.g. gas saturation)

INTRODUCTION

• In seismic imaging

- Enhances image quality/sharpness
- Improves velocity analysis
- Better interprets the effects of AVO and anisotropy

• In seismic-acquisition design

- Helps determine how much signal may reach the target
- In reservoir characterization
 - Determines the contents of a reservoir (e.g. gas saturation)

INTRODUCTION

• In seismic imaging

- Enhances image quality/sharpness
- Improves velocity analysis
- Better interprets the effects of AVO and anisotropy

• In seismic-acquisition design

• Helps determine how much signal may reach the target

In reservoir characterization

• Determines the contents of a reservoir (e.g. gas saturation)

CONVENTIONAL METHODS

- Ray-based method (Tonn 1991, Quan and Harris 1997, Dasgupta and Clark 1998, Leaney 1999, Mateeva 2003, Plessix 2006, Reine et al. 2012)
 - Difficulty handling complex subsurface structure, e.g. sharp boundary, multi-pathing, etc.

NEW METHOD

- Wave-equation based method
 - Handle complex subsurface structure

CONVENTIONAL METHODS

- Data space (Tonn 1991, Quan and Harris 1997, Dasgupta and Clark 1998, Leaney 1999, Mateeva 2003, Plessix 2006, Reine et al. 2012)
 - Noise
 - Complex: diffractions, close or even crossing events

NEW METHOD

- Image space
 - Suppresses the noise
 - Simplifies and focuses the events (e.g. crossing events)

THEORY

- Image space
- Wave-equation based tomography
- Inversion

THEORY

- Image space
- Wave-equation based tomography
- · Imversion

IMAGING WITH Q: ALGORITHM

- Migration with Q compensation
 - Downward continuation with one-way wave equation
 - Fourier Finite Differences (Valenciano et al. 2011)
 - Extended split-step
 - Less frequency dispersion

REFERENCE (NO ATTENUATION)

CONVENTIONAL MIGRATION

MIGRATION WITH Q COMPENSATION

REFERENCE (NO ATTENUATION)

THEORY

- Image space
- Wave-equation based tomography
- Imversion

TOMOGRAPHIC OPERATOR

$$\Delta \mathbf{I} = \mathbf{T} \Delta \mathbf{Q}$$

$$\Delta \mathbf{Q} = \mathbf{T}^* \Delta \mathbf{I}$$

where

 $\Delta \mathbf{Q}$ is the model perturbation

 ΔI is the image perturbation

T is the tomographic operator

THEORY

- Image-based method
- Wave-equation based tomography
- Inversion

• Spectral ratio method (Tonn, 1991);

• Spectral ratio method (Tonn, 1991);

• Spectral ratio method (Tonn, 1991);

Frequency-independent amplitude effects: geometric spreading; reflectivities; etc

• Spectral ratio method (Tonn, 1991);

INVERSION

TARGET IMAGE

- Choice of the target image
 - Model with sparse reflectors
 - Model with dense reflectors

NUMERICAL TESTS

- Model with sparse reflectors
 - 2D test I
 - 2D test II
- Model with dense reflectors
 - SEAM model

NUMERICAL TESTS

- Model with sparse reflectors
 - 2D test I
 - 2D test II
- Model with dense reflectors
 - SEAM model

MODEL WITH SPARSE REFLECTORS

- The target image
 - Pick reflectors

MODEL WITH SPARSE REFLECTORS

- The target image
 - Pick reflectors

MODEL WITH SPARSE REFLECTORS

- The target image
 - Pick reflectors

- Generate non-attenuated dataset
- Migrate this dataset to obtain the non-attenuated target image

NUMERICAL TESTS

- Model with sparse reflectors
 - 2D test I
 - 2ID test II
- Model with dense reflectors
 - SEAM model

TRUE MODEL – LOW Q ANOMALY

IMAGE PERTURBATION

INVERSION (3RD ITERATION)

TRUE MODEL – HIGH Q ANOMALY

INVERSION (3RD ITERATION)

NUMERICAL TESTS

- Model with sparse reflectors
 - 2D test I
 - 2D test II
- Model with dense reflectors
 - SEAM model

TRUE Q MODEL

TRUE VELOCITY MODEL

IMAGE PERTURBATION

INVERSION (4TH ITERATION)

TRUE VELOCITY MODEL

NUMERICAL TESTS

- Model with sparse reflectors
 - 2ID test 1
 - 2ID test III
- Model with dense reflectors
 - SEAM model

MODEL WITH DENSE REFLECTORS

Assumption(1):

• The spectra of the reflectivities are statistically the same, within each large window

MODEL WITH DENSE REFLECTORS

• Assumption(2):

• The spectral differences between these windows in the background image mainly come from attenuation (no scattering)

CONCLUSION

WEMQA

- Image space method: suppresses the noise; simplifies and focuses the events
- Wave-equation based method: better handle complex subsurface structure

• Tests with three 2D models demonstrate the feasibility for the model with sparse events and dense events

ACKNOWLEDGEMENT

- Thanks Biondo Biondi, Robert Clapp and Dave Nichols for discussions and suggestions
- Thanks Elita Li and Ali Almomin for helps and discussions
- Thanks Yaxun for WEMVA code
- Thanks all SEPers

THANQ AND Q?

Yi Shen

