Fast velocity model evaluation with synthesized wavefields

Adam Halpert

 SEP-149: p. 129SEP Sponsor Meeting
18 June 2013
adam@sep.stanford.edu

Motivation

- Model-building is rarely straightforward
- Many plausible scenarios, especially for salt interpretation
- Interpretation tools allow for fast generation of many possible models
- A way to quickly test these models without performing full migrations would be extremely useful

Goals

- Use velocity information from an initial image
- Synthesize new datasets with arbitrary acquisition parameters
- Quickly (quantitatively) evaluate relative accuracy of multiple possible models
- Today: show that these goals are achievable on a 3D field dataset

Outline

- Method
- Areal source generation [Guerra, SEP-141]
- Born modeling/migration [Tang, SEP-144]
- Quantitative model evaluation
- 2D field example
- 3D field example
- Future work and conclusions

Method overview

1) Start with subsurface offset gather(s)
2) After mapping procedure, upward continue to surface/datum to create areal source function
3) Use the source function and the initial image to generate a Born-modeled dataset
4) Resulting receiver wavefield can then be used to test multiple velocity models more efficiently

Alternatives

- Beam migration (Hill, 1990) widely used for fast, targeted imaging
- Also shown to be effective for updating images after changing salt interpretation (Wang et al., 2008)
- BUT:
- Limited by assumptions of beam imaging

Source generation

- Use as much information as possible from an initial image
- "Prestack exploding reflector" (Guerra, 2011)
- Using prestack information (subsurface offsets) allows us to identify and fix inaccuracies in the initial model

Generalized Source

Born waveffelds

- Tang (2011)
- Starting from an initial reflectivity model (image), synthesize a new, Born-modeled receiver wavefield
- Arbitrary acquisition geometry
- Target-oriented imaging
- Re-datuming

Born modeling

$$
d^{\prime}\left(\mathbf{x}_{r}^{\prime}, \mathbf{x}_{s}, \omega\right)=\sum_{\mathbf{x}^{\prime}} \sum_{\mathbf{h}} S\left(\mathbf{x}_{s}\right) G\left(\mathbf{x}_{s}, \mathbf{x}^{\prime}-\mathbf{h}, \omega\right) G\left(\mathbf{x}^{\prime}+\mathbf{h}, \mathbf{x}_{r}^{\prime}, \omega\right) I\left(\mathbf{x}^{\prime}, \mathbf{h}\right)
$$

CROSSTALK artifacts avoided by using isolated locations from initial image

Last year: synthetic example

Migration

$$
\begin{gathered}
m^{\prime}\left(\mathbf{x}^{\prime}, \mathbf{h}\right)=\sum_{\omega} G_{r}^{*}\left(\mathbf{x}^{\prime}-\mathbf{h}, \omega\right) \sum_{\mathbf{x}_{r}^{\prime}} G^{*}\left(\mathbf{x}^{\prime}+\mathbf{h}, \mathbf{x}_{r}^{\prime}, \omega\right) d^{\prime}\left(\mathbf{x}_{r}^{\prime}, \omega\right) \\
\text { Can be computed using any velocity model! }
\end{gathered}
$$

Targeted images can be computed by imaging a single shot in a fraction of the time required for migrating the full dataset

True velocity result

5\% fast

5\% slow

Image focusing measure

$$
F=\frac{\sum_{i=\mathbf{p}}\left|A_{i}\right|}{\sum_{i=\mathbf{p}} \left\lvert\, A_{i} \operatorname{lexp}\left(\alpha \frac{\left|h_{i}\right|}{h_{\max }}\right)\right.}
$$

$0<F \leq 1$ (perfectly focused)

Field dataset

- Wide-azimuth, Gulf of Mexico
- Courtesy of WesternGeco
- Provided velocity == "true" model
- 2D: 200 shots, 1876×675 model
- 3D: 200 shots (25×8), $1200 \times 90 \times 30$ model
- Ultimately: WAZ characteristics should improve imaging of subsalt reflectors, allow for testing of multiple salt scenarios

2D test \#1

- Initial image: "true" velocity
- Source and receiver wavefields modeled with true velocity
- Migrate the synthesized wavefields with true, 5\% fast, and 5\% slow models

2D initial image: true model

Target reflector

Born image: true model

Born image: fast model

Born image: slow model

2D test \#2

- Initial image: "slow" velocity
- Source and receiver wavefields modeled with slow velocity
- Migrate the synthesized wavefields with slow, true, and fast models

2D initial image: slow model

2D initial image: true model

2D initial image: slow model

Target reflector

Born image: slow model

Born image: true model

Born image: fast model

2D recap: F values

	Initial Model	
Migration model:	"Irue" velocity	Slow Velocity
Slow	0.85	0.89
True	0.89	0.92
Fast	0.86	0.89

3D test \#1

- Initial image: "true" velocity
- Source and receiver wavefields modeled with true velocity
- Migrate the synthesized wavefields with true, slow, and fast models

3D image: true model

Method • 2D Example • 3D Example • Future work

Target reflector

Method • 2D Example • 3D Example • Future work

Born image: true model

Born image: slow model

Method • 2D Example • 3D Example • Future work

Born imager fast model

Born image: true model

Sub. offisety true model

Method • 2D Example • 3D Example • Future work

Sub. offisety slow model

Sub. offisety fast model

Method • 2D Example

3D test \#2

- Initial image: "fast" velocity
- Source and receiver wavefields modeled with fast velocity
- Migrate the synthesized wavefields with fast, true, and slow models

3D image: fast model

Method • 2D Example • 3D Example • Future work

Target reflector

Method • 2D Example • 3D Example • Future work

Born image: fast model

Method • 2D Example • 3D Example • Future work

Born imager true model

Born image: slow model

Method • 2D Example • 3D Example • Future work

Sub. offisety fast model

Method • 2D Example • 3D Example • Future work

Sub. offisety true model

Sub. offiset slow model

3D recap: F values

	Initial Model	
Migration model:	"True" velocity	Fast Velocity
Slow	0.518	0.470
True	0.550	0.481
Fast	0.514	0.466

Future work

- Thesis preview
- Interpreter guided seismic image segmentation (SEP149, p. 107)
- Efficient velocity model evaluation using synthesized wavefields
- Semi-automatic model building via integrated image segmentation and model evaluation tools

Integration opportunities

Method • 2D Example • 3D Example • Future work

Original velocity

Alternative model \#1

Alternative model \#2

Alternative model \#3

Conclusions

- A fast Born modeling and migration scheme can efficiently evaluate velocity models for 2D and 3D field datasets
- Quantitative evaluation of these experiments is possible, and desirable (especially for 5D image cubes)
- When integrated with other interpretation tools such as image segmentation, this method has the potential to help interpreters build more accurate models more efficiently

Acknowledgments

I am grateful to

- SmaartJV and WesternGeco for providing the data and models used for examples
- Yaxun Tang for his work on the Born modeling and migration framework used here
- All sponsors of the Stanford Exploration Project for their support

