
Large scale linearised inversion with
multiple GPUs

Chris Leader* and Robert Clapp

SEP149 - 333

Wednesday June 19th

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 1



Research goals

Accelerate the imaging of seismic data through inverse
methods

Create a solution which:

Produces high fidelity seismic images

Is not limited by the global memory of a single
GPU

Scales (close to) linearly with model/problem size

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 2



Earth model

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 3



RTM image (adjoint approach)

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 4



Filtered RTM image

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 5



After 10 iterations (20x RTM cost)

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 6



Table of contents

1 Adjoint imaging

2 Linearised inversion

3 Domain decomposition

4 Conclusions

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 7



Adjoint imaging

For imaging, we are trying to solve:

Computational bottleneck

I/O bottleneck

We can do this by:

Using optimised GPU wave propagation kernels

Using random boundaries to remove I/O from the
RTM loop

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 8



Memory heirarchy - multi-core CPU

Cores share L3 and main memory

No explicit control over which memory is used

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 9



Memory heirarchy - GPU

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 10



Conventional imaging algorithm

Forward model the source wavefield

Save this to disk (z , x , y , t)

Back propagate recorded data

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 11



Conventional imaging algorithm

Forward model the source wavefield

Save this to disk

Back propagate recorded data

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate

Computational bottleneck

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 12



Conventional imaging algorithm

Forward model the source wavefield

Save this to disk

Back propagate recorded data

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate

Computational bottleneck

IO bottleneck

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 13



GPU wave propagation

Follow Micikevicius, 2009

Minimise global memory read redundancy

Break wavefield into blocks, store in shared
memory

Use texture memory for velocity array

Cached (useful for adjoint propagation)

Normalised indexing option

Out of boundary clamping =⇒ reduce boundary
allocation

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 14



CPU vs GPU

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 15



GPU implementation

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 16



Conventional algorithm

Forward model the source wavefield

Save this to disk (z , x , y , t)

Back propagate recorded data
At imaging time step?

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate

IO bottleneck

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 17



GPU performance

PCIe: ∼ 2 Gb/s Disk: ∼ 200 Mb/s

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 18



GPU performance

PCIe: ∼ 2 Gb/s Disk: ∼ 200 Mb/s

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 18



GPU performance

PCIe: ∼ 2 Gb/s Disk: ∼ 200 Mb/s

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 18



IO and computation balancing

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 19



IO and computation balancing

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 20



Memory considerations

Fermi global memory: 6 GBytes

RTM objects that must be allocated:

Four 3D wavefield snapshots

Recorded data (one shot)

Velocity model

Image

If our domain is larger than 6003:

Decompose our propagation across multiple GPUs

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 21



Table of contents

1 Adjoint imaging

2 Linearised inversion

3 Domain decomposition

4 Conclusions

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 22



Linearised inversion

We can extend RTM to linearised inversion

Construct a forward modelling process

Ensure RTM and forward are fully adjoint

Use a conjugate direction solver for updates

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 23



The forward process

First order approximation to the Born scattering series

Adjoint process:

m(x) =
∑
xs ,ω

f (ω)G0(x, xs , ω)
∑
xr

G0(x, xr , ω)d∗(xr , xs , ω)

Forward process:

d(xr , xs , ω) =
∑
x
f (ω)G0(x, xs , ω)m(x)G0(x, xr , ω)

Both wavefields have the same sense of time

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 24



Adjoint propagation

We need an adjoint to our propagator

We now require as much velocity information as
wavefield information

Read from:

Global memory array
Textured velocity array
Copy values to shared memory

Get around a 2x speed up by using shared memory

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 25



Table of contents

1 Adjoint imaging

2 Linearised inversion

3 Domain decomposition

4 Conclusions

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 26



Domain decomposition

In 1D:

Each block has to overlap

In 3D, break domain along slowest axis

More allocation, but easier communication (transfer
regions contiguous in memory)

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 27



Visualising 3D decomposition

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 28



CUDA 4.0 (and later)

CUDA 4.0 and Fermi architectures have made several
things easier / possible

Peer to Peer (P2P) GPU communication

Direct GPU to GPU information transfer

CPU and GPU use a Unified Virtual Address
space (UVA)

Pointers can be dereferenced across host and devices

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 29



Multi-GPU programming

Main points:

Faster/more convenient device-to-device transfer

PCIe links are duplex
Send/receive can be done simultaneously

Communication can be hidden by overlapping
with computation

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 30



Overlapping operations

Kernels and asynchronous memcopies can be assigned
to streams

Can be considered as a command pipeline

Kernels are queued

Async memcopies can overlap with kernels

Successful overlap =⇒ linear scaling

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 31



Visualising halo exchange

Computation order:

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 32



Visualising halo exchange

Calculate halo region, set to halo stream[i]

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 33



Visualising halo exchange

Calculate internal region, set to internal stream[i]

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 34



Visualising halo exchange

During internal computation, send halo to the right

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 35



Visualising halo exchange

Then, send to the left

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 36



Do we overlap?

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 37



Do we overlap?

Even for TTI, we completely overlap communication
(Micikevicius, 2012)

We get close to linear speed up, but not quite

Splitting the computation requires some small
overhead

Get up to 96% linear speed up

How does this extend to inversion?

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 38



Forward linearised modelling

During each time step:

Adjoint propagate data wavefield

Propagate source wavefield

Inject source

Convolve source snapshot and image, sum to data
snapshot

Extract data at receiver positions

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 39



Forward linearised modelling

Calculate data wavefield halos

Calculate source wavefield halos

Adjoint propagate data wavefield
Propagate source wavefield

Transfer data wavefield halos
Transfer source wavefield halos

Inject source

Convolve source snapshot and image, sum to data
snapshot

Extract data at receiver positions

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 40



Forward linearised modelling

Calculate data wavefield halos

Calculate source wavefield halos

Adjoint propagate data wavefield
Propagate source wavefield

Transfer data wavefield halos
Transfer source wavefield halos

Inject source

Convolve source snapshot and image, sum to data
snapshot

Extract data at receiver positions

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 40



Adjoint linearised modelling

During each time step:

Propagate data wavefield

Propagate source wavefield

Inject source

Inject data

Convolve source snapshot and data snapshot, sum
to image

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 41



Adjoint linearised modelling

Calculate data wavefield halos

Calculate source wavefield halos

Propagate data wavefield
Propagate source wavefield

Transfer data wavefield halos
Transfer source wavefield halos

Inject source

Inject data

Convolve source snapshot and data snapshot, sum
to image

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 42



Adjoint linearised modelling

Calculate data wavefield halos

Calculate source wavefield halos

Propagate data wavefield
Propagate source wavefield

Transfer data wavefield halos
Transfer source wavefield halos

Inject source

Inject data

Convolve source snapshot and data snapshot, sum
to image

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 42



GPU implementation

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 43



Table of contents

1 Adjoint imaging

2 Linearised inversion

3 Domain decomposition

4 Conclusions

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 44



Conclusions

Extending GPU RTM to linearised inversion is fairly
straightforward

Use adjoint propagation

Once our domain exceeds 6003, we must move to
domain decomposition

We can overlap internal computation with halo
communication

Close to linear speed up achieved for each stage of
the inverse process

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 45



Acknowledgments

Robert Clapp (SEP) - continuous coding assistance

Paulius Micikevicius (NVIDIA) - GPU troubleshooting,
code sharing and discussions

All SEP sponsors - continued financial, intellectual and
moral support

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 46



References

Micikevicius, P., 2009, 3D finite difference computation on GPUs
using CUDA: GPGPU, 2.

Micikevicius, P., 2012, Programming multiple GPUs: GPU
Technology Conference, 2012.

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 47


	Adjoint imaging
	Linearised inversion
	Domain decomposition
	Conclusions

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	anm1: 


