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Research goals

Accelerate the imaging of seismic data through inverse
methods

Create a solution which:

Produces high fidelity seismic images

Is not limited by the global memory of a single
GPU

Scales (close to) linearly with model/problem size
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Earth model
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RTM image (adjoint approach)
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Filtered RTM image
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After 10 iterations (20x RTM cost)
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Adjoint imaging

For imaging, we are trying to solve:

Computational bottleneck

I/O bottleneck

We can do this by:

Using optimised GPU wave propagation kernels

Using random boundaries to remove I/O from the
RTM loop

Adjoint imaging Linearised inversion Domain decomposition Conclusions

Chris Leader Linearised inversion with GPUs 8



Memory heirarchy - multi-core CPU

Cores share L3 and main memory

No explicit control over which memory is used
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Memory heirarchy - GPU
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Conventional imaging algorithm

Forward model the source wavefield

Save this to disk (z , x , y , t)

Back propagate recorded data

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate
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Conventional imaging algorithm

Forward model the source wavefield

Save this to disk

Back propagate recorded data

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate

Computational bottleneck

IO bottleneck
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GPU wave propagation

Follow Micikevicius, 2009

Minimise global memory read redundancy

Break wavefield into blocks, store in shared
memory

Use texture memory for velocity array

Cached (useful for adjoint propagation)

Normalised indexing option

Out of boundary clamping =⇒ reduce boundary
allocation
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CPU vs GPU
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GPU implementation
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Conventional algorithm

Forward model the source wavefield

Save this to disk (z , x , y , t)

Back propagate recorded data
At imaging time step?

Read the relevant source wavefield snapshot
Multiply source and receiver wavefields
Sum result to image estimate

IO bottleneck
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GPU performance

PCIe: ∼ 2 Gb/s Disk: ∼ 200 Mb/s
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IO and computation balancing
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IO and computation balancing
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Memory considerations

Fermi global memory: 6 GBytes

RTM objects that must be allocated:

Four 3D wavefield snapshots

Recorded data (one shot)

Velocity model

Image

If our domain is larger than 6003:

Decompose our propagation across multiple GPUs
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Linearised inversion

We can extend RTM to linearised inversion

Construct a forward modelling process

Ensure RTM and forward are fully adjoint

Use a conjugate direction solver for updates
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The forward process

First order approximation to the Born scattering series

Adjoint process:

m(x) =
∑
xs ,ω

f (ω)G0(x, xs , ω)
∑
xr

G0(x, xr , ω)d∗(xr , xs , ω)

Forward process:

d(xr , xs , ω) =
∑
x
f (ω)G0(x, xs , ω)m(x)G0(x, xr , ω)

Both wavefields have the same sense of time
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Adjoint propagation

We need an adjoint to our propagator

We now require as much velocity information as
wavefield information

Read from:

Global memory array
Textured velocity array
Copy values to shared memory

Get around a 2x speed up by using shared memory
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Domain decomposition

In 1D:

Each block has to overlap

In 3D, break domain along slowest axis

More allocation, but easier communication (transfer
regions contiguous in memory)
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Visualising 3D decomposition
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CUDA 4.0 (and later)

CUDA 4.0 and Fermi architectures have made several
things easier / possible

Peer to Peer (P2P) GPU communication

Direct GPU to GPU information transfer

CPU and GPU use a Unified Virtual Address
space (UVA)

Pointers can be dereferenced across host and devices
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Multi-GPU programming

Main points:

Faster/more convenient device-to-device transfer

PCIe links are duplex
Send/receive can be done simultaneously

Communication can be hidden by overlapping
with computation
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Overlapping operations

Kernels and asynchronous memcopies can be assigned
to streams

Can be considered as a command pipeline

Kernels are queued

Async memcopies can overlap with kernels

Successful overlap =⇒ linear scaling
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Visualising halo exchange

Computation order:
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Visualising halo exchange

Calculate halo region, set to halo stream[i]
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Visualising halo exchange

Calculate internal region, set to internal stream[i]
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Visualising halo exchange

During internal computation, send halo to the right
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Visualising halo exchange

Then, send to the left
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Do we overlap?
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Do we overlap?

Even for TTI, we completely overlap communication
(Micikevicius, 2012)

We get close to linear speed up, but not quite

Splitting the computation requires some small
overhead

Get up to 96% linear speed up

How does this extend to inversion?
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Forward linearised modelling

During each time step:

Adjoint propagate data wavefield

Propagate source wavefield

Inject source

Convolve source snapshot and image, sum to data
snapshot

Extract data at receiver positions
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GPU implementation
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Conclusions

Extending GPU RTM to linearised inversion is fairly
straightforward

Use adjoint propagation

Once our domain exceeds 6003, we must move to
domain decomposition

We can overlap internal computation with halo
communication

Close to linear speed up achieved for each stage of
the inverse process
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