Large scale linearised inversion with multiple GPUs

Chris Leader* and Robert Clapp

SEP149 - 333

Wednesday June 19th

Adjoint imaging

Linearised inversion

Chris Leader

Linearised inversion with GPUs

Research goals

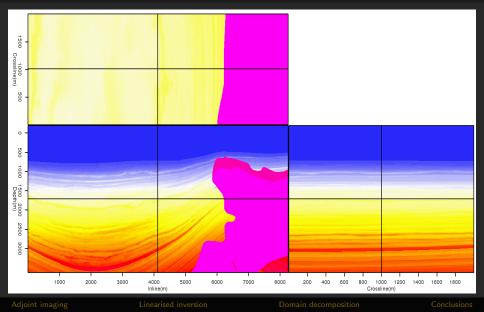
Accelerate the imaging of seismic data through inverse methods

Create a solution which:

- Produces high fidelity seismic images
- Is not limited by the global memory of a single GPU
- Scales (close to) linearly with model/problem size

Chris Leader

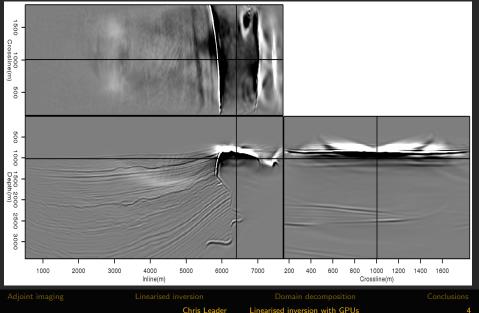
Earth model



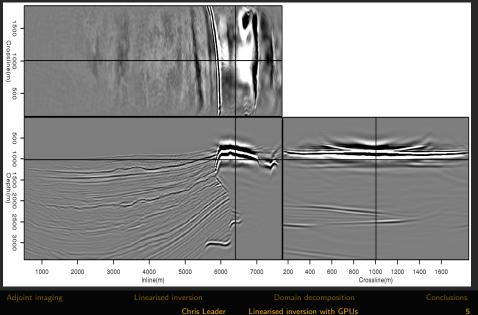
Chris Leader

Linearised inversion with GPUs

RTM image (adjoint approach)



Filtered RTM image



After 10 iterations (20x RTM cost)

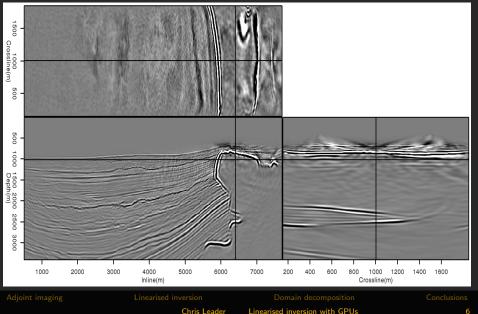
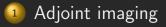
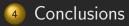


Table of contents



- 2 Linearised inversion
- 3 Domain decomposition



Chris Leader

Domain decomposition Linearised inversion with GPUs

Adjoint imaging

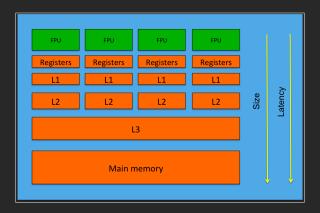
For imaging, we are trying to solve:

- Computational bottleneck
- I/O bottleneck
- We can do this by:
 - Using optimised GPU wave propagation kernels
 - Using random boundaries to remove I/O from the RTM loop

Chris Leader

Memory heirarchy - multi-core CPU

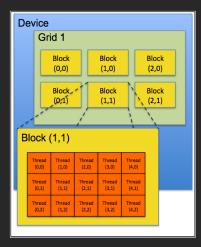
- Cores share L3 and main memory
- No explicit control over which memory is used

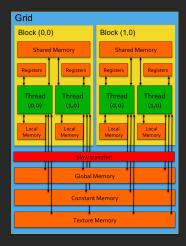


Linearised inversion

Domain decomposition Linearised inversion with GPUs

Memory heirarchy - GPU





Adjoint imaging

Linearised inversion

Chris Leader

Domain decomposition Linearised inversion with GPUs

Conventional imaging algorithm

Forward model the source wavefield

• Save this to disk (z, x, y, t)

Back propagate recorded data

- Read the relevant source wavefield snapshot
- Multiply source and receiver wavefields

Chris Leader

• Sum result to image estimate

Conventional imaging algorithm

Forward model the source wavefield

Save this to disk

Back propagate recorded data

- Read the relevant source wavefield snapshot
- Multiply source and receiver wavefields

Chris Leader

• Sum result to image estimate

Conventional imaging algorithm

Forward model the source wavefield

• Save this to disk

Back propagate recorded data

- Read the relevant source wavefield snapshot
- Multiply source and receiver wavefields
- Sum result to image estimate

IO bottleneck

Domain decomposition

GPU wave propagation

Follow Micikevicius, 2009

- Minimise global memory read redundancy
- Break wavefield into blocks, store in shared memory
- Use texture memory for velocity array
 - Cached (useful for adjoint propagation)

Chris Leader

- Normalised indexing option
- Out of boundary clamping \implies reduce boundary allocation

CPU vs GPU

Ad	nt	Im	agi	nσ

Linearised inversion

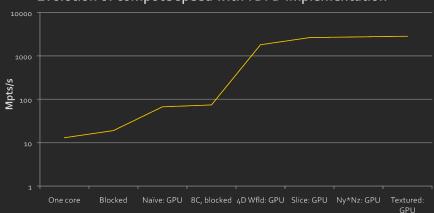
Domain decomposition

Conclusions

Chris Leader

Linearised inversion with GPUs

GPU implementation



Evolution of compute speed with TDFD implementation

Adjoint imaging			
	Chris Leader	Linearised inversion with GPUs	16

Conventional algorithm

Forward model the source wavefield

• Save this to disk (z, x, y, t)

Back propagate recorded data

- At imaging time step?
 - Read the relevant source wavefield snapshot
 - Multiply source and receiver wavefields

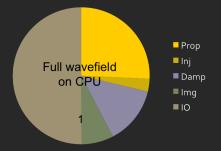
Chris Leader

• Sum result to image estimate

IO bottleneck

Linearised inversion with GPUs

GPU performance



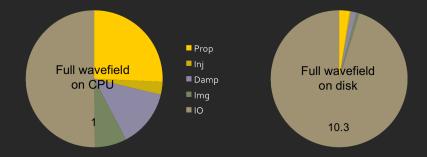
Adjoint imaging

Linearised inversion

Chris Leader

Domain decomposition

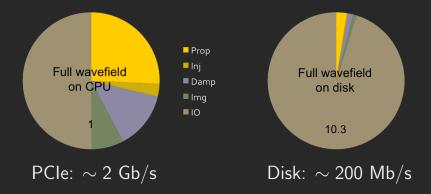
GPU performance



Linearised inversion

Domain decomposition

GPU performance



Linearised inversion

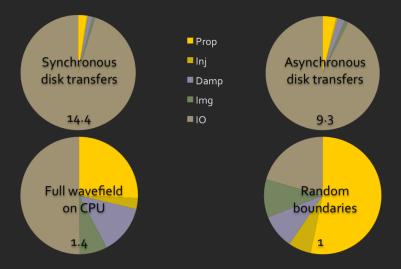
Chris Leader

Domain decomposition

Conclusions

Linearised inversion with GPUs

IO and computation balancing



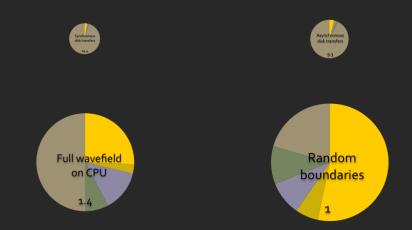
Adjoint imaging

Linearised inversion

Chris Leader

Domain decomposition Linearised inversion with GPUs

IO and computation balancing



Adjoint imaging

Linearised inversion

Chris Leader

Domain decomposition Linearised inversion with GPUs

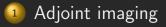
Memory considerations

Fermi global memory: 6 GBytes RTM objects that must be allocated:

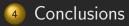
- Four 3D wavefield snapshots
- Recorded data (one shot)
- Velocity model
- Image
- If our domain is larger than 600^3 :
 - Decompose our propagation across multiple GPUs

Chris Leader

Table of contents



- 2 Linearised inversion
- 3 Domain decomposition



Chris Leader

Domain decomposition Linearised inversion with GPUs

We can extend RTM to linearised inversion

- Construct a forward modelling process
- Ensure RTM and forward are fully adjoint
- Use a conjugate direction solver for updates

Chris Leader

The forward process

First order approximation to the Born scattering series Adjoint process:

$$m(\mathbf{x}) = \sum_{\mathbf{x}_s,\omega} f(\omega) G_0(\mathbf{x}, \mathbf{x}_s, \omega) \sum_{\mathbf{x}_r} G_0(\mathbf{x}, \mathbf{x}_r, \omega) d^*(\mathbf{x}_r, \mathbf{x}_s, \omega)$$

Forward process:

$$d(\mathbf{x}_r, \mathbf{x}_s, \omega) = \sum_{\mathbf{x}} f(\omega) G_0(\mathbf{x}, \mathbf{x}_s, \omega) m(\mathbf{x}) G_0(\mathbf{x}, \mathbf{x}_r, \omega)$$

Domain decomposition Linearised inversion with GPUs

Adjoint propagation

We need an adjoint to our propagator

We now require as much velocity information as wavefield information

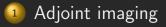
- Read from:
 - Global memory array
 - Textured velocity array
 - Copy values to shared memory

Get around a 2x speed up by using shared memory

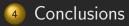
Chris Leader

Linearised inversion with GPUs

Table of contents



- 2 Linearised inversion
- 3 Domain decomposition



Chris Leader

Domain decomposition Linearised inversion with GPUs

Domain decomposition

In 1D:

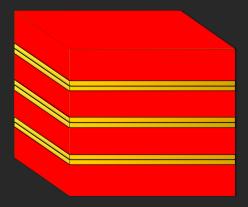
• Each block has to overlap

In 3D, break domain along slowest axis More allocation, but easier communication (transfer regions contiguous in memory)

Chris Leader

Domain decomposition Linearised inversion with GPUs

Visualising 3D decomposition



Adjoint imaging

Linearised inversion

Chris Leader

Domain decomposition Linearised inversion with GPUs

CUDA 4.0 and Fermi architectures have made several things easier / possible

- Peer to Peer (P2P) GPU communication
 - Direct GPU to GPU information transfer
- CPU and GPU use a Unified Virtual Address space (UVA)
 - Pointers can be dereferenced across host and devices

Chris Leader

Multi-GPU programming

Main points:

- Faster/more convenient device-to-device transfer
- PCIe links are duplex
 - Send/receive can be done simultaneously
- Communication can be hidden by overlapping with computation

Chris Leader

Overlapping operations

Kernels and asynchronous memcopies can be assigned to streams

- Can be considered as a command pipeline
- Kernels are queued
- Async memcopies can overlap with kernels

Chris Leader

Successful overlap \implies linear scaling

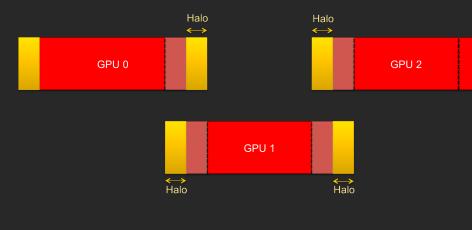
Visualising halo exchange

Computation order:

	Domain decomposition	
Chris Leader	Linearised inversion with GPUs	32

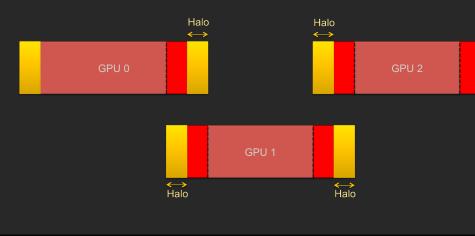
Visualising halo exchange

Calculate halo region, set to halo_stream[i]



Visualising halo exchange

Calculate internal region, set to internal_stream[i]



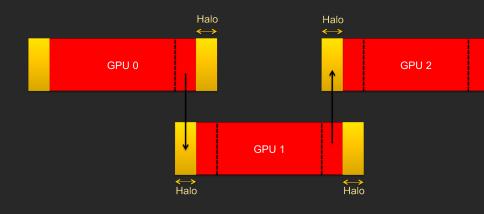
Linearised inversion

Chris Leader

Domain decomposition Linearised inversion with GPUs

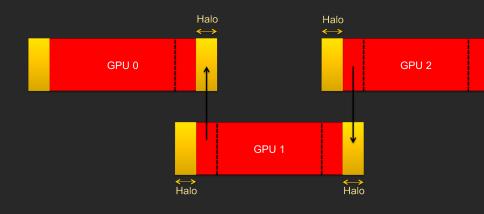
Visualising halo exchange

During internal computation, send halo to the right

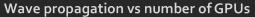


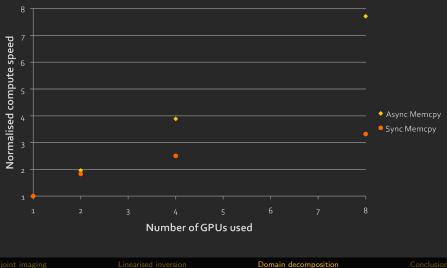
Visualising halo exchange

Then, send to the left



Do we overlap?





Linearised inversion with GPUs

Even for TTI, we completely overlap communication (Micikevicius, 2012)

We get close to linear speed up, but not quite

- Splitting the computation requires some small overhead
- Get up to 96% linear speed up

How does this extend to inversion?

Chris Leader

Domain decomposition Linearised inversion with GPUs

Forward linearised modelling

During each time step:

- Adjoint propagate data wavefield
- Propagate source wavefield
- Inject source
- Convolve source snapshot and image, sum to data snapshot
- Extract data at receiver positions

Chris Leader

Forward linearised modelling

- Calculate data wavefield halos
- Calculate source wavefield halos
- Adjoint propagate data wavefield
- Propagate source wavefield
 - Transfer data wavefield halos
 - Transfer source wavefield halos
- Inject source
- Convolve source snapshot and image, sum to data snapshot
- Extract data at receiver positions

Forward linearised modelling

- Calculate data wavefield halos
- Calculate source wavefield halos
- Adjoint propagate data wavefield
- Propagate source wavefield
 - Transfer data wavefield halos
 - Transfer source wavefield halos
- Inject source
- Convolve source snapshot and image, sum to data snapshot
- Extract data at receiver positions

Adjoint linearised modelling

During each time step:

- Propagate data wavefield
- Propagate source wavefield
- Inject source
- Inject data
- Convolve source snapshot and data snapshot, sum to image

Chris Leader

Domain decomposition Linearised inversion with GPUs

Adjoint linearised modelling

- Calculate data wavefield halos
- Calculate source wavefield halos
- Propagate data wavefield
- Propagate source wavefield
 - Transfer data wavefield halos
 - Transfer source wavefield halos
- Inject source
- Inject data
- Convolve source snapshot and data snapshot, sum to image

Adjoint linearised modelling

- Calculate data wavefield halos
- Calculate source wavefield halos
- Propagate data wavefield
- Propagate source wavefield
 - Transfer data wavefield halos
 - Transfer source wavefield halos
- Inject source
- Inject data
- Convolve source snapshot and data snapshot, sum to image

Chris Leader

Domain decomposition Linearised inversion with GPUs

GPU implementation

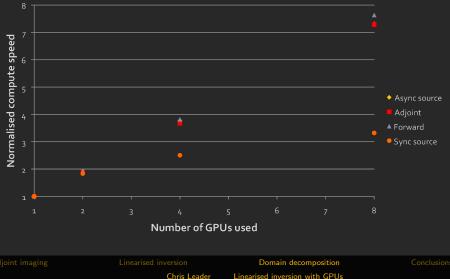
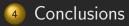


Table of contents

- 2 Linearised inversion
- 3 Domain decomposition



Chris Leader

Linearised inversion with GPUs

Conclusions

Extending GPU RTM to linearised inversion is fairly straightforward

Use adjoint propagation

Once our domain exceeds 600³, we must move to domain decomposition

- We can overlap internal computation with halo communication
- Close to linear speed up achieved for each stage of the inverse process

Robert Clapp (SEP) - continuous coding assistance

Paulius Micikevicius (NVIDIA) - GPU troubleshooting, code sharing and discussions

All SEP sponsors - continued financial, intellectual and moral support

Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA: GPGPU, 2.

Micikevicius, P., 2012, Programming multiple GPUs: GPU Technology Conference, 2012.