Ricker-compliant and pseudo-unitary decon

Jon Claerbout and Antoine Guitton Stanford University

EAGE London meeting
June 2013

ABSTRACT

Seismogram polarity becomes more apparent when deconvolution removes the correct source wavelet.

ABSTRACT

Seismogram polarity becomes more apparent when deconvolution removes the correct source wavelet.

We learned this from inverse theory. Many complications learning it, but...

ABSTRACT

Seismogram polarity becomes more apparent when deconvolution removes the correct source wavelet.

We learned this from inverse theory. Many complications learning it, but...
..but the essential feature is a memorable trick that I can squeeze into a 20 minute talk.

The universal marine wavelet is the Ricker wavelet. Why? Marine gun and hydrophone are beneath the surface. Both have a nearby surface reflection of opposite polarity.

Traditional: Least squares This talk: Analytic

constant offset section

Ricker

black-white-black

80000
 72000
 $7 X(m)$

64000

$80000 \quad 7200064000$
, X (m)

$80000 \quad 7200064000$

80000
72000
64000
${ }^{13} \mathrm{X}(\mathrm{m})$

Causal

Predictive decon, an industrial standard

Not
 Ricker!

Strictly causal

17

Anticausality $=4$ millisec

Anticausality $=4$ millisec

Same amplitude spectrum, different phase spectrum

Anticausality $=8$ millisec

Anticausality $=8$ millisec

Same amplitude spectrum, different phase spectrum

Anticausality $=16$ millisec

Anticausality $=16$ millisec

Same amplitude spectrum, different phase spectrum

Anticausality = 3¿ millisec

Anticausality $=32$ millisec

Same amplitude spectrum, different phase spectrum

Anticausality $=64$ millisec

Anticausality $=64$ millisec

Jon's favorite

Same amplitude spectrum, different phase spectrum

Anticausality $=128$ millisec

Anticausality = 128 millisec

Same amplitude spectrum, different phase spectrum

Anticausality $=256$ millisec

Anticausality $=256$ millisec

Wavelet is becoming symmetrical.
bad!

midpoint is 60 ms

Now l'll tell you how I did it.

Generally equivalent terms and concepts

Blind decon
Predictive decon
Causal decon

Autoregression, Yule\&Walker 1927
Minimum-phase decon, MIT GAG I954
Wiener-Levinson, Toeplitz
Burg, Robinson, and Treitel
Kolmogoroff decon (1939)
(in my textbook FGDP 1974)
(the code is in my book PVI 1992)

20th century mathematics!

Generally equivalent terms and concepts

Blind decon
Predictive decon
Causal decon

Autoregression, Yule\&Walker 1927
Minimum-phase decon, MIT GAG 1954
Wiener-Levinson, Toeplitz
Burg, Robinson, and Treitel
Kolmogoroff decon (1939)
(in my textbook FGDP 1974)
(the code is in my book PVI 1992)

Here we adapt Kolmogoroff to "Ricker compliant"

AGENDA

Kolmogoroff theorem statement Kolmogororff proof (in the abstract) Kolmogoroff method Ricker modification of Kolmogoroff

Norbert Wiener
versus
Andrey Kolmogoroff

Kolmogoroff theorem statement

$$
\begin{aligned}
& \qquad \begin{array}{l}
c(t)=0 \text { for } t<0 \\
c(t) \text { is causal } \\
A(\omega)=e^{C(\omega)} \\
\downarrow_{\text {IFT }} \\
a(t) \text { is causal }
\end{array}
\end{aligned}
$$

"Exponential of a causal is a causal."

The parameterization C gives us both the shot and its decon filter.

Shot waveform $A=e^{C}$

Decon filter $\quad \frac{1}{A}=e^{-C}$

They are both causal.

"Exponential of a causal is minimum phase."

Kolmogoroff construction

$$
r=r(\omega) \quad \phi=\phi(\omega) \quad Z^{\tau}=e^{i \omega \tau}
$$

polynomial is Fourier sum

Start with the spectrum.

$$
\xrightarrow{|r| e^{i \phi}=e^{\ln |r|+i \phi}=e^{ \pm \sum_{\tau} u_{\tau} Z^{\tau}}} \underset{\begin{array}{c}
\text { time domain parameterization } \\
\text { want this causal }
\end{array}}{\text { FT }}
$$

Kolmogoroff construction

$|r| \theta^{i \phi}=e^{\ln |r|+i \phi}=e^{ \pm \sum_{\tau} u_{\tau} Z^{\tau}}$

$\ln \|r\|$	$e_{\tau}=\left(u_{\tau}+u_{-\tau}\right) / 2$	even
$i \phi$	$o_{\tau}=\left(u_{\tau}-u_{-\tau}\right) / 2$	odd

Fixed spectrum says fixed e_{τ}.
Kolmogoroff: Causality says $u_{\tau}=0$ for $\tau<0$,

$$
\text { so } u_{\tau}=e_{\tau}+o_{\tau}=0 \text { for } \tau<0
$$

Kolmogoroff construction

$|r| \theta^{i \phi}=e^{\ln |r|+i \phi}=e^{ \pm \sum_{\tau} u_{\tau} Z^{\tau}}$

$\ln \|r\|$	$e_{\tau}=\left(u_{\tau}+u_{-\tau}\right) / 2$	even
$i \phi$	$o_{\tau}=\left(u_{\tau}-u_{-\tau}\right) / 2$	odd

Fixed spectrum says fixed e_{τ}.
Kolmogoroff: Causality says $u_{\tau}=0$ for $\tau<0$,

$$
\text { so } u_{\tau}=e_{\tau}+o_{\tau}=0 \text { for } \tau<0
$$

Kolmogoroff construction

$$
|r| e^{i \phi}=e^{\ln |r|+i \phi}=e^{ \pm \sum_{\tau} u_{\tau} Z^{\tau}}
$$

$\ln \|r\|$	$e_{\tau}=\left(u_{\tau}+u_{-\tau}\right) / 2$	even
$i \phi$	$o_{\tau}=\left(u_{\tau}-u_{-\tau}\right) / 2$	odd

Fixed spectrum says fixed e_{τ}.
Kolmogoroff: Causality says $u_{\tau}=0$ for $\tau<0$,

$$
\text { so } u_{\tau}=e_{\tau}+o_{\tau}=0 \text { for } \tau<0
$$

Kolmogoroff construction

$|r| e^{i \phi}=e^{\ln |r|+i \phi}=e^{ \pm \sum_{\tau} u_{\tau} Z^{\tau}}$

$\ln \|r\|$	$e_{\tau}=\left(u_{\tau}+u_{-\tau}\right) / 2$	even
$i \phi$	$O_{\tau}=\left(u_{\tau}-u_{-\tau}\right) / 2$	odd

Fixed spectrum says fixed e_{τ}.
Kolmogoroff: Causality says $u_{\tau}=0$ for $\tau<0$,

$$
\text { so } u_{\tau}=e_{\tau}+o_{\tau}=0 \text { for } \tau<0
$$

Kolmogoroff construction

$$
|r| e^{i \phi}=e^{\ln |r|+i \phi}=e^{ \pm \sum_{\tau} u_{\tau} Z^{\tau}}
$$

$\ln \|r\|$	$e_{\tau}=\left(u_{\tau}+u_{-\tau}\right) / 2$	even
$i \phi)$	$o_{\tau}=\left(u_{\tau}-u_{-\tau}\right) / 2$	odd

Fixed spectrum says fixed e_{τ}.
Kolmogoroff: Causality says $u_{\tau}=0$ for $\tau<0$,

$$
\text { so } u_{\tau}=e_{\tau}+o_{\tau}=0 \text { for } \tau<0
$$

How to force Ricker-like wavelets

$|r| e^{i \phi}=e^{\ln |r|+i \phi}=e^{ \pm \sum_{\tau} u_{\tau} Z^{\tau}}$

$\ln \|r\|$	$e_{\tau}=\left(u_{\tau}+u_{-\tau}\right) / 2$	even
$i \phi$	$\left.O_{\tau}\right)=\left(u_{\tau}-u_{-\tau}\right) / 2$	odd

Fixed spectrum says fixed e_{τ}.
Kolmogoroff: Causality says $u_{\tau}=0$ for $\tau<0$,

$$
\text { So } u_{\tau}=e_{\tau}+o_{\tau}=0 \text { for } \tau<0
$$

How to force Ricker-like wavelets

$$
|r| e^{i \phi}=e^{\ln |r|+i \phi}=e^{ \pm \sum_{\tau} u_{\tau} Z^{\tau}}
$$

$\ln \|r\|$	$e_{\tau}=\left(u_{\tau}+u_{-\tau}\right) / 2$	even
$i \phi$	O_{τ}	$=\left(u_{\tau}-u_{-\tau}\right) / 2$

Fixed spectrum says fixed e_{τ}.
Kolmogoroff: Causality says $u_{\tau}=0$ for $\tau<0$,

$$
\text { so } u_{\tau}=e_{\tau}+o_{\tau}=0 \text { for } \tau<0
$$

So far, this is all Eexbbook scuff.

How to force Ricker-like wavelets

$$
|r| e^{i \phi}=e^{\ln |r|+i \phi}=e^{ \pm \sum_{\tau} u_{\tau} Z^{\tau}}
$$

$\ln \|r\|$	$e_{\tau}=\left(u_{\tau}+u_{-\tau}\right) / 2$	even
$i \phi$	$O_{\tau}=\left(u_{\tau}-u_{-\tau}\right) / 2$	odd

Fixed spectrum says fixed e_{τ}.
Kolmogoroff: Causality says $u_{\tau}=0$ for $\tau<0$,

$$
\text { so } u_{\tau}=e_{\tau}+o_{\tau}=0 \text { for } \tau<0 .
$$

This is the innovation!
Ricker says to weaken the odd part O_{τ} at small lags.

weaken zone width

	\mid	\mid	\mid				
-0.2	-0.15	-0.1	$-0.05-7.4506 \mathrm{e}-09$	0.05	0.1	0.15	$0.2 \mid \mathbf{a s , S}$

weaken zone width

To make any decon filter reveal polarity by respecting Ricker:

To make any decon filter reveal polarity by respecting Ricker:

"Grab its phase spectrum.
Bring it into the time domain.
Near zero lag, dampen it down."

(only 16 words)

To make any decon filter reveal polarity by respecting Ricker:

"Grab its phase spectrum.
Bring it into the time domain.
Near zero lag, dampen it down."
(only 16 words)

IT'S OBVIOUS BECAUSE

Take all the phase away, get a symmetric time function.
Here we take away phase for small lags only.

Ricker Erick

Why did we not figure this out 40 years ago?

Ricker Erick

Why did we not figure this out 40 years ago?
Because everyone got interested in migration.

Two uses for this "Ricker trick"

Jon: "Antoine, your sparseness code gives belle polarities."

Antoine: "Jon, your Ricker code is much easier to choose parameters."

Parameters more intuitive in lag-log (quefrency)

$$
\begin{aligned}
& |r| e^{i \phi}=e^{\ln |r|+i \phi} \\
& =e^{\sum_{\tau=0}^{2047} u_{\tau} Z^{\tau}} \\
& =e^{A+B+C}=e^{A} e^{B} e^{C} \\
& =e^{\sum_{0}^{2}} e^{\sum_{3}^{15}} e^{\sum_{16}^{2047}} \\
& (\text { wavelet })=(\text { continuity })(\text { Ricker })(\text { bubble }) \\
& \text { very high } \\
& \text { frequencies } \\
& \text { Kolmogoroff } \\
& 4 \text { ms data } \\
& 15 \times 4=60 \mathrm{~ms}
\end{aligned}
$$

Gulf of Mexico

Strictly causal

Ricker complaint

 Bubble with Ghost
Bubble no Ghosts

	\mid	\mid	\mid	\mid					
-0.1	-0.05	0	0.05	0.1	0.15	0.2	0.25	0.3	0.35
					time,sec				

Gulf of California

Strictly causal

Picker complaint

 Bubble with Ghost
Bubble no Ghosts

	\mid							
-0.1	-0.05	0	0.05	0.1	0.15	0.2	0.25	0.3
					time,Sec			

Cascadia

Strictly causal

Ricker complaint Bubble with Ghost

Bubble no Ghosts

T

	\mid							
-0.1	-0.05	0	0.05	0.1	0.15	0.2	0.25	0.3
						time,sec		

Chevron Australia

Strictly causal

Ricker complaint

 Bubble with Ghost
Bubble no Ghosts

Reminder

$$
\begin{aligned}
& \qquad \begin{aligned}
|r| e^{i \phi} & =e^{\ln |r|+i \phi} \\
& =e^{\sum_{\tau=0}^{2047} u_{\tau} Z^{\tau}} \quad \text { Kolmogoroff } \\
& =e^{A+B+C}=e^{A} e^{B} e^{C} \\
& =e^{\sum_{0}^{2}} e^{\sum_{3}^{15}} e^{\sum_{16}^{2047}} \\
\text { (wavelet) } & =(\text { continuity })(\text { Ricker })(\text { bubble })
\end{aligned}
\end{aligned}
$$

To ignore Nyquist, set $A=0$.

Divisor
Why do I call this pseudo-unitary?

Setting $\mathrm{A}=0$ or $\mathrm{B}=0$ or $\mathrm{C}=0$
means $\exp (0)=1$, so

$$
e^{B_{\text {Ricker }}+C}
$$

the filter has become unitary for those lags.

$$
e^{B_{\text {Kolmogoroff }}+C}
$$

midpoint(meters)

GOM: input
midpoint(meters)

midpoint(meters)

GOM: input
midpoint(meters)

midpoint(meters)

$$
\begin{array}{lll}
-24000 & -16000 & -8000
\end{array}
$$

midpoint(meters)

- DeBubble

Cabo: debubble
midpoint(meters)

$$
\begin{array}{lll}
-24000 & -16000 & -8000
\end{array}
$$

midpoint(meters)

- DeBubble

Cabo: debubble

Cascadia

$$
\text { COAST: }_{65} \mathrm{input}^{\text {St }}
$$

- DeBubble

COAST: debubble

Cascadia

$$
\operatorname{COAST}_{67} \mathrm{Sinput}^{\text {int }}
$$

- DeBubble

CVX

DeBubble

CVX

DeBubble

Same parameter for all four data sets:

60 ms

CONCLUSIONS

It's easy. It's fun. It really works. Try it!

ON-GOING AND FUTURE WORK

Angle dependence

Inverse modeling
-Optimization
-Robust norms
-Gain after decon

We need data

We seek 2 ms marine streamer lines.

We do not need precise locations.

We love salt.

We don't like dealing with IP lawyers.

ACKNOWLEDGEMENT

For data we thank Western Geophysical (Gulf of Mexico) and Lizzaralde et al (Baja), Steve Holbrook, COAST Cascadia Open Access Seismic Transects, and Chevron Australia

Antoine Guitton thanks Repsol Sinopec Brasil SA and Geo Imaging Solucoes Tecnologicas em Geociencias Ltda.

Stew Levin, for assistance with input.

For support, we thank the sponsors of the Stanford Exploration Project (SEP). Hooray!

To repeal

go to Youlube.com

search for

"Jon Claerbout practice Ealk".

finis

finis

The End

Sal Kahn says, "Smile. Laugh."

> Many years ago I saw sparker data in a muddy harbor. What caught my eye was how easy it was to distinguish hard rocks with one polarity from gas pockets with the opposite polarity.

Why is it so difficult for us see polarity on our data?

In my old age, I have come to understand why. We have been doing one thing wrong. 'll tel you how to fix it.

Toy Q wavelet

'I'oy Q wavelet and its ghosts

with (1,-2,1) mhos

0	1	0
0	0	0
a	b	c
d	e	f
g	h	i

Spatial aliasing on land, and on crossline

Gravel Plasin shot profile

Conceptual

0	1	0
0	0	0
-1	0	-1
0	0	0
0	1	0

Least squares

0	1	0
0	0	0
a	b	c
d	e	f
g	h	i

Low velocity decon?

Want to see low frequency primaries
Want to rid of low velocity noises
I) specify a reject band
2) specify an accept band
3) Minimize energy subject to...

Now let us involve an additional FT over space. How about a low-velocity reject filter?

$$
\begin{aligned}
e^{A+B+C} & =e^{A} e^{B} e^{C} \\
e^{\sum_{\tau=1}^{2048} u_{\tau} Z^{\tau}} & =e^{\sum_{1}^{2}} e^{\sum_{3}^{15}} e^{\sum_{16}^{2048}} \\
\text { (wavelet) } & =\text { (continuity)(Ricker)(bubble) }
\end{aligned}
$$

Gapped filter review

Low cut
Output

3 signals with their spectra

Steep Dip Decon, by Jon Claerbout SEP-77

Why no good results?
 (too much noise in signal)

old programmer?
conceptual problem?

