T-squared gain for deep marine seismograms

by Jon Claerbout

SEP progress report 149

$$
\text { May } 2013
$$

SETTING

Those of us with even a modest background in seismic theory feel annoyed every time we see somebody using AGC.

At SEP, Kjartansson's t -squared gain has held back the pressure somewhat, but there are constant irritants. For example, t can be taken to another power (no theory for that). People are constantly playing with the clip percentile. Even worse, people display their area of interest (such as a shadow zone) far below clip threshold.

It's an example of "tragedy of the commons" that it's hard to get any help in building a plot scaling utility that we'd all benefit from.

PROBLEM

Kjartansson's t-squared gain was not designed for deep marine data where waves take a lot of time in water (high Q medium)

GOALS

Scale seismic data display so it is visible at all times and offsets.
Want a scaling function, like Kjartansson's t-squared, independent of parameters (except easily known parameters like offset and water-depth)

A general purpose scaling function of time and space not tailored to a particular data set, but useful for most data sets.

Reduce need for AGC, for clip, and for mute.
Potentially a default weighting function for inverse problems.

Kjartansson t-squared review

Spherical divergence ---> one power of t
Constant Q absorption ---> another power of t

$$
e^{-|\omega|(z / v) / Q}
$$

$$
.05 \approx e^{-3}=e^{-|\omega|_{\text {cutoff }}(z / v) / Q}
$$

$$
\omega_{\text {cutoff }}=3 Q v / z=3 Q / t
$$

Signal strength proportional to cutoff frequency.

Jon's first guess for deep marine data

Let t_{e} be the "first earth arrival."

$G(t)= \begin{cases}t & \text { for } t<t_{e} \\ t^{2} / t_{e} & \text { for } t>t_{e}\end{cases}$

Second guess

$$
G(t)= \begin{cases}0 \times t & \text { for } t<t_{e} \\ \left(t-t_{e}\right) t & \text { for } t>t_{e}\end{cases}
$$

Need the " $0 \times$ " for gain continuity.

Second guess

$$
G(t)= \begin{cases}0 \times t & \text { for } t<t_{e} \\ \left(t-t_{e}\right) t & \text { for } t>t_{e}\end{cases}
$$

Best in theory. Worst in practice.
A gain of zero at the water bottom!

Any suggestions?

Decon friendly gain (first friend suggestion)

$$
G(t)= \begin{cases}1 & \text { for } t<t_{e} \\ t^{2} / t_{e}^{2} & \text { for } t>t_{e}\end{cases}
$$

Where water depth increase on a traverse,
water bottom arrivals do not get their needed geometrical t gain.

Continuity gain (2nd friend suggestion)

$G(t)= \begin{cases}t & \text { for } t<t_{e} \\ t+\left(t-t_{e}\right)^{2} / t_{e} & \text { for } t>t_{e}\end{cases}$

Linear before $t=t_{e}$ and quadratic after.
Continuous in value and derivative at $t=t_{e}$.
Nice but we don't need derivative continuity.

How are we going to fix this?

$$
G(t)= \begin{cases}0 \times t & \text { for } t<t_{e} \\ \left(t-t_{e}\right) t & \text { for } t>t_{e}\end{cases}
$$

Best in theory. Worst in practice.
A gain of zero at the water bottom!

How are we going to fix this?

$$
G(t)= \begin{cases}0 \times t & \text { for } t<t_{e} \\ \left(t-t_{e}\right) t & \text { for } t>t_{e}\end{cases}
$$

barely suitable for personal software
wholly unsuitable for shared software

How are we going to fix this?

$$
G(t)= \begin{cases}0 \times t & \text { for } t<t_{e} \\ \left(t-t_{e}\right) t & \text { for } t>t_{e}\end{cases}
$$

barely suitable for personal software
wholly unsuitable for shared software

IDEA:
The problem is the infinite bandwidth assumption.

$$
G(t)= \begin{cases}0 \times t & \text { for } t<t_{e} \\ \left(t-t_{e}\right) t & \text { for } t>t_{e}\end{cases}
$$

Starting with infinite bandwidth, how far do you go in a typical earth $(Q=100)$ until you get to
realistic water-layer bandwidths?

IDEA:

The problem is the infinite bandwidth assumption.

$$
G(t)= \begin{cases}0 \times t & \text { for } t<t_{e} \\ \left(t-t_{e}\right) t & \text { for } t>t_{e}\end{cases}
$$

Starting with infinite bandwidth, how far do you go in a typical earth $(Q=100)$ until you get to
realistic water-layer bandwidths?

Let infinite bandwidth drop to 5% at 150 Hz .

Let infinite bandwidth drop to 5% at 150 Hz .

$$
\begin{aligned}
.05 & \approx e^{-\pi}=e^{-2 \pi f \Delta t / Q} \\
\Delta t & =Q / 2 f=100 / 300 \approx 350 \mathrm{~ms}
\end{aligned}
$$

Not a big reward for the contractor!

Let infinite bandwidth drop to 5% at 150 Hz .

$$
\begin{aligned}
.05 & \approx e^{-\pi}=e^{-2 \pi f \Delta t / Q} \\
\Delta t & =Q / 2 f=100 / 300 \approx 350 \mathrm{~ms}
\end{aligned}
$$

Not a big reward for the conkrackor!

ASIDE
Hey! If we could estimate Delta t from the data itself (by asking for the most uniform output) we'd have an estimate of Q / f. Is that an estimate of Q ?

The answer!

$$
\begin{gathered}
G(t)= \begin{cases}0 & \text { for } t<t_{e}-\Delta t \\
\left(t-t_{e}+\Delta t\right) t & \text { for } t>t_{e}-\Delta t\end{cases} \\
\Delta t \approx 350 \mathrm{~ms}
\end{gathered}
$$

CVXaustralia gain $=t * t$

CVXaustralia gain $=t * t$

CVXaustralia gain $=t * t$

Apologies

- Need data variety (more data) for test cases.
- Need data with less multiple energy
- Need water bottom measured instead of guessed from $1.2 \mathrm{sec}+\mathrm{NMO}(\mathrm{x})$
- How about code to deduce Δt from the data itself?
- Should acknowledge water-velocity critical angle

Finis

