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•  Iterative inversion by conjugate gradient 
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Artifacts in RTM 

•  Red = source wavefield with time running forward. 
•  Green = receiver wavefield with time running backward. 

•  At both points B and C, the cross-correlation is 
undesirable, i.e. noise. 

S(t,x,z) R(t,x,z) 
S(t,x,z) R(t,x,z) 
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RTM for one shot 
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Gradient is corrupted with noise 
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migration 

Stanford Exploration Project 

RTM artifacts slow down convergence 
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Suppressing RTM artifacts with a Laplacian 
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LSRTM with Laplacian preconditioner  (LSRTM-Laplace) 
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Breaking down the imaging condition 
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Modify the migration operator 

regular RTM 
operator 

RTM with wavefield 
decomposition 
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Total image Back-scattering Forward-scattering 
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Back-scattering 
terms 

Forward-scattering 
terms 
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Forward operator as an adjoint pair 

regular RTM 
operator 

RTM with wavefield 
decomposition 

Forward 
operator 

Forward with wavefield 
decomposition 
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Sd(t,x) Ku(t,x) 
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Wavefield decomposition 
is expensive. 



Wavefield decomposition in the T-K domain 
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  The backscatter-based imaging condition can be written as (Liu, 
2011) 

  where 
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Computational Cost 
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  Regular LSRTM 

  LSRTM with wavefield decomposition 
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Wavefield decomposition 
is expensive. 

But there is a cheap way 
to do it. 
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SEAM Model  
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True velocity 

migration velocity  

True model 
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Decomposing the gradient 

Back-scattering terms 

Forward-scattering terms 

Total image 



Comparing between two LSRTM method 
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Test 1:  LSRTM with Laplacian preconditioner  (LSRTM-Laplace) 

Test 2: LSRTM with wavefield decomposition (LSRTM-decomp) 
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RTM and LSRTM results 

LSRTM - decomp 

LSRTM - Laplace 

RTM 



RTM and LSRTM results 
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Model RTM 

LSRTM - Laplace LSRTM - decomp 



RTM and LSRTM results 
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Model Model 

Model Model 
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RTM 

Model LSRTM-Laplace iteration 10 LSRTM-decomp iteration 10 

LSRTM-Laplace iteration 40 LSRTM-decomp iteration 40 

LSRTM-decomp converges faster 
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LSRTM-decomp converges faster 
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Why does the LSRTM‐decomp converge faster than LSRTM‐Laplace? 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First gradient of LSRTM-precond First gradient of LSRTM-decomp 

Spectrum in Z 



Discussion 
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Why does the LSRTM-decomp converge faster than LSRTM-Laplace? 

Perhaps incorporating a left preconditioner to balance the frequency 



Including the forward-scattering term 
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To preserve steeply dipping reflector, include the forward-scattering 
term for deeper region 

Su(t,x) 
Ku(t,x) 
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Conclusion 

  LSRTM with wavefield decomposition can effectively suppress RTM 
artifacts 

  Results from the SEAM example show that LSRTM-decomp converges 
faster than LSRTM-Laplace. 

  Computationally, it is viable too. 
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Modifying imaging condition using wavefield decomposition 

  Decomposition of wavefields based on vertical propagation 
directions:  
  upgoing and downgoing components 

Back-scattering 
terms 
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Forward-scattering 
terms 
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Wavefield decomposition in the F-K domain 

  Decomposition in the F-K domain was first used in VSP data 
(Hu, 1987): 
  Vertically, 

  Horizontally, 
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  FFT brings a complex-valued problem: 
  The initial wavefield is a real function, but the decomposed wavefields 

are complex; for example, 

  Previously, only real parts of decomposed wavefields were used in 
imaging conditions (Liu,2007,2011) 

  This approximately gives the same result as 
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Wavefield decomposition in the F-K domain 



Wavefield decomposition in the T-K domain 
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  Using Parseval’s  theorem: 

  The backscatter-based imaging condition can be written as (Liu, 2011) 

  where 
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Some successful examples 
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