Applications for rotational seismic data

Ohad Barak, Shuki Ronen SEP-149, pp251-272

SEP meeting, 2013

- Rotation data is great.
- You should all go and acquire rotation data.
- You should then give us the data.

Outline

- Vz noise in OBS acquisition
- Rotation sensors
- Synthetic modeling of OBS seven-component data
- Signatures of different wave types in sevencomponent data

Cool animations coming soon.....

OBS acquisition

V_z "shear induced" noise

- Energy observed on vertical geophone that is not present on pressure
- Similar appearance to shear waves, although these are generally not present on the vertical component

Courtesy of Apache Thanks to CGG for data distribution

V_z "shear induced" noise

Receiver gather, vertical geophone, close to platform

Receiver gather, vertical geophone, far from platform

Node Position

Courtesy of Apache Thanks to CGG for data distribution

Time

Body waves and surface waves

Michigan Tech. University website (http://www.geo.mtu.edu/Upseis/images)

V_z "shear induced" noise

- 1. <u>Scattered surface waves</u>
 - Feature of the wavefield
 - Can be modeled with elastic modeling
- 2. <u>Vector infidelity:</u> shear waves induce wobbling and bouncing of the node body.
 - Not a feature of the wavefield
 - Independent of external scattering
 - Cannot be modeled with elastic modeling

Separate phenomena, which can have the same effect on the data Both occur mainly in soft, muddy water bottoms

(Thanks to Josef Paffenholz, Fairfieldnodal)

V_z "shear induced" noise

- 1. <u>Scattered surface waves</u>
 - Feature of the wavefield
 - Can be modeled with elastic modeling

Interface wave, mostly rotational motion

V_z "shear induced" noise

- 2. <u>Vector infidelity:</u> shear waves induce wobbling and bouncing of the node body
 - Not a feature of the wavefield
 - Independent of external scattering
 - Cannot be modeled with elastic modeling

Rotation sensors

Geophones record motion along the axes ("3C"): v_x , v_y , v_z

Rotation sensors record motion around the axes ("30"): θ_x , θ_y , θ_z

Seven-component data

- Hydrophone
- 3C geophones
- 3C rotation sensors
- 1. Need motivation to put 3 extra sensors on a node (battery, data volume, channels, unit price, etc.)
- 2. Need a good way to display 7C data

Applications for rotation data

- Muyzert et al., 74th EAGE annual conference: Interpolation of the vertical component for de-aliasing.
- Brune et al., 82nd SEG annual conference: Improve spatial sampling, shear wave selectivity, AVO, determination of propagation direction at a point array.
- Geokinetics, Schlumberger, Sandia Nat. Labs, Applied Technology Associates, Eentec, MetTech

Applications for rotation data

- 1. Identifying and attenuating V_z noise
- Converted-wave AVO, application to gas hydrates rock physics modeling (Secondary project, appears in report)

Elastic modeling

$$u_x, u_y, u_z$$
 Meters
 v_x, v_y, v_z Meters/sec (geophone)
 $P = (\lambda + \mu) \frac{\partial u_i}{\partial x_i} \approx \nabla \cdot \vec{u}$ Bars (hydrophone)
 $\left(\frac{\partial u}{\partial x_i} - \frac{\partial u}{\partial x_i} \right)$

$$\theta_{k} = \left(\frac{\partial u_{i}}{\partial x_{j}} - \frac{\partial u_{j}}{\partial x_{i}}\right)_{k \neq i, j} = \nabla \times \vec{u} \quad \text{Radians}$$

$$\vec{R} = \frac{d\vec{\theta}}{dt}$$
 Radians/sec (rotation sensor)

Modeling setup

17

SVD of three components

De Meersman et al., 2006, "Signal Extraction and Automated Polarization Analysis of Multicomponent Array Data."

Singular value decomposition applied to 3C geophone data

SVD of seven components

Data: seven-component seismogram (single trace)

 $D = \lfloor h(t), v_z(t), v_x(t), v_y(t), r_z(t), r_x(t), r_y(t) \rfloor$

 $t \in \left[T_1, T_N\right]$

<u>SVD:</u> $D = U\Sigma V^T$

Decompose a time-window from a 7C trace into:

- Waveform U
- Magnitude Σ
- Polarization V

SVD of seven components

SVD:
$$D = U\Sigma V^T$$

Decompose a time-window from a 7C trace into:

- Waveform
- \sum • Magnitude
- Polarization V

Scaled polarization vectors: $S = \Sigma V^T$

Two largest polarization vectors: $S_{j,1} = \sigma_1 v_{j,1}$ $s_{i,2} = \boldsymbol{\sigma}_2 v_{i,2}$

Inline hydrophone

Inline vertical geophone

Inline horizontal 'X' geophone

Inline horizontal 'Y' geophone

Inline pitch (rotation around Y)

Inline roll (rotation around X)

Inline yaw (rotation around Z)

H Vz Vx Vy Rz Rx Ry

crossline yaw (rotation around Z)

41

Conclusions

In seven-component data:

- Different wave types have different signatures
- Body waves are distinguishable from surface waves

Rotation gives us a handle on the Vz noise.
 Filtering rotations = filtering Vz noise

Identification — Attenuation

After SVD:

 $\begin{array}{lll} \text{Waveform} & U\\ \text{Magnitude} & \Sigma\\ \text{Polarization} & V \end{array}$

$$D = U \Sigma V^T$$

- 1. Identify where the polarization is highly rotational
- 2. Weight down the largest singular values
- 3. Recompose the data

After SVD:

 $\begin{array}{lll} \text{Waveform} & U\\ \text{Magnitude} & \Sigma\\ \text{Polarization} & V \end{array}$

$$D = U \Sigma V^T$$

- 1. Identify where the polarization is highly rotational
- 2. Weight down the largest singular values
- 3. Recompose the data

Merge into workflow that also considers moveout.

Conclusions

Please provide me with rotation data!

Thanks for your support, and your attention.

Six-component display

 \bigcirc A P A A A \bigcirc A ()6 ()() \cap () (\mathbf{A}) $\left(\right)$ 63 6 ()6 3 () 64 63 100 64 6 6 68 67 A ()(m) 1 6 64 (and the second 6 6 . (**1** 3 (\rightarrow) 64 $\left(\right)$ ()64 63 63 6 (¹⁴) () (\mathcal{A}) 6 63 63 64 6 () 6 63 ((^A (\rightarrow) () (\rightarrow) (····) (\rightarrow) 63 (()($\left\{ \right\}$ ()()()()6 63 (() (\mathcal{A}) 6 (²) 6 ()6) 64 () \bigcirc ()()() (β) (6 ()69 (, 14) () (-)69 () (4) () (β) 6 6 (()((\cdot) 6 $\left(\right)$ (\mathbb{A}) ()63 (^A (\rightarrow) 63 63 63 (-i²) $\left(\right)$ (· · ·) 6 60 (\rightarrow) () 64 (\rightarrow) (- 4 64 (A) 6 (m⁴) () (3 (**-**) 6 (, i) 63 (\mathcal{A}) (β) 6) -(-)()(A) (\rightarrow) (⁽) 63 6 6 ()() (¹ ()) (¹⁹) 28 63 SA $\left(- \right)$ 63 (\cap) ()1 1 6 Ð \bigcirc 6) ()()()6) (\mathcal{O}) ()(¹) 63 ()()()()- Sector 64 63 69 ()(-)