Wave-equation MVA using partial stack-power-maximization

Human Energy ${ }^{\circ}$

Yang Zhang* and Guojian Shan June, 2013
SEP-149, p51

Outline

- Wave equation MVA (WEMVA) background
- Common Image Gather in angle and offset domain
- WEMVA workflow
- Partial image-stack power objective function

WEMVA characteristics

- Wave-equation migration velocity analysis
- Is a reflection tomography method
- Optimizes obiective function defined in image domain Common image gathers)
- Uses wave-equation operator to compute images \& velocity updates (wave path not ray path).

Common-image gather in reflection angle domain

- Imaging the same reflector with different incident angles (same in reflection ray-tomography)
- In ideal case, the more correct the velocity model, the more the gathers are flat
- More expensive to compute using wave-equation

Common-image gather in subsurface offset domain

- Different from surface offset-gathers used frequently in Kirchhoff migration
- In ideal case, the more correct the velocity model, the gathers are more focused on $\mathbf{h = 0}$ (rather than being flat)
- Computationally easy to implement

$$
I(z, x, h)=\sum_{t} U(z, x+h, t) D(z, x-h, t)
$$

Zero-subsurface offset domain

Subsurface offset gathers

General WEMVA flow

WEMVA objective functions

- Stack-power-maximization (SPM)

$$
\max _{\mathrm{s}} J(s) \text { with } J(s)=\sum_{z, x}\left[\sum_{\gamma} I(z, x, \gamma ; s)\right]^{2}
$$

- Differential semblance optimization (DSO)
$\min _{s} J(s)$ with $J(s)=\sum_{z, x} \sum_{\gamma}\left[\frac{\partial I(z, x, \gamma ; s)}{\partial \gamma}\right]^{2}$
z, x : spatial coordinate, γ : refl ection angle,s: slowness fi els

WEMVA objective functions

- Stack-power-maximization (SPM) (Gratacous,2005)

$$
\max _{s} J(s) \text { with } J(s)=\sum_{z, x}\left[\sum_{\gamma} I(z, x, \gamma, s)\right]^{2}
$$

- Global convergence problems
- Differential semblance optimization (DSO), (Shen\&Symes, 2008)
$\min _{\mathrm{s}} J(s)$ with $J(s)=\sum_{z, x} \sum_{\gamma}\left[\frac{\partial I(z, x, \gamma ; s)}{\partial \gamma}\right]^{2} \begin{aligned} & \text { •Sensitive to image } \\ & \text { amplitudes } \\ & \text { •Sensitive to CIGs artifacts } \\ & \rightarrow \text { Problems in 3D }\end{aligned}$
z, x : spatial coordinate, γ : refl ection angle,s: slowness fi els

Outline

- Wave equation MVA background
- Partial Image-stack power objective function

Partial stack power maximization

- Existing stack power maximization

$$
J=\left\|\sum_{\gamma} I(z, x, \gamma)\right\|_{2}^{2}
$$

Partial stack power maximization

- Existing stack power maximization $\quad J=\left\|\sum_{\gamma} I(z, x, \gamma)\right\|_{2}^{2}$
- Using partial stack
- $g\left(\gamma^{\prime}\right)$ is a low-pass filtering kernel

$$
J=\left\|\sum_{\gamma^{\prime}} I\left(z, x, \gamma-\gamma^{\prime}\right) g\left(\gamma^{\prime}\right)\right\|_{2}^{2}
$$

- Box function / triangular function / Gaussian function
- Properties of partial stack
- More robust against cycle-skipping problem as in previous stack-power maximization method
- Is a generalization of the previous method

Partial stacking avoids cycle-skipping

WEMVA objective functions in angle domain

Comparison of WEMVA objective functions (graphic)

Comparison of WEMVA objective functions (equation)

Angle-domain

Stack Power Maximization $\left\|\sum_{\gamma} I(z, x, \gamma)\right\|_{2}^{2}$ (SPM)

Flexibility with $G(h)$

Offset-domain
$\|I(z, x, h=0)\|_{2}^{2}$
High resolving power

Partial SPM

DSO

$$
\begin{array}{ll}
\left\|\sum_{\gamma^{\prime}} I\left(z, x, \gamma-\gamma^{\prime}\right) g\left(\gamma^{\prime}\right)\right\|_{2}^{2} & \|G(h) I(z, x, h)\|_{2}^{2} \\
\text { Integration rather } & \text { Global } \\
\text { than differentiation } & \text { convergence }
\end{array}
$$

Energy Normalized WEMVA objective functions

From Tang, Ph.D Thesis, 2011

Marmousi model: true velocity

Starting velocity

Partial-SPM without normalization (20 iterations)

Partial-SPM without normalization

Final image
Display clip 4 x

Initial image

Normalized Partial stack power (40 iterations)

Marmousi test, normalized partial SPM method, starting model

First update, Normalized partial stack power

First update, Normalized DSO

Normalized Partial stack power (40 iterations)

Normalized Partial stack power (40 iterations)

Normalized DSO (40 iterations)

True image

Normalized Partial SPM

Normalized DSO

Conclusion \& Discussion

- Partial SPM merges the merits of both SPM and DSO objective functions, also more flexible
- Normalization for reflector amplitude is not only preferred but necessary
- Remaining question:
- Compared to data-domain, image-domain is easier to look at, but we are still missing the ultimate correct objective function

Conclusion \& Discussion

- Partial SPM merges the merits of both SPM and DSO objective functions, also more flexible
- Normalization for reflector amplitude is not only preferred but necessary
- Steering filters helps improves convergence speed and reduces the null space of the inverse problem
- Most effective if the model is poorly constrained along the dipping direction
- Question Remained:
- Compared to data-domain, image-domain is easier to look at, but we are still missing the ultimate correct objective function.
- Is the steering filter always desirable? What if the geometry of the velocity model does not follow the reflectors', like BP 2004 model?

Acknowledgement

- Chevron ETC, Imaging \& Velocity model building group

