
Removing Shear Artifacts in Acoustic 

Anisotropic Modeling 

1 

Huy Le*, Stewart A. Levin, Robert G. Clapp, and Biondo Biondi 

SEP 152, p. 129-140 



2 

1. Acoustic approximation and shear artifacts 

2. Existing methods 

3. Proposed method 

4. Accuracy and cost estimates 

5. Application to inhomogeneous media 

6. Conclusions 

Outline 



Shear artifacts 

• Exact wave equations in anisotropic media couple 

P and S. 

• Acoustic approximation: setting S-velocity along 

symmetry axes to 0 (Alkhalifah, 1998) 

• S-velocity is not 0 everywhere (Grechka et al., 

2004). 
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Existing methods 

1. Put the source in isotropic region (Alkhalifah, 1998) 

• Limited application 

• Converted shear artifacts 

2. In VTI, use finite shear velocity (Fletcher et al., 2004) 

• What shear velocity to choose?  

• Real shear wave  

3. Factorize the dispersion relation (majority) 

• Applicable with source in any media 

• No shear velocity choice 
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Proposed method 

• Factorize dispersion relation to decouple P and S 

• Dispersion relation in VTI: 

      cubic = quadratic of P and SV + linear of SH  

 factorization can be done analytically. 

• Similar to elastic wave mode separation (Dellinger 

and Etgen, 1990; Yan and Sava, 2009) 

• In orthorhombic: eigenvalue decomposition 
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Acoustic wave equations in orthorhombic media  
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Decoupling orthorhombic wave equations 
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Decoupling orthorhombic wave equations 

 idiagQQM λΛΛD    ,1
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Decoupling orthorhombic wave equations 

σσ 1Qq
: projection on row vectors 
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Decoupling orthorhombic wave equations 
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σσ 1Qq
: projection on row vectors 
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Decoupling orthorhombic wave equations 

system of 3  

coupled equations 

3 decoupled  

equations 

 idiagQQM λΛΛD    ,1

σσ 1Qq
: projection on row vectors 



SH 

SV 

P 

 

P wave 

Two S artifacts 

Projections on row vectors 
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Degenerate case: Isotropic 
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Proposed method: use eigenvalues as propagators 

(elastic wave mode separation: projection on eigenvectors) 
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Wavenumber domain method 

Option 1: 
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For all k’s: 

Choose eigenvalue corresponding to P-wave 
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Snapshot of wavefield 

with shear artifacts 

P 

P P 
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Snapshot of P-

wavefield 
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P P 
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Snapshot of shear 

artifacts 
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Space-time domain method 
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  kdiagQQM iλΛΛD
~~

,
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For all k’s: 

Choose eigenvalue corresponding to P-wave 

Option 2: 
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Factorizing exact 

Fourier representation 
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Factorizing FD 

approximation 
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Truncated spatial 

operator 
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Snapshot of P-

wavefield using 

truncated operator of 

size 21 
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Snapshot of S artifacts 

using truncated 

operator of size 21 



Operator’s accuracy after truncation 

• Wavenumber domain: accurate but slow 

• Spatial domain: less accurate but fast 

• Both use 2nd-order temporal FD, same time 

steps, and spatial discretizations  

      => same temporal dispersion error 

• Spatial subtracts wavenumber  

      => spatial dispersion error 
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Spatial dispersion error 
Isotropic, star stencil 
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Spatial dispersion error 
Isotropic, star stencil 

Acceptable level of accuracy 
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Spatial dispersion error 
Strong orthorhombic, cube stencil 

Acceptable level of accuracy 
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Spatial dispersion error 
Weak orthorhombic, cube stencil 

Acceptable level of accuracy 
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Spatial dispersion error 
VTI, cube stencil 

Acceptable level of accuracy 
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Cost comparison 
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Stored wavefields  1 

140 

(21-sized cube) Computation (+ and ) 
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Cost comparison 

Computation hides latency 

Highly parallelizable 

Better cache reuse 



Application to inhomogeneous media 

• Spatially varying operator 

• Exact solution requires calculation of operator 

for every present model parameters. 
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Application to inhomogeneous media 

• Spatially varying operator 

• Exact solution requires calculation of operator 

for every present model parameters  

      => expensive 

• Approximation: compute operators for a number 

of reference model parameters 

• Reference selection: Lloyd algorithm (Clapp, 

2006) 

• Interpolation of operators 
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Lloyd algorithm for reference selection 
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Lloyd algorithm for reference selection 
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No interpolation 
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Operator interpolation: linear 
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Conclusions 

• Shear artifacts can be removed completely by 

wavenumber-domain eigenvalue decomposition. 

• Proposed method can be applied in wavenumber 

domain or space-time domain. 

• Lower degree of anisotropy, smaller operator 

     => possible hybrid scheme  

• Dense operator is computationally expensive, but 

highly parallelizable and has better cache reuse. 

• Application in inhomogeneous media by operator 

interpolation is stable and acceptably accurate. 
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