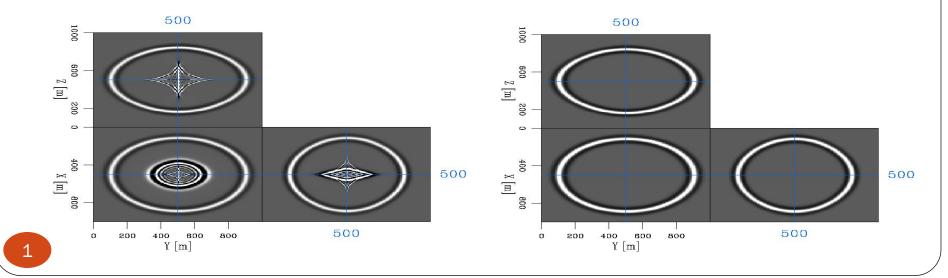
Removing Shear Artifacts in Acoustic Anisotropic Modeling

Huy Le*, Stewart A. Levin, Robert G. Clapp, and Biondo Biondi SEP 152, p. 129-140



Outline

- 1. Acoustic approximation and shear artifacts
- 2. Existing methods
- 3. Proposed method
- 4. Accuracy and cost estimates
- 5. Application to inhomogeneous media
- 6. Conclusions

Shear artifacts

- Exact wave equations in anisotropic media couple P and S.
- Acoustic approximation: setting S-velocity along symmetry axes to 0 (Alkhalifah, 1998)
- S-velocity is not 0 everywhere (Grechka et al., 2004).

Existing methods

- 1. Put the source in isotropic region (Alkhalifah, 1998)
 - Limited application
 - Converted shear artifacts
- 2. In VTI, use finite shear velocity (Fletcher et al., 2004)
 - What shear velocity to choose?
 - Real shear wave
- 3. Factorize the dispersion relation (majority)
 - Applicable with source in any media
 - No shear velocity choice

Proposed method

- Factorize dispersion relation to decouple P and S
- Dispersion relation in VTI:
 cubic = quadratic of P and SV + linear of SH
- \Rightarrow factorization can be done analytically.
- Similar to elastic wave mode separation (Dellinger and Etgen, 1990; Yan and Sava, 2009)
- In orthorhombic: eigenvalue decomposition

Acoustic wave equations in orthorhombic media $\frac{\partial^2}{\partial t^2} \boldsymbol{\sigma} = M \mathbf{D} \boldsymbol{\sigma}$ $\boldsymbol{\sigma} = \begin{bmatrix} \boldsymbol{\sigma}_{11} & \boldsymbol{\sigma}_{22} & \boldsymbol{\sigma}_{33} \end{bmatrix}^T$ $\frac{\partial^2}{\partial x^2}$ $M = \frac{1}{\rho} \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{12} & c_{22} & c_{23} \\ c_{13} & c_{23} & c_{33} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} \overline{\partial} \\ \overline{\partial} \\ \overline{\partial} \\ \mathbf{D} \end{bmatrix}$

$$\frac{\partial^2}{\partial t^2} \boldsymbol{\sigma} = M \mathbf{D} \boldsymbol{\sigma}$$

$$\frac{\partial^2}{\partial t^2} \boldsymbol{\sigma} = M \mathbf{D} \boldsymbol{\sigma}$$

 $M\mathbf{D} = Q\mathbf{\Lambda}Q^{-1}, \mathbf{\Lambda} = diag |\mathbf{\lambda}_i|$

$$\frac{\partial^2}{\partial t^2} \boldsymbol{\sigma} = M \mathbf{D} \boldsymbol{\sigma}$$

$$M\mathbf{D} = Q\mathbf{\Lambda}Q^{-1}, \, \mathbf{\Lambda} = diag[\mathbf{\lambda}_i]$$

 $\mathbf{\sigma}^q = Q^{-1} \mathbf{\sigma}$: projection on row vectors

$$\frac{\partial^2}{\partial t^2} \boldsymbol{\sigma} = M \mathbf{D} \boldsymbol{\sigma}$$

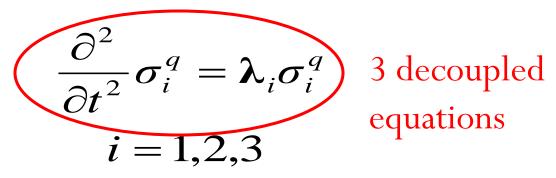
$$M\mathbf{D} = Q\mathbf{\Lambda}Q^{-1}, \, \mathbf{\Lambda} = diag[\mathbf{\lambda}_i]$$

 $\mathbf{\sigma}^q = Q^{-1}\mathbf{\sigma}$: projection on row vectors

$$\frac{\partial^2}{\partial t^2} \sigma_i^q = \lambda_i \sigma_i^q$$
$$i = 1.2.3$$

 $\frac{\partial^2}{\partial t^2} \boldsymbol{\sigma} = M \mathbf{D} \boldsymbol{\sigma}$ system of 3 coupled equations $M \mathbf{D} = Q \boldsymbol{\Lambda} Q^{-1}, \ \boldsymbol{\Lambda} = diag [\boldsymbol{\lambda}_i]$

 $\mathbf{\sigma}^q = Q^{-1} \mathbf{\sigma}$: projection on row vectors





Degenerate case: Isotropic $\lambda_1 = -k_x^2 - k_y^2 - k_z^2$: Laplacian $\lambda_2 = \lambda_3 = 0$ $\boldsymbol{\sigma}^{q} = \begin{bmatrix} p \\ 0 \\ 0 \end{bmatrix} : \text{ pressure}$

Proposed method: use **eigenvalues** as propagators (elastic wave mode separation: projection on **eigenvectors**)

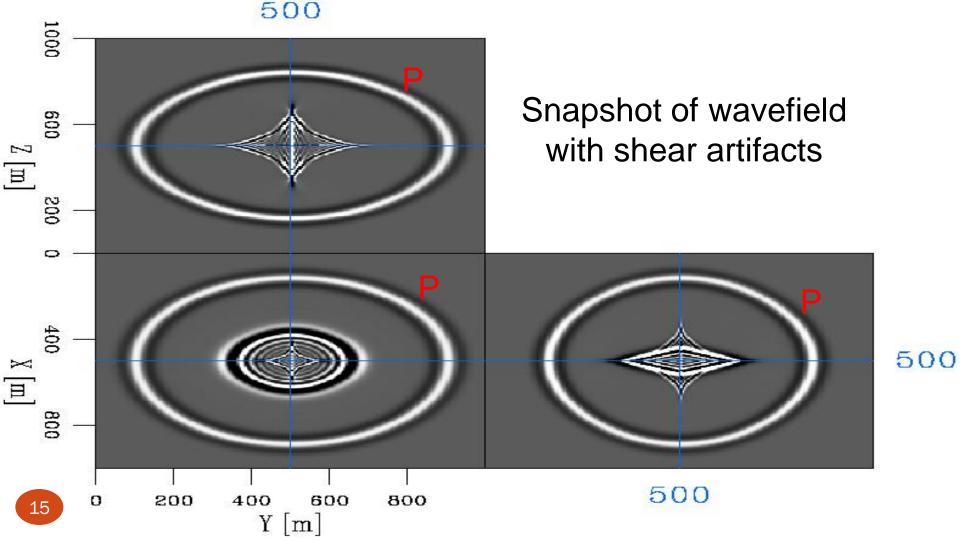
Wavenumber domain method

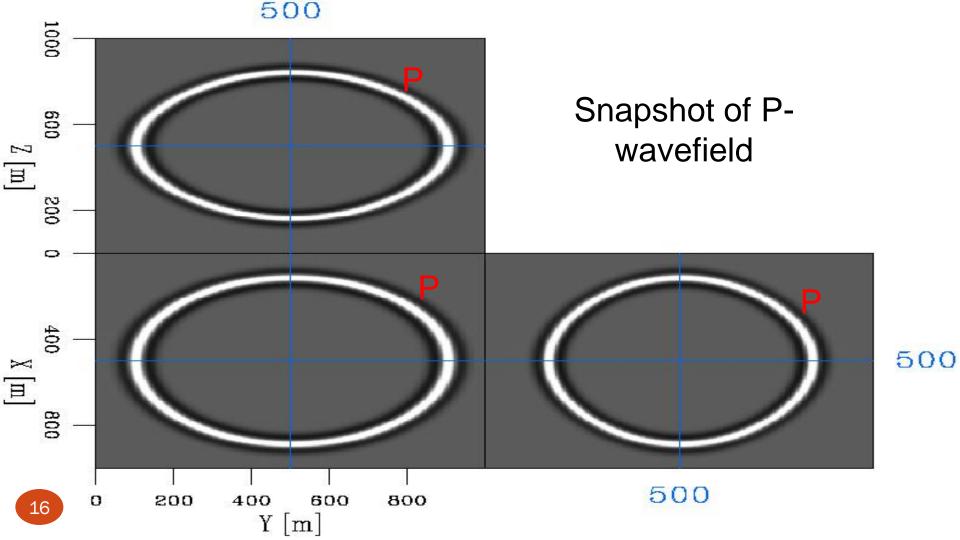
For all *k*'s:
$$M\widetilde{\mathbf{D}} = Q\widetilde{\Lambda}Q^{-1}, \widetilde{\Lambda} = diag\left[\widetilde{\lambda}_{i}(k)\right]$$

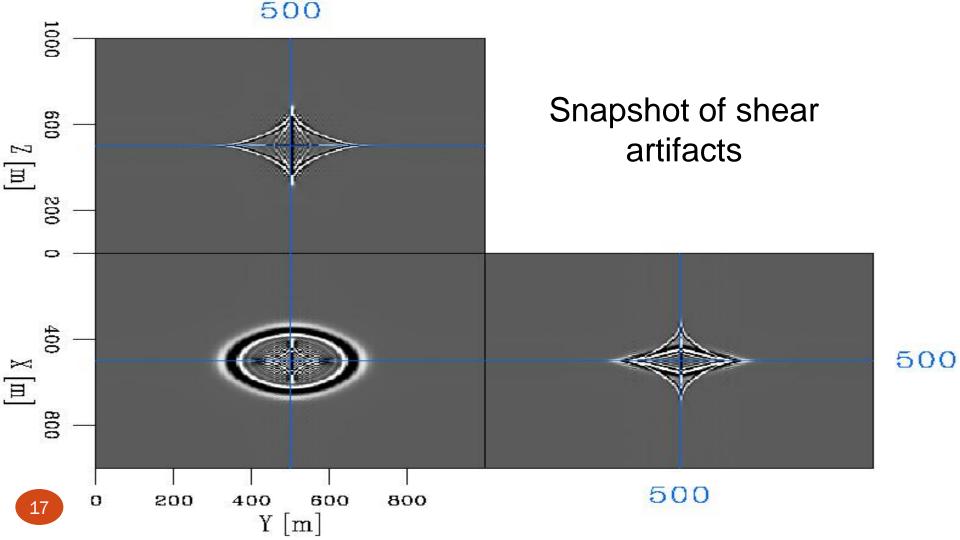
Choose eigenvalue corresponding to P-wave

Option 1:
$$p(x) \rightarrow \widetilde{p}(k)$$

 $\frac{\partial^2 \widetilde{p}}{\partial t^2} = \widetilde{\lambda}_i(k) \widetilde{p}(k)$







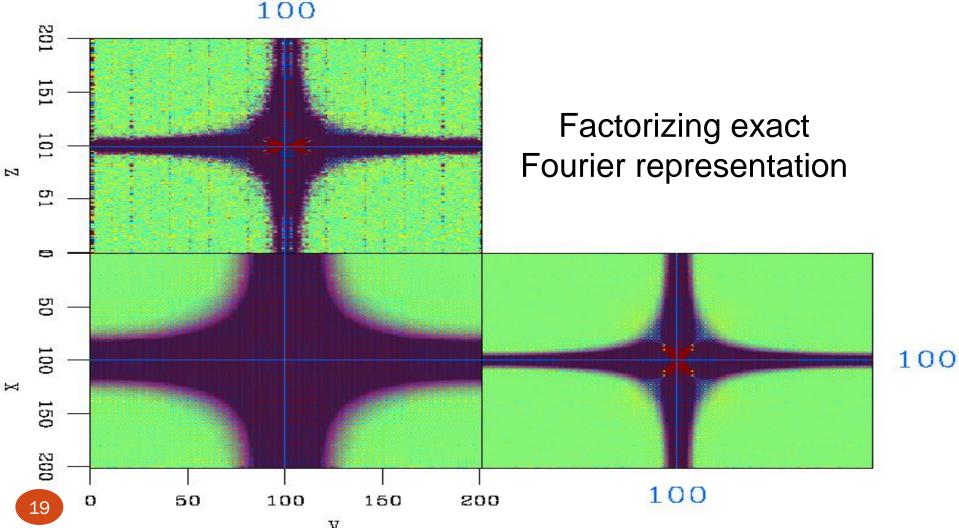
Space-time domain method

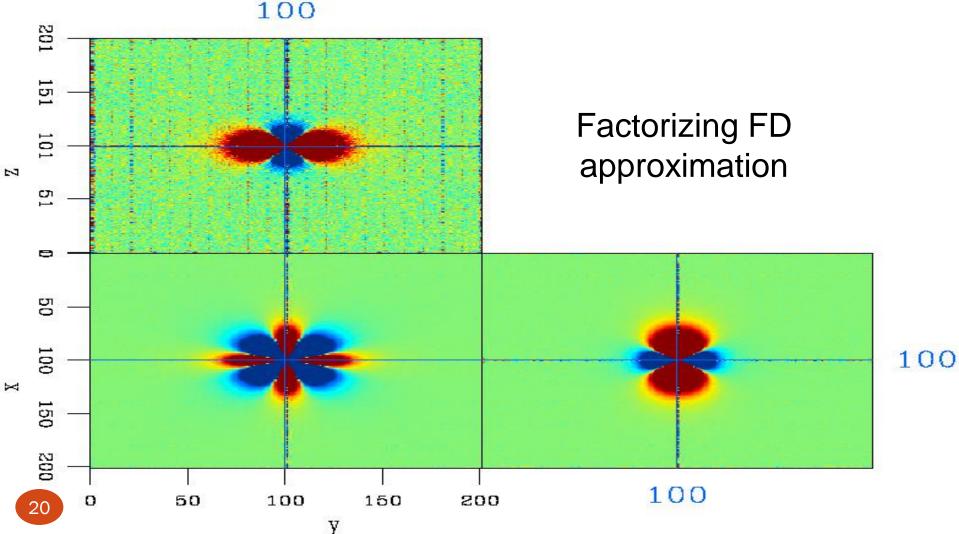
For all *k*'s:
$$M\widetilde{\mathbf{D}} = Q\widetilde{\Lambda}Q^{-1}, \widetilde{\Lambda} = diag\left[\widetilde{\lambda}_{i}(k)\right]$$

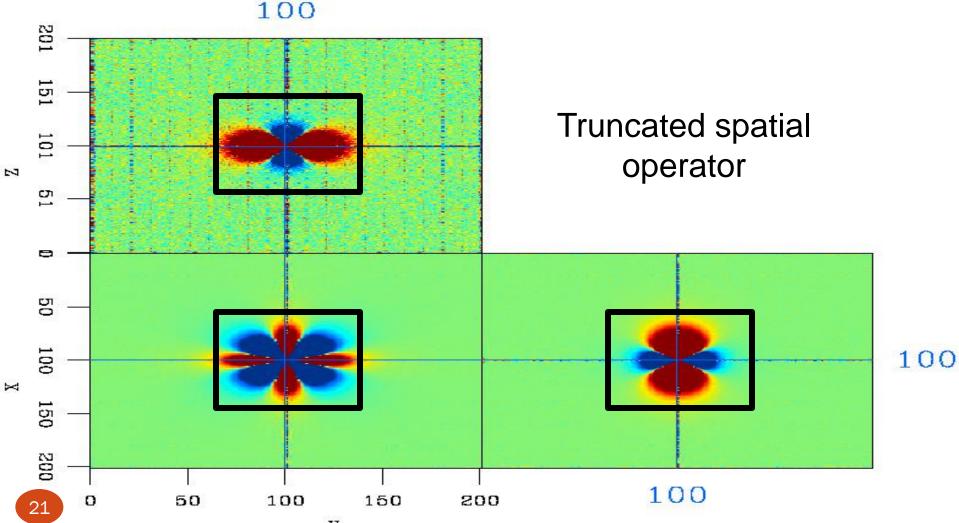
Choose eigenvalue corresponding to P-wave

$$\widetilde{\lambda}_i(k) \rightarrow \lambda_i(x)$$

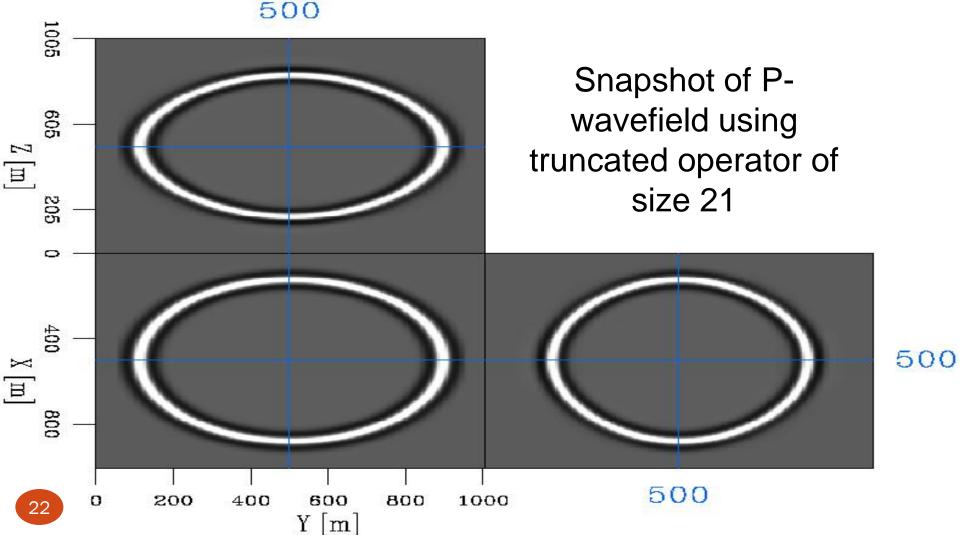
$$\frac{\partial^2 p}{\partial t^2} = \lambda_i(x) * p(x)$$

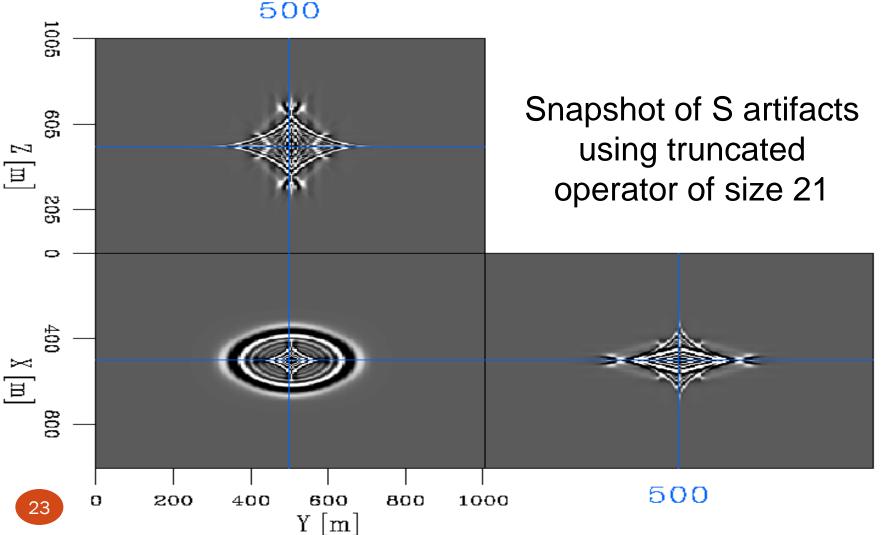






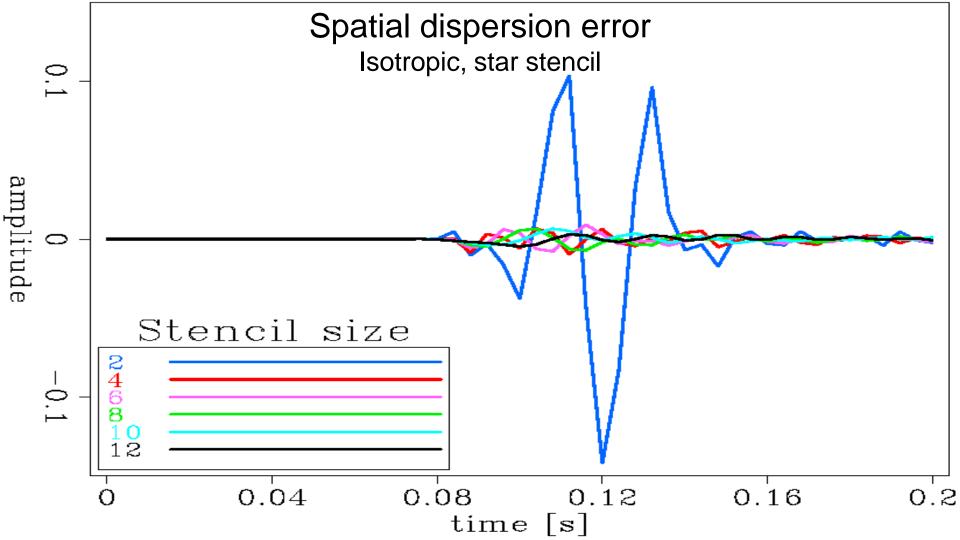
У

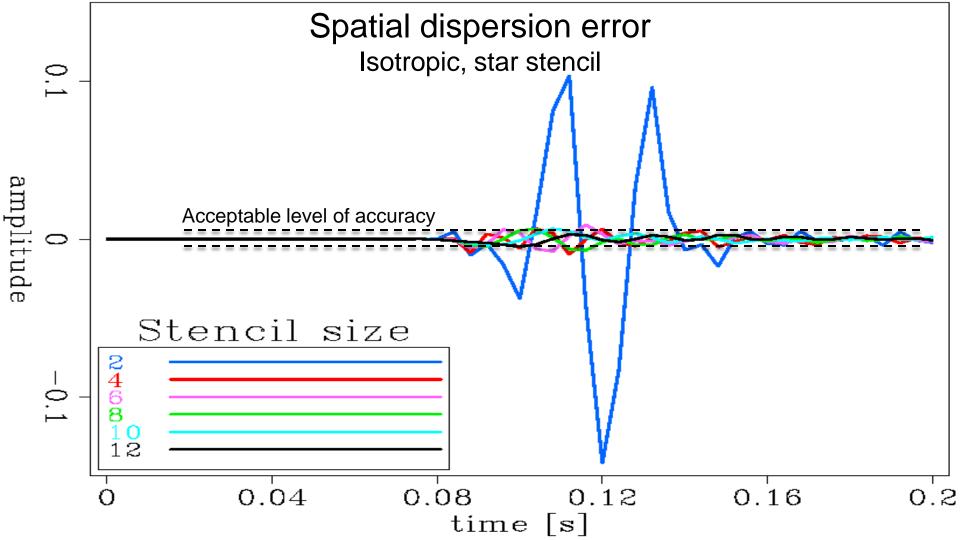


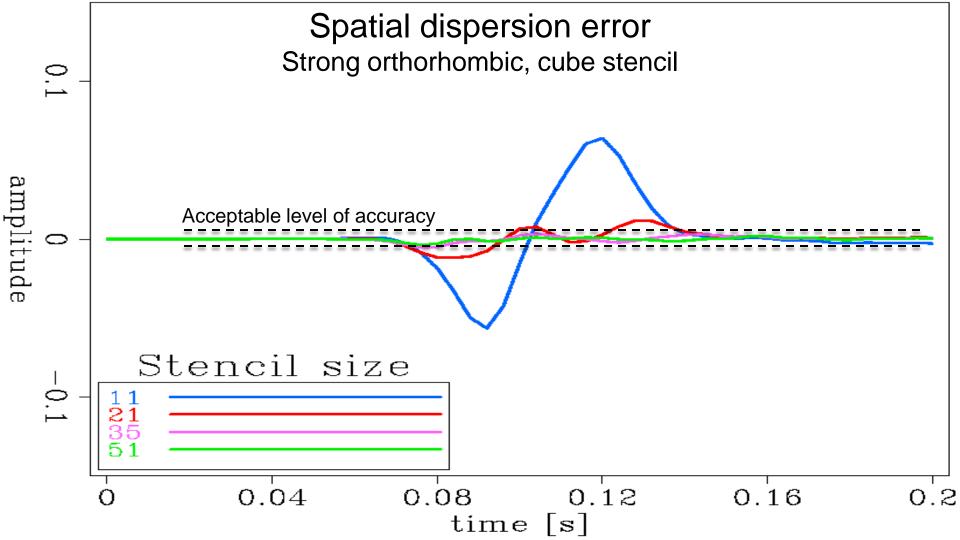


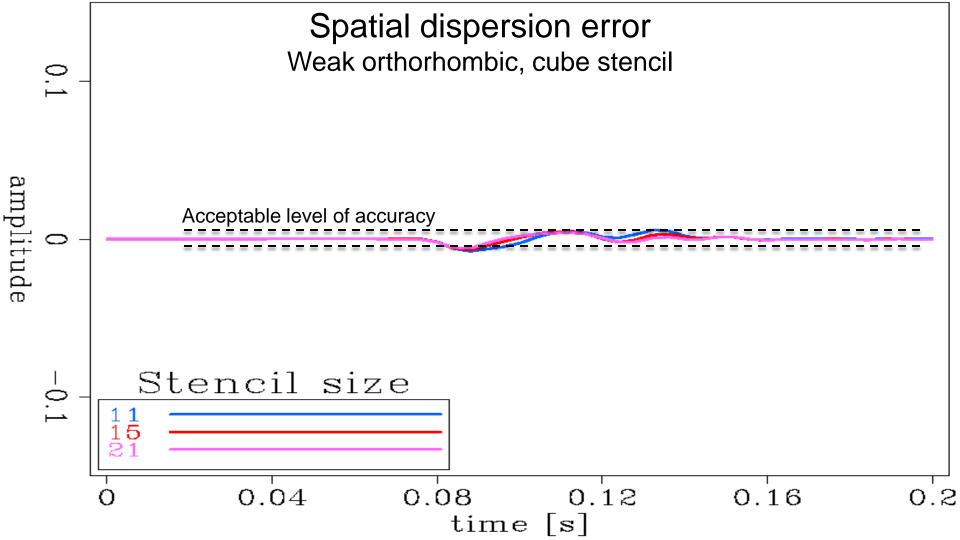
Operator's accuracy after truncation

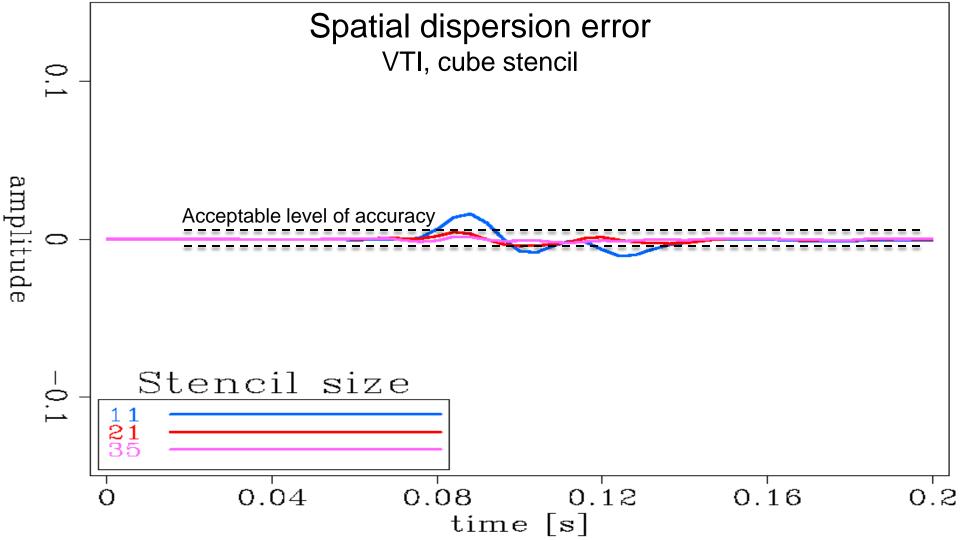
- Wavenumber domain: accurate but slow
- Spatial domain: less accurate but fast
- Both use 2nd-order temporal FD, same time steps, and spatial discretizations
 => same temporal dispersion error
- Spatial subtracts wavenumber
 => spatial dispersion error

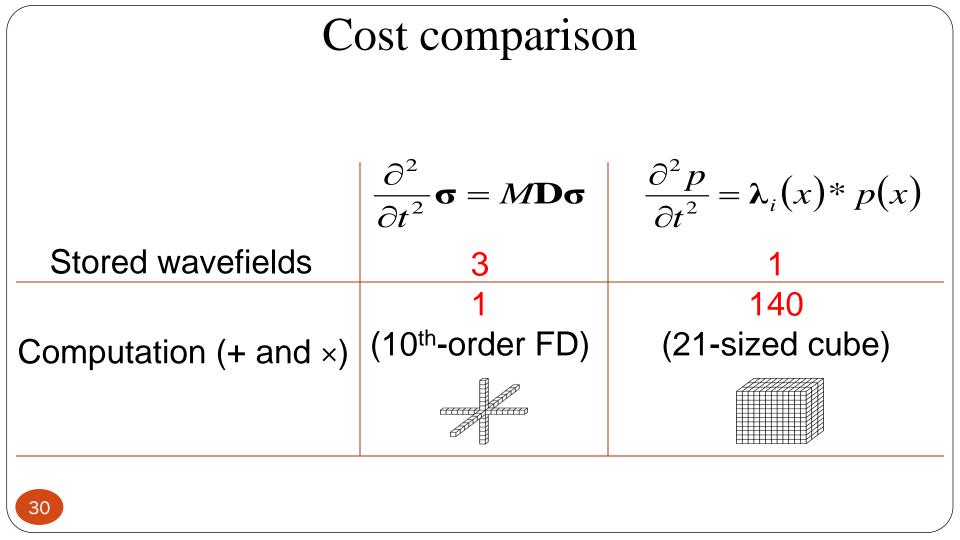




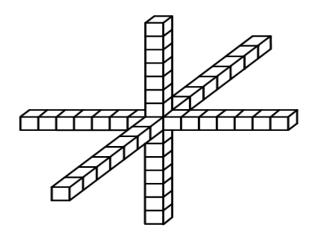


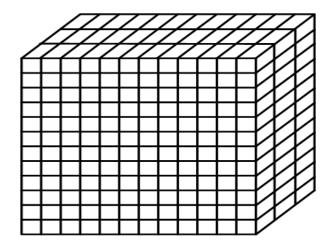






Cost comparison



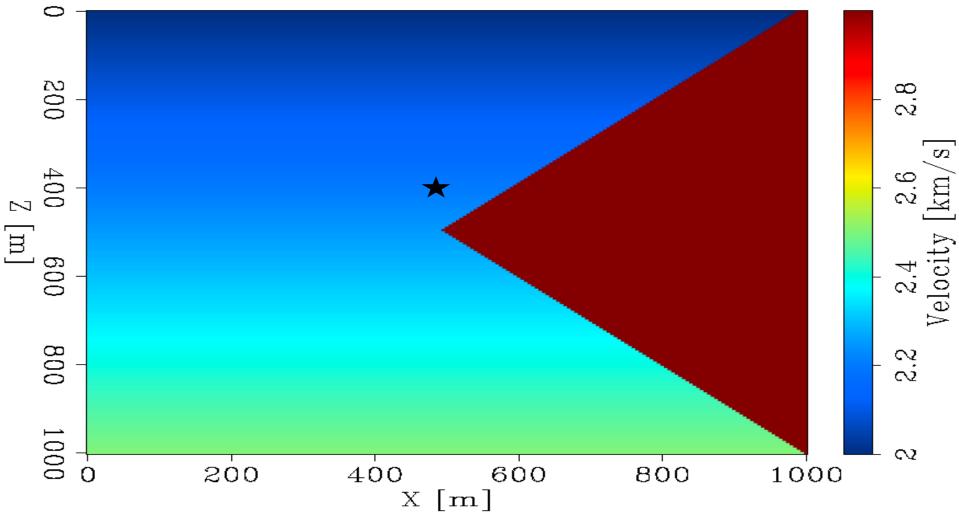


Computation hides latency Highly parallelizable Better cache reuse

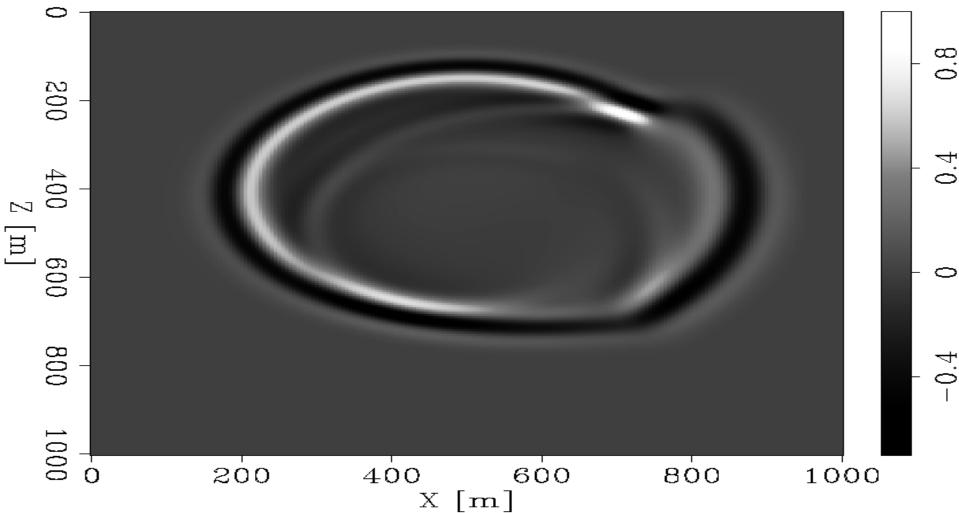
Application to inhomogeneous media

- Spatially varying operator
- Exact solution requires calculation of operator for every present model parameters.

True model

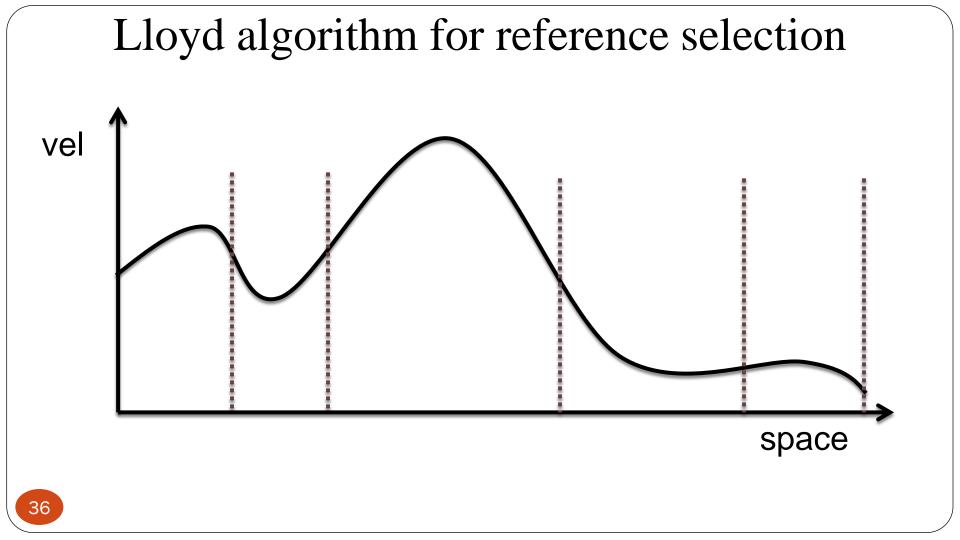


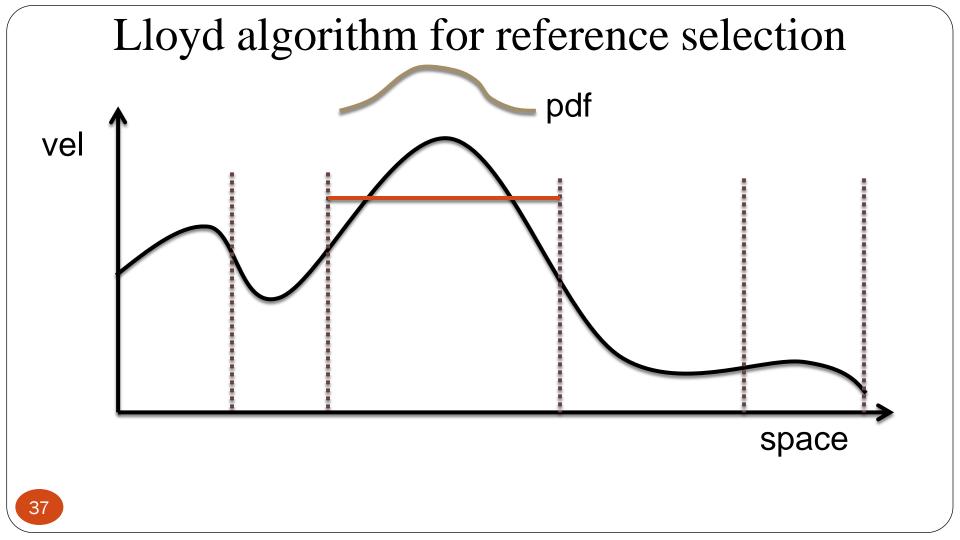
True wavefield

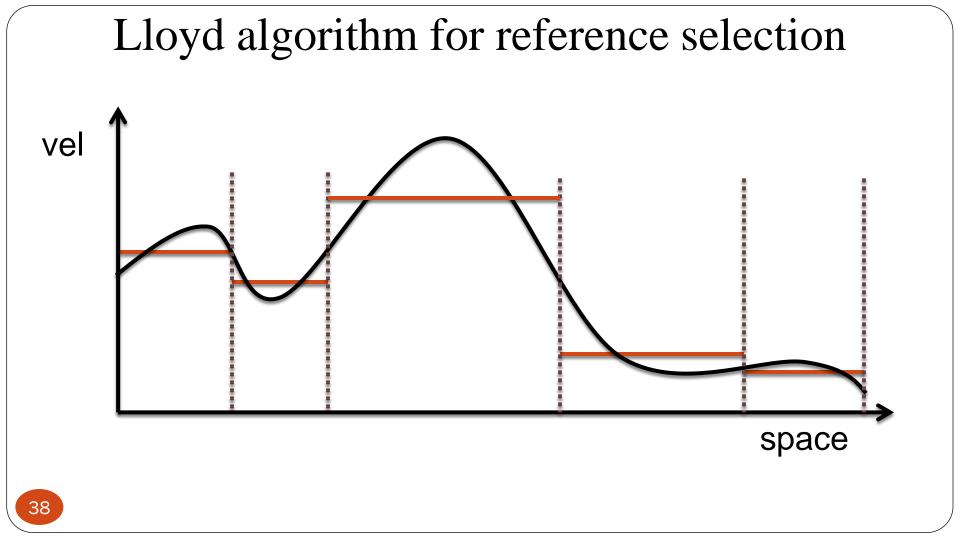


Application to inhomogeneous media

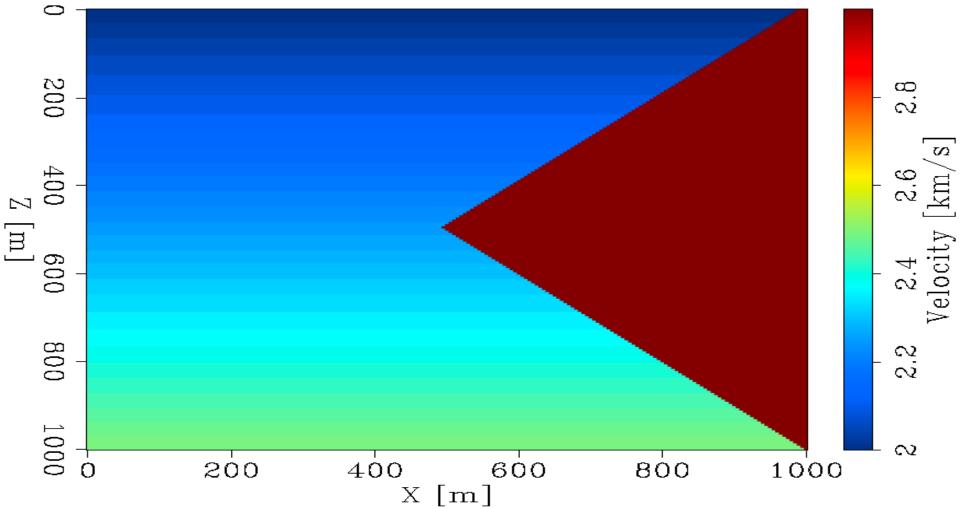
- Spatially varying operator
- Exact solution requires calculation of operator for every present model parameters => expensive
- Approximation: compute operators for a number of reference model parameters
 - Reference selection: Lloyd algorithm (Clapp, 2006)
- Interpolation of operators

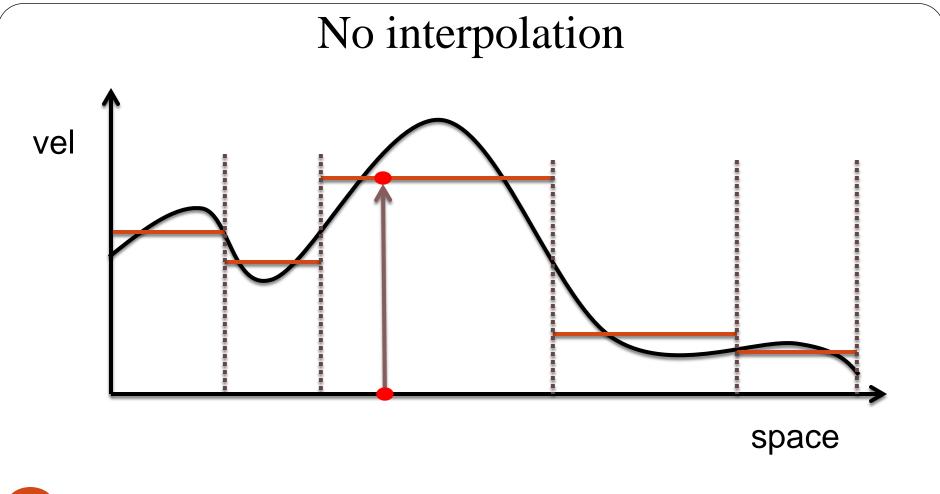




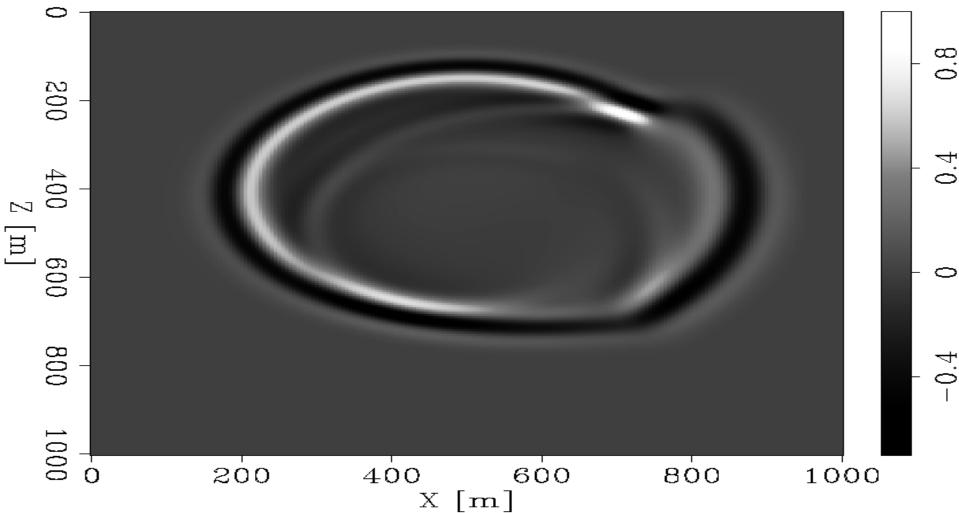


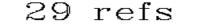
Model w/ 29 refs by Lloyd

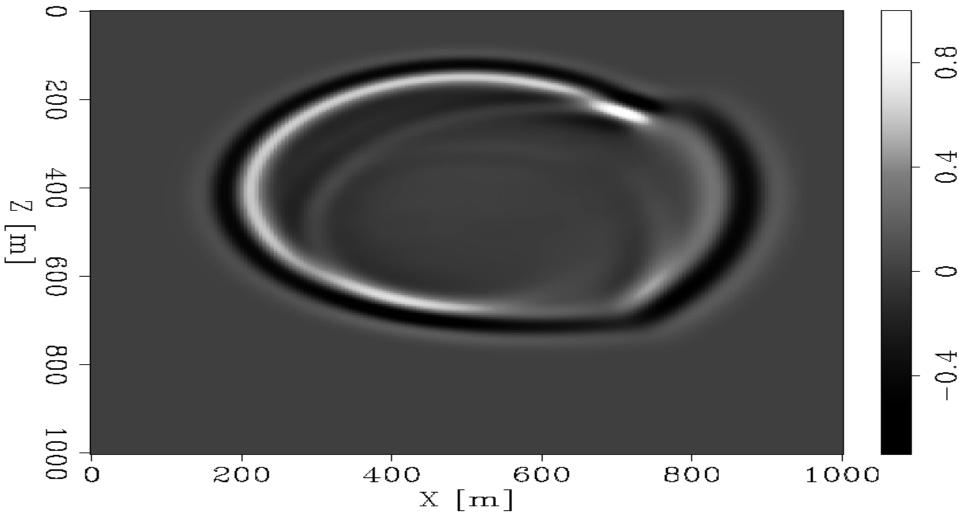


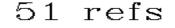


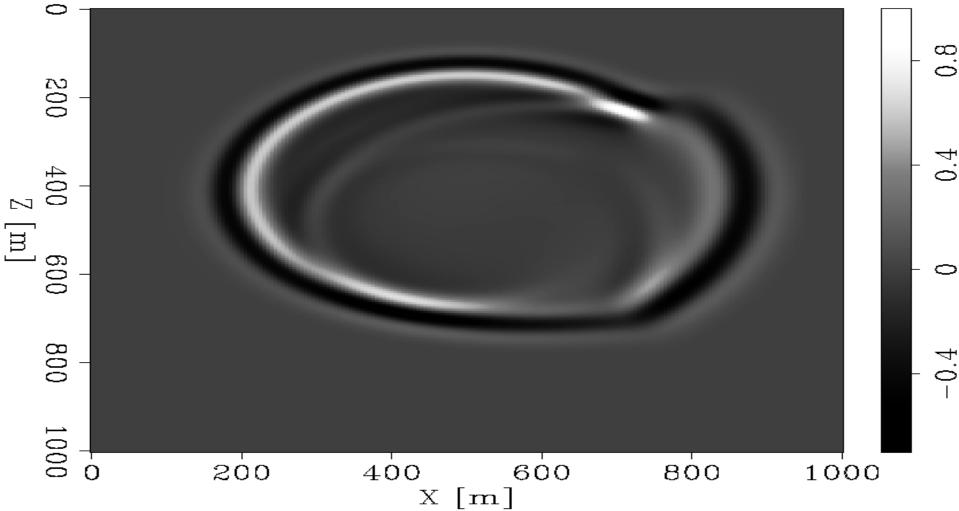
True wavefield

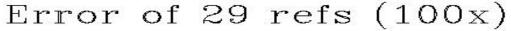


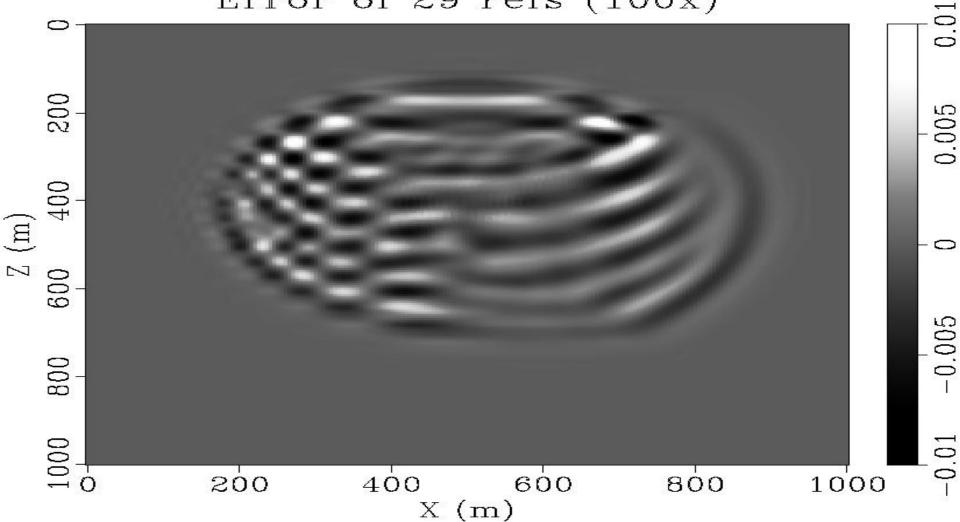




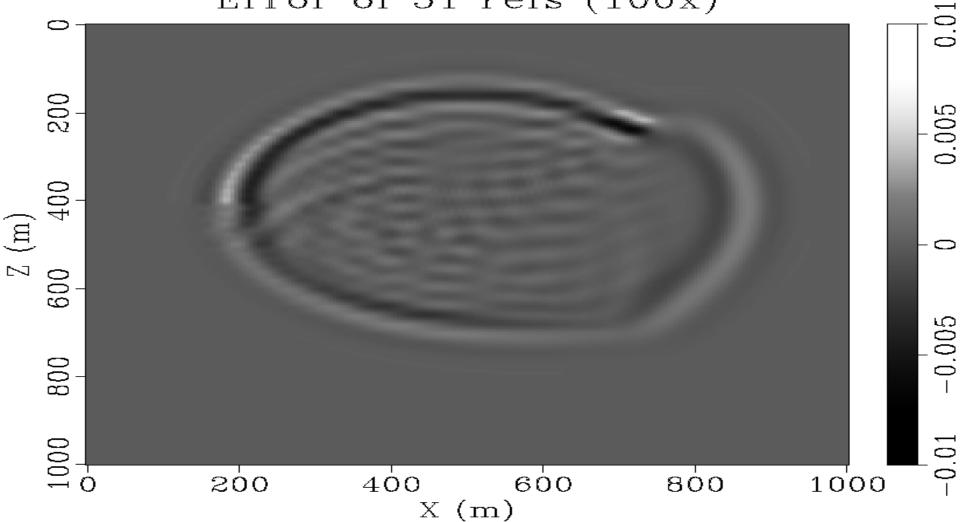


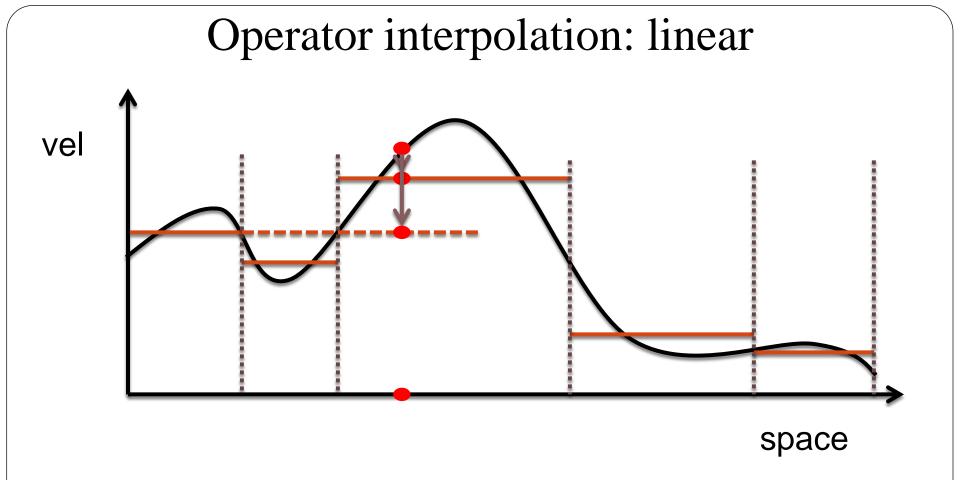




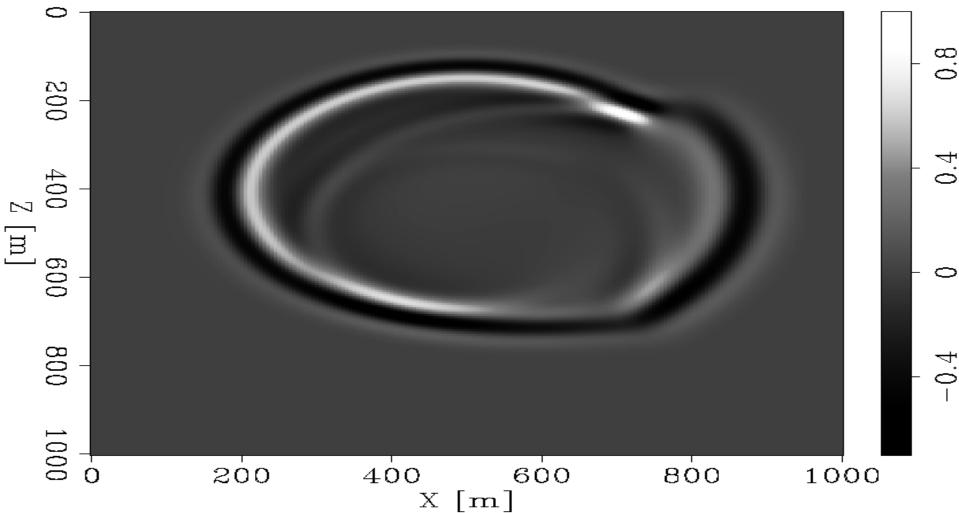


Error of 51 refs (100x)

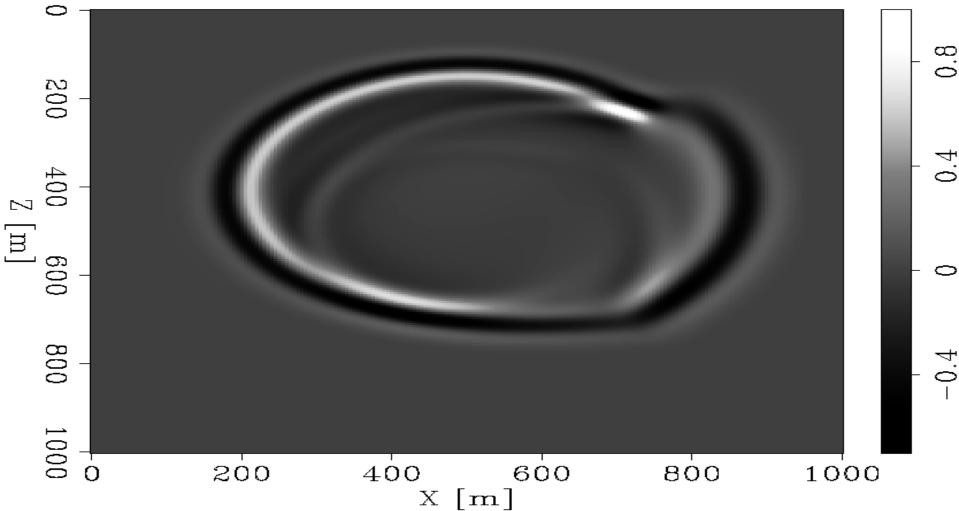




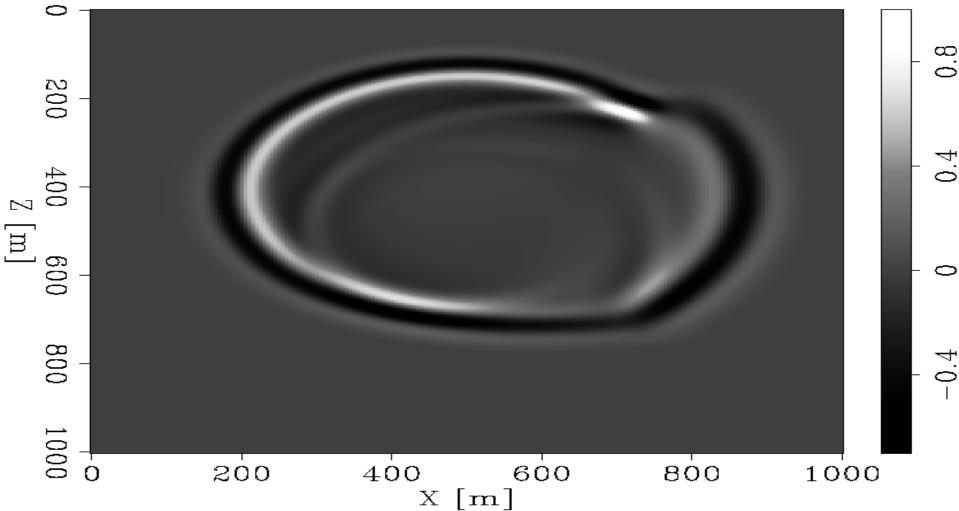
True wavefield



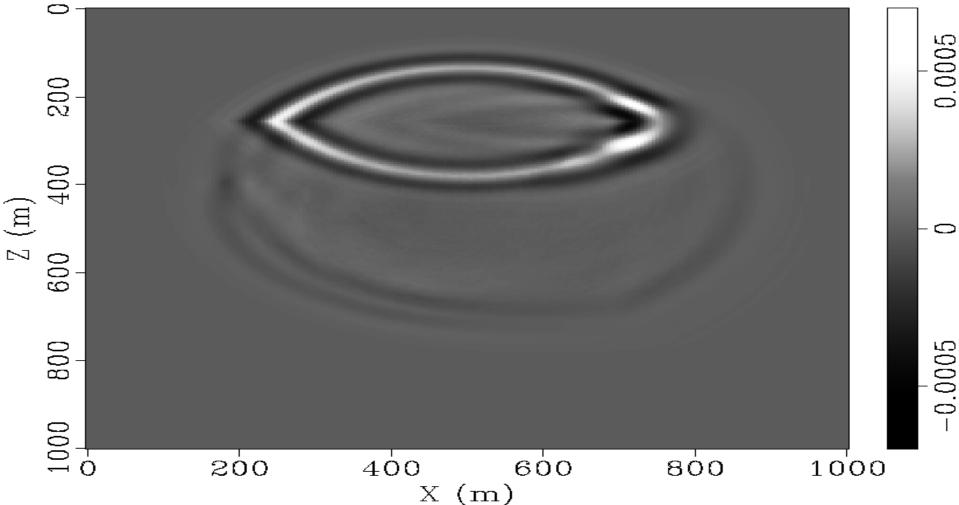
29 Lloyd refs, linear



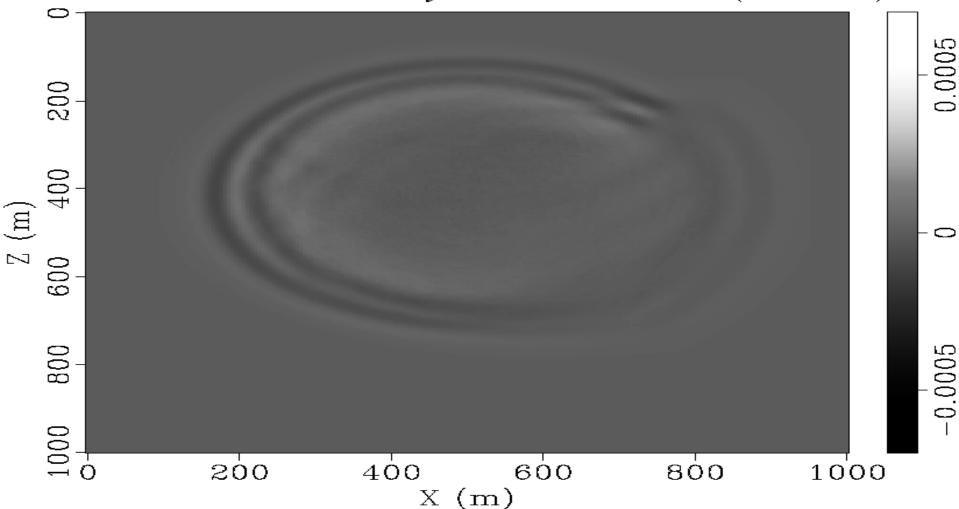
27 evenly refs, linear



Error of 29 Lloyd refs, linear (1000x)



Error of 27 evenly refs, linear (1000x)



Conclusions

- Shear artifacts can be removed completely by wavenumber-domain eigenvalue decomposition.
- Proposed method can be applied in wavenumber domain or space-time domain.
- Lower degree of anisotropy, smaller operator => possible hybrid scheme
- Dense operator is computationally expensive, but highly parallelizable and has better cache reuse.
- Application in inhomogeneous media by operator interpolation is stable and acceptably accurate.

Acknowledgements

- SEP sponsors
- Stanford School of Earth Sciences
- SEP colleagues, especially Ohad Barak and Elita (Yunyue) Li