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Shear artifacts

Exact wave eqguations in anisotropic media couple
PandS.

Acoustic approximation: setting S-velocity along
symmetry axes to 0 (Alkhalifah, 1998)

S-velocity is not 0 everywhere (Grechka et al.,

2004).




Existing methods

1. Put the source in isotropic region (Alkhalifah, 1998)
* Limited application
 Converted shear artifacts
2. In VTI, use finite shear velocity (Fletcher et al., 2004)
 What shear velocity to choose?
 Real shear wave
3. Factorize the dispersion relation (majority)
« Applicable with source in any media
 No shear velocity choice
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Proposed method

Factorize dispersion relation to decouple P and S
Dispersion relation in VTI:

cubic = quadratic of P and SV + linear of SH
factorization can be done analytically.

Similar to elastic wave mode separation (Dellinger
and Etgen, 1990; Yan and Sava, 2009)

In orthorhombic: eigenvalue decomposition




" Acoustic wave equations in orthorhombic media
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Decoupling orthorhombic wave equations
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Decoupling orthorhombic wave equations
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Decoupling orthorhombic wave equations
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Decoupling orthorhombic wave equations
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MD = QAQ ™, A = diag|, ]

c = VIDo

6% = Q ' : projection on row vectors
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" Decoupling orthorhombic wave equations

O* s — MDo system of 3
ot*? coupled equations

MD = QAQ ', A =diag|a,]

6% = Q ' : projection on row vectors

3 decoupled

equations
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Two S artifacts

Projections on row vectors

SH

P wave




Degenerate case: Isotropic

h, = —kZ — kj —k? :Laplacian
A, =2r, =0

i p_ . pressure
' =|0

_O_

Proposed method: use eigenvalues as propagators
(elastic wave mode separation: projection on eigenvectors)




Wavenumber domain method

———

For all kKs: MD = QKQ_l, A = diag [)T,, (k)]
Choose eigenvalue corresponding to P-wave

Option 1: p(x) — p(k)

2P RK)BK)
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Space-time domain method

———

For all kKs: MD = QKQ_l, A = diag [)T,, (k)]

Choose eigenvalue corresponding to P-wave

Option 2: ii (k) — 2, (x)
7P 2,00 p(x)
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Operator’s accuracy after truncation

Wavenumber domain: accurate but slow
Spatial domain: less accurate but fast

Both use 2"d-order temporal FD, same time
steps, and spatial discretizations

=> same temporal dispersion error

Spatial subtracts wavenumber

=> spatial dispersion error
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Weak orthorhombic, cube stencil
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Cost comparison

O 0%
_6 = MDo at'j = . (x)* p(x)
Stored wavefields 3 1
1 140

Computation (+ and x)

(10th-order FD)

|||||||

(21-sized cube)
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Cost comparison

Computation hides latency
Highly parallelizable
Better cache reuse




Application to inhomogeneous media

Spatially varying operator
Exact solution requires calculation of operator
for every present model parameters.
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Tr1ue wavefield




Application to inhomogeneous media

Spatially varying operator

Exact solution requires calculation of operator

for every present model parameters

=> expensive

Approximation: compute operators for a number

of reference model parameters

 Reference selection: Lloyd algorithm (Clapp,
20006)

Interpolation of operators
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Lloyd algorithm for reference selection
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Lloyd algorithm for reference selection
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Tr1ue wavefield
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Error of 51 refs (100x)
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Operator interpolation: linear
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Conclusions

Shear artifacts can be removed completely by
wavenumber-domain eigenvalue decomposition.
Proposed method can be applied in wavenumber
domain or space-time domain.

Lower degree of anisotropy, smaller operator

=> possible hybrid scheme

Dense operator is computationally expensive, but
highly parallelizable and has better cache reuse.
Application in inhomogeneous media by operator
Interpolation is stable and acceptably accurate.
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