RMO-based wave-equation MVA: A WAZ field data example. Part I

Y. Zhang and B. Biondi June, 2014 SEP-152, pp227-246

RMO: Residual moveout MVA: Migration velocity analysis WAZ: Wide azimuth

Stanford Exploration Project

Outline (E-Octopus phase III, GOM)

- Geological settings
- Acquisition geometry
- Data regularization
- Data pre-processing
- Initial migration and illumination study
- Target region identification
- 3-D ODCIGs and ADCIGs

Stanford Exploration Project ²

Regional geological structure

Wilcox Fault Systems Upper Eocene Fault Systems Vicksburg Detachments Salt Domes/ Minibasins Oligocene Detachments Miocene Detachments Plio-Pleistocene Detachments Tabular Salt/ Minibasins Shallow Salt

Nominal acquisition settings

Courtesy of Schlumberger

Nominal acquisition settings, cont.

Courtesy of Schlumberger

Rose diagram, azimuth coverage

Overall source/receiver coverage

Overall source/receiver coverage

sources

receivers

Data regularization, reduce 11TB to 1.9TB

- Geometry rotation
- Sort by common-shot gathers. Pass A shot lines and Pass B shot lines separately.
- Increase inline receiver spacing to 25m
- Discard source-receiver pairs far away from the velocity model
- Group four neighboring shots (<75m inline) into one, reduce total No. of shots by 4x

Data frequency spectrum

Data pre-processing before migration

- Mute all events above water-bottom reflections
- Gain the data at later time value (Tpow)
- Using the frequency data in range [5Hz,20Hz], further reduce the data size and computation cost

Velocity model for migration

The transform of offset -> angle 3D CIGs

- 1. Perform Fourier transform $I(hx, hy, x, y, z) \rightarrow I(hx, hy, k_x, k_y, k_z)$.
- 2. For each (k_x, k_y, k_z) ,
 - apply Fourier transform $I(hx, hy) \rightarrow I(k_{hx}, k_{hy})$
 - map $I(k_{hx}, k_{hy}) \rightarrow I(\gamma, \phi)$ based on the following relations (Tisserant and Biondi, 2003):

$$\begin{bmatrix} k'_x \\ k'_y \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} k_x \\ k_y \end{bmatrix}$$
$$k'_{hx} = k_z \sqrt{1 + (k'_y/k_z)^2} \tan \gamma$$
$$k'_{hy} = \frac{k'_y k'_x k'_{hx}}{k'_y^2 + k_z^2}$$
$$\begin{bmatrix} k_{hy} \\ k_{hy} \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} k'_{hx} \\ k'_{hy} \end{bmatrix}.$$

3. Apply inverse Fourier transform $I(\gamma, \phi, k_x, k_y, k_z) \rightarrow I(\gamma, \phi, x, y, z)$.

Angle to offset mapping, irregularity

 (γ, ϕ)

 (k_{hx}, k_{hy})

60 degs

80 degs cross-line

တ Benered (Bross) (Proved Bross) (i) ******* (iii) (ii Dotter - 1) the contract of the differences of the A the second se second sec Hotel to the second sec ∞ z(km) 10 <u>し</u> こ

d egs

တ Perfectors and a contract of the sector of t A CONTRACT (CONTRACT)) CONTRACT How to the second of the second secon A CONTRACT OF A A CONTRACTOR (CONTRACTOR (CONTRACTOR)) () References and the control of the second 0000 ··· (1110 · ∞ z(km) 10 <u>し</u>

degs

တ Allow the second ADD COMPANY CONTRACTOR CONTRACTON (i) (i) (ii) (iii) (i Sporters in the state of strengthing the TO A DESIGN OF THE DAY OF THE DEBEN OF BRIDE AN ALL BRIDE A CONTRACT OF A ∞ z(km) 10 <u>し</u> こ

degs

တ Accession of the second The other determines and the second s A DAY MARK AND A DAY OF A DAY Define on particular and the real of ∞ z(km)10 <u>い</u>

degs

တ Accession of the second Constant and the second second The second secon A second statement second s CONTRACTOR CONTRACTOR OF A CON A CONTRACTOR OF A DESCRIPTION OF A DESCR STORE IN CONCENSION OF A DESCRIPTION OF Contraction of the contraction of the contraction ∞ z(km)10 <u>い</u>

80 degs

Conclusion

- We successfully applied our imaging algorithm on a largescale 3-D field WAZ data set
- By careful data regularization and pre-processing, we are able to make the computational cost affordable on our academic computing cluster
- The computed 3-D ADCIGs demonstrated clearly indicates the room for velocity improvement in the target subsalt area

Future work

- Further tune our RMO-based WEMVA method on this data set to achieve more model improvement
- Test the compressive-sensing based ADCIGs reconstruction on this 3-D imaging example

Acknowledgement

- Schlumberger
- Bob Clapp, Dave Nichols, Elita Li, Yaxun Tang

Stanford Exploration Project ³³

Questions? yang@sep.stanford.edu

Stanford Exploration Project ³⁴