Approximating Q propagation to speed up finite differences

Robert Clapp

Standard single shot

migration (m)

Outline

Motivation

Accelerating migration
Approximating Q

Speedup

mplementation

Variable single shot migration

migration (m)

Outline

Motivation

Accelerating migration
Approximating Q

Speedup

Implementation

Finite-difference constraints

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Migration examples

Stability: $v_{max} \frac{dt}{d_{min}}$

Grid dispersion:

Finite-difference constraints

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Migration examples

Stability: $v_{max} \frac{dt}{d_{min}} < .5$

Grid $\frac{v_{min}}{f_{max}d_{max}} > 3.2$ dispersion:

Finite-difference constraints

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Migration examples

Stability: $v_{max} \frac{dt}{d_{min}} < .5$

Grid dispersion:

$$\frac{v_{min}}{f_{max}d_{max}} > 3.2$$

Higher order stencil less grid dispersion error

Go through data using a pencil pattern

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Vectorize your code

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Pencils less bandwidth contention on multi-core

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Follow the wave-field

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Follow the wave-field

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Follow the wave-field

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Speeding up RTM

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

- High-order stencils
 - Space domain 12-30th order
 - 4th order in time
- Go through grid in pencil shapes
- Vectorize the code
- Follow the wave-field

Speeding up Downward continuation

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

- FFD and/or smart choice of reference velocities
- Follow the wave-field
- Use different grid sampling at different frequencies (large cells at larger frequencies)
- Stop downward continuing higher frequencies at certain depths

Speeding up Downward continuation

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

- FFD and/or smart choice of reference velocities
- Follow the wave-field
- Use different grid sampling at different frequencies (large cells at larger frequencies)
- Stop downward continuing higher frequencies at certain depths

Models of Q

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

- Q varies as a function of frequency and material (spatially)
- Q is constant as a function of frequency and varies spatially
- As we increase in depth frequencies have decayed to the point of being unimportant
- As we increase in time useful frequencies decrease

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

$$\left[\eta \mathbf{L} + \tau \mathbf{H} \frac{\mathbf{d}}{\mathbf{dt}} - \mathbf{v}^{-2} \frac{\partial^2}{\partial \mathbf{t}^2} \right] P(t) = f(t)$$

$$\mathbf{L} = \left(-\nabla^{\mathbf{2}}\right)^{\gamma + 1}$$

$$\mathbf{H} = \left(-\nabla^2\right)^{\gamma + \frac{1}{2}}$$

$$\eta = -v^{2\gamma} w_0^{-2\gamma} \cos \pi \gamma$$

$$\eta = -v^{2\gamma} w_0^{-2\gamma} \cos \pi \gamma \qquad \tau = -v^{2\gamma - 1} w_0^{-2\gamma} \sin \pi \gamma$$

$$\gamma = \frac{1}{\tan^{-1} \frac{1}{Q}}$$

Outline

Motivation

Accelerating migration

Approximating O

Speedup

mplementation

Migration examples

$$\left[\eta \mathbf{L} + \tau \mathbf{H} \frac{\mathbf{d}}{\mathbf{dt}} - \mathbf{v}^{-2} \frac{\partial^{2}}{\partial \mathbf{t}^{2}} \right] P(t) = f(t)$$

Dispersion component from attenuation

$$\mathbf{H} = \left(-\nabla^2\right)^{\gamma + \frac{1}{2}}$$

$$\tau = -v^{2\gamma - 1}w_0^{-2\gamma}\sin\pi\gamma$$

$$\gamma = \frac{1}{\tan^{-1} \frac{1}{Q}}$$

 $\overline{\text{OS }\pi\gamma}$

Outline

Motivation

Accelerating migration

Approximating O

Speedup

mplementation

$$\left[\mathbf{v} + \mathbf{u} + \mathbf{u} + \mathbf{v} - \mathbf{v$$

$$L = (-5)$$
 Amplitude decay term

$$\eta = -v^{2\gamma} w_0^{-2\gamma} \cos \pi \gamma$$

$$\mathbf{H} = \left(-\nabla^{\mathbf{2}}\right)^{\gamma + \frac{1}{2}}$$

$$\tau = -v^{2\gamma - 1}w_0^{-2\gamma}\sin\pi\gamma$$

$$\gamma = \frac{1}{\tan^{-1} \frac{1}{Q}}$$

Outline

Motivation

Accelerating migration

Approximating O

Speedup

Implementation

$$\left(\nabla^2 - \tau \nabla^2 \frac{d}{dt} - v^{-2} \frac{\partial^2}{\partial t^2}\right) P(t) = f(t)$$

$$\tau = -v^{2\gamma - 1}w_0^{-2\gamma}\sin\pi\gamma$$

$$\gamma = \frac{1}{\tan^{-1} \frac{1}{Q}}$$

RTM imaging condition

Outline

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Migration examples

$$(\mathbf{Ps}) * (\mathbf{Pd})$$

s,d - Source and data

P - Propagation

- Standard approach
 - Higher frequencies don't exist because absent from data at larger times
 - Approximate Q approach
 - Higher frequencies don't exist, absent from source and data

Standard propagation

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Q with changing grid

Motivation

Accelerating migration

Approximating Q

Speedup

Implementation

Frequency change over time

Speedup vs Q

Outline

Motivation

Accelerating migration
Approximating Q

Speedup

Implementation

Following wave-field

Speedup over time

Total speedup

Motivation

Accelerating migration
Approximating

Speedup

Implementation

Modified RTM algorithm

Outline

Motivation

Accelerating migration
Approximating Q

Speedup

Implementation

Migration examples

Pre-calculation

For each source:

Source specific initialization

Forward propagate source

Back propagate source

RTM: Pre-calculation

Outline

Motivation

Accelerating migration
Approximating Q

Speedup

Implementation

Migration examples

Calculate first arrival travel time maps from every source/receiver position to every model point

RTM: Source initialization

Outline

Motivation

Accelerating migration
Approximating
O

Speedup

Implementation

- Break time axis into block
- For each time block
 - Find max propagation location for end of time block
 - Find max frequency which hasn't decayed below noise level
 - Calculate dt, damp based on max freq, min/max vel

RTM:

Forward propagate source

Outline

Motivation

Accelerating migration
Approximating
Q

Speedup

Implementation

- For each time block
 - Resample wave-fields, velocity to current sampling
 - Loop over time in block
 - Forward wave-fields using attenuated wave equation
 - Store source wave-field at imaging times

RTM:

Backward propagate receiver

Outline

Motivation

Accelerating migration Approximating Q

Speedup

Implementation

- For each time block
 - Resample wavefields, velocity, image to current sampling
 - Loop over time in block
 - Backward propagate receiver using standard wave equation
 - Apply imaging condition using stored source wave-field and current receiver wave-field

Standard single shot

migration (m)

Outline

Motivation

Accelerating migration
Approximating Q

Speedup

mplementation

Variable single shot migration migration (m)

Outline

Motivation

Accelerating migration
Approximating
O

Speedup

Implementation

Conclusions

Outline

Motivation

Accelerating migration
Approximating

Speedup

Implementation

- Constant Q can be cheaply approximated into a standard time/space domain propagation
- Approach allows for larger grid cells at later times
- Combined with following the wave-field it can lead to significant speedups
- * Messing with the wavelet