

Domain decomposition of level set updates for salt segmentation

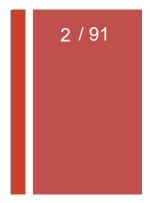
Taylor Dahlke 5/19/2015

SEP 158, pg. 51



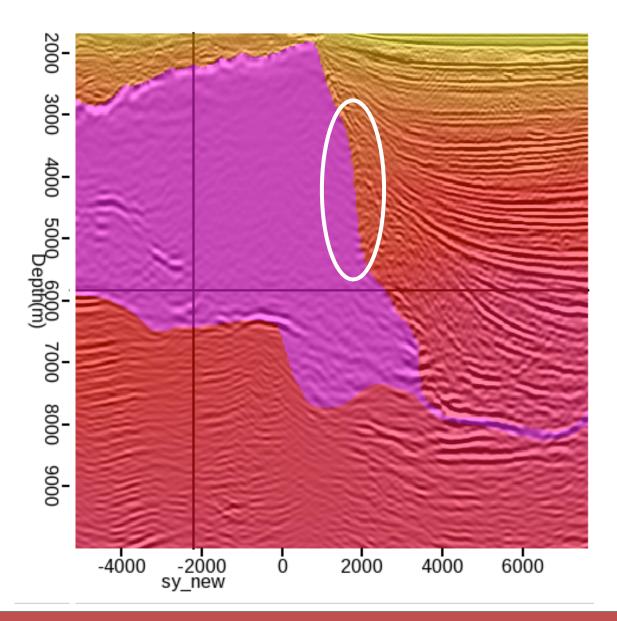
Outline

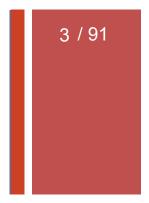
- What are the problems?
- Why level sets?
- Why domain decomposition?



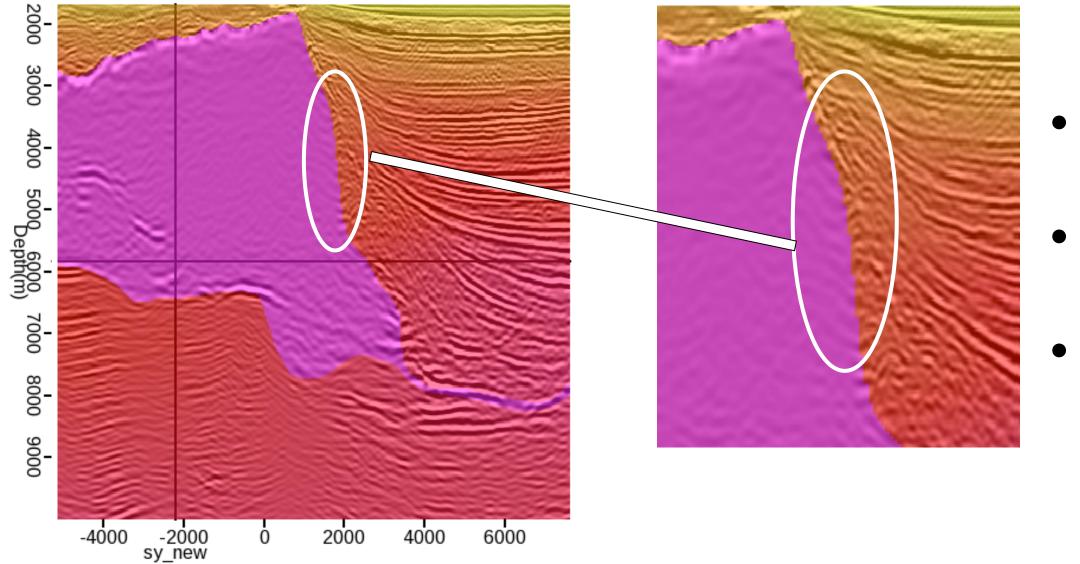
+

Motivation

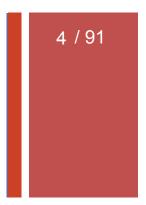




Motivation



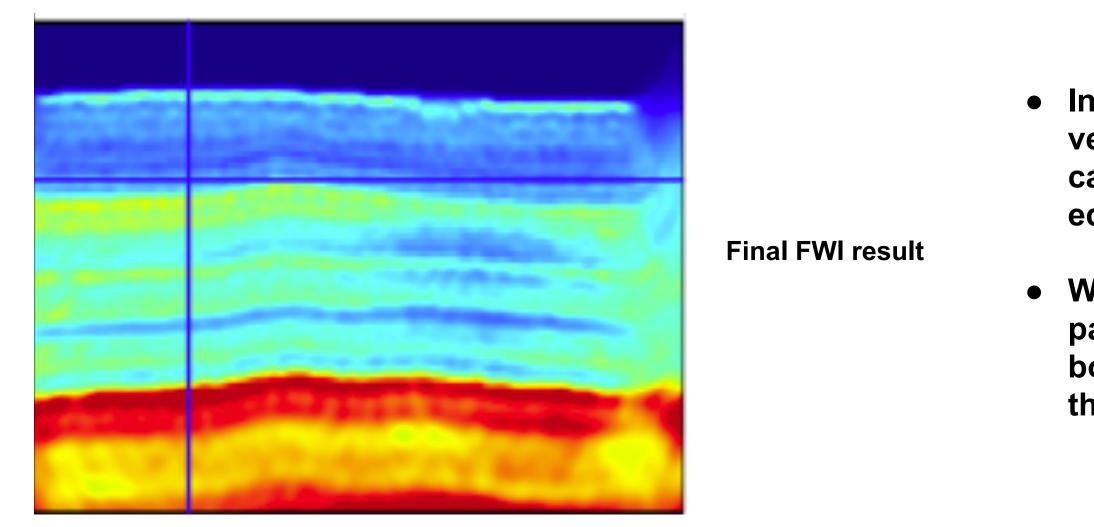
╋



Is that really where the salt boundary is?

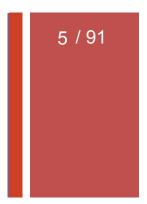
Can test with trial/error (expensive).

What about inversion approach?



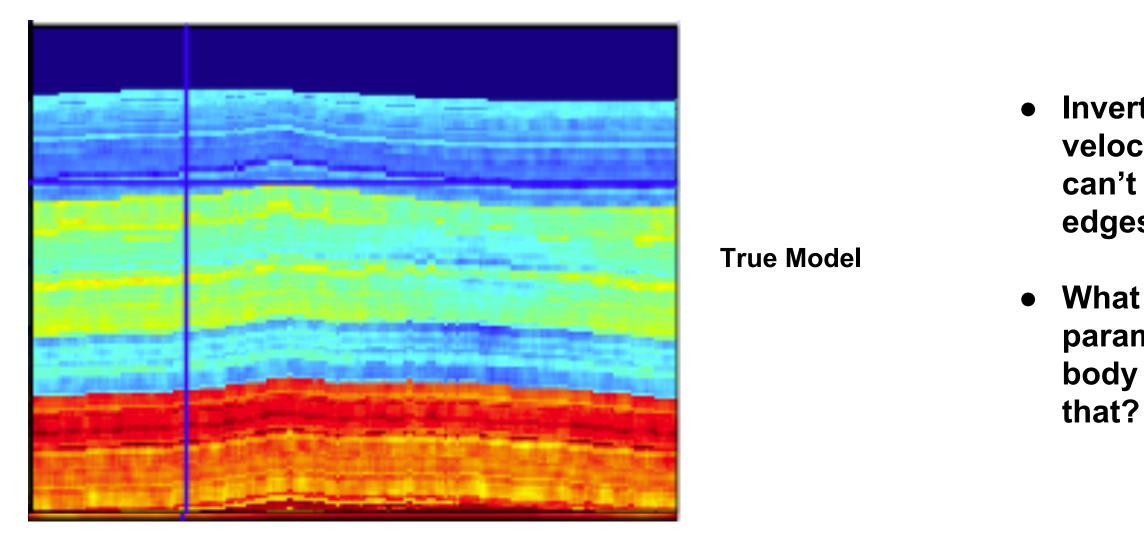
╋

Figure, Xukai Shen 2015

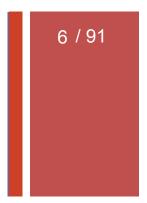


Inverting for the velocity field (FWI) can't give us sharp edges on salt

What about parameterizing the body and inverting for that?



Figure, Xukai Shen 2015

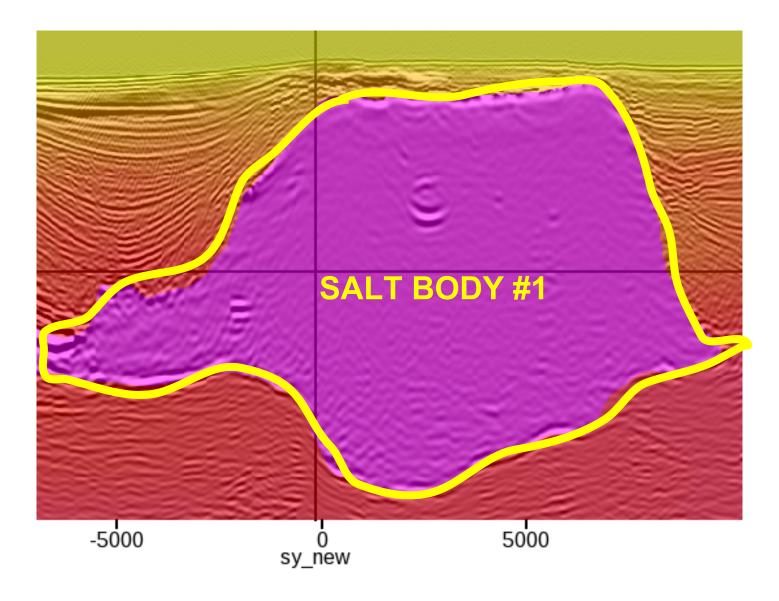


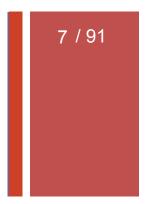
Inverting for the velocity field (FWI) can't give us sharp edges on salt

What about parameterizing the body and inverting for that?

╋

Motivation

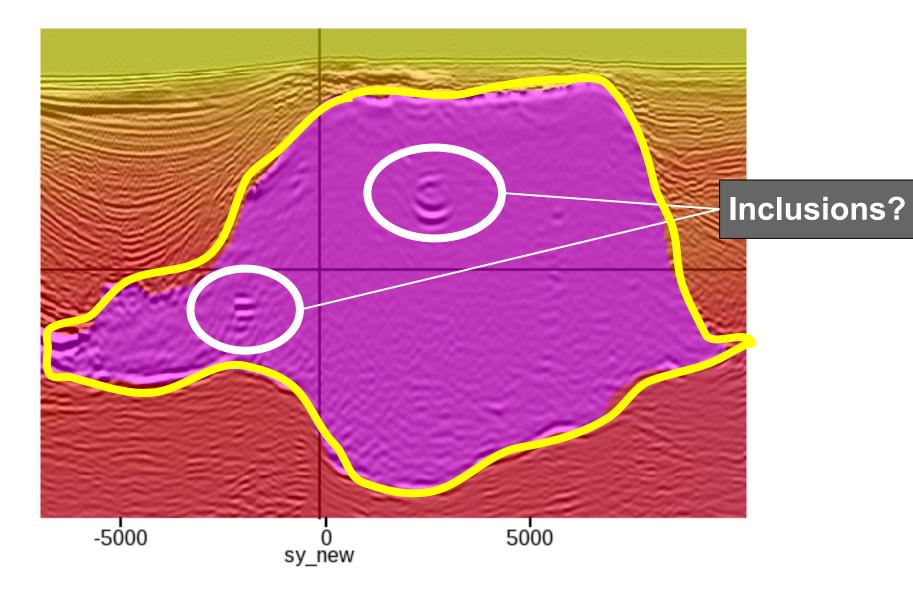


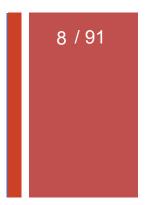


• How do we define the salt body parameterization so that we can handle complex topologies?

• Can the topology change as we iteratively invert?

Motivation



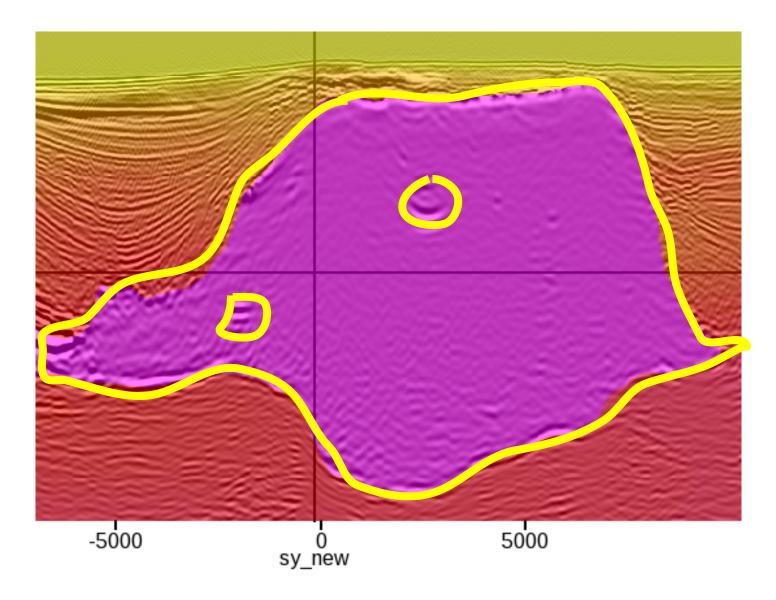


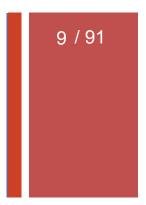
• How do we define the salt body parameterization so that we can handle complex topologies?

• Can the topology change as we iteratively invert?

╋

Motivation





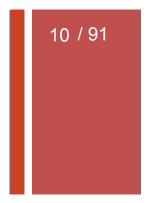
• How do we define the salt body parameterization so that we can handle complex topologies?

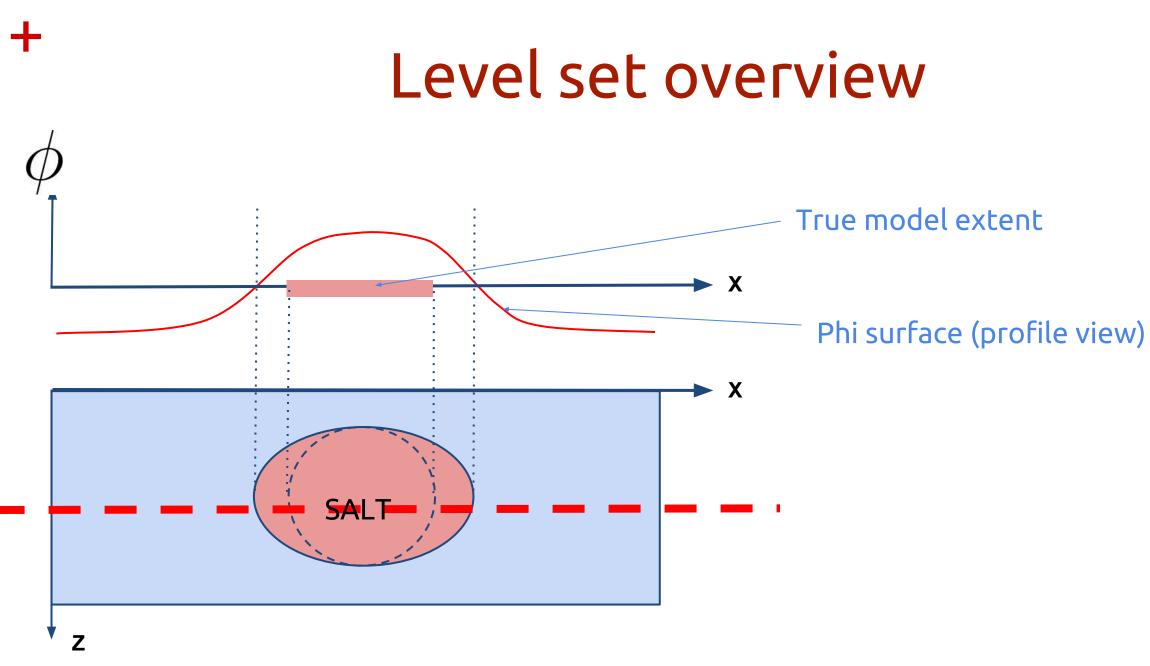
• Can the topology change as we iteratively invert?

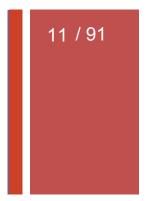
+

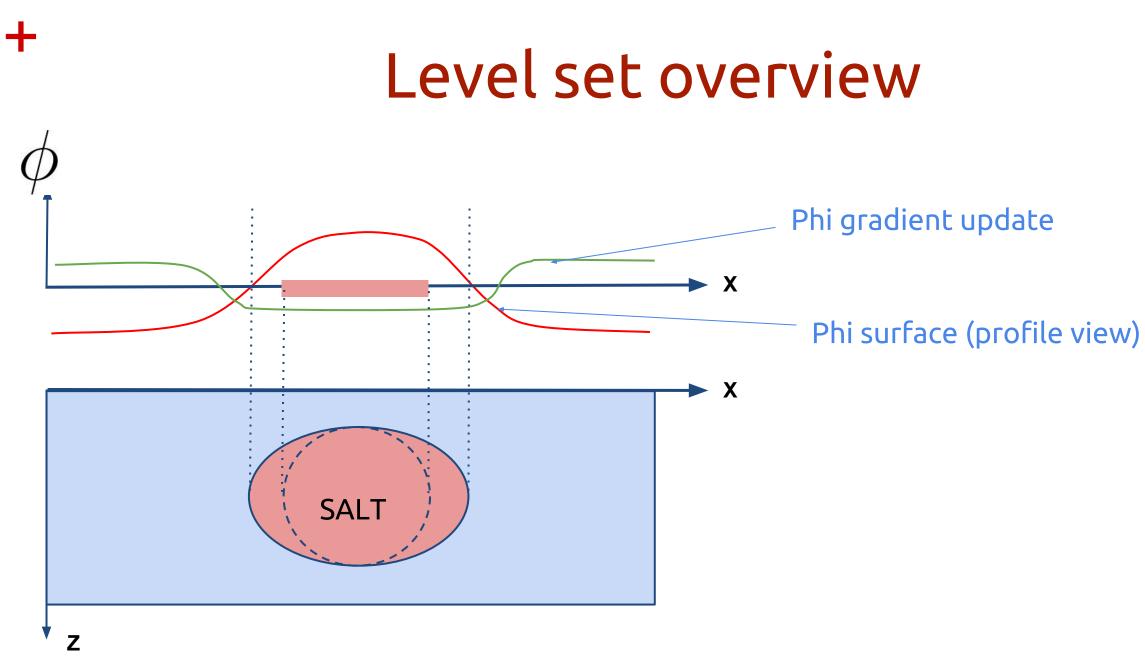
Outline

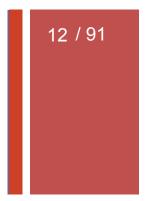
- Why level sets?
 - It can delineate sharp boundaries
 - It can handle complex geometries, inclusions, merging, separation of bodies as inversion progresses.
- How does it work?

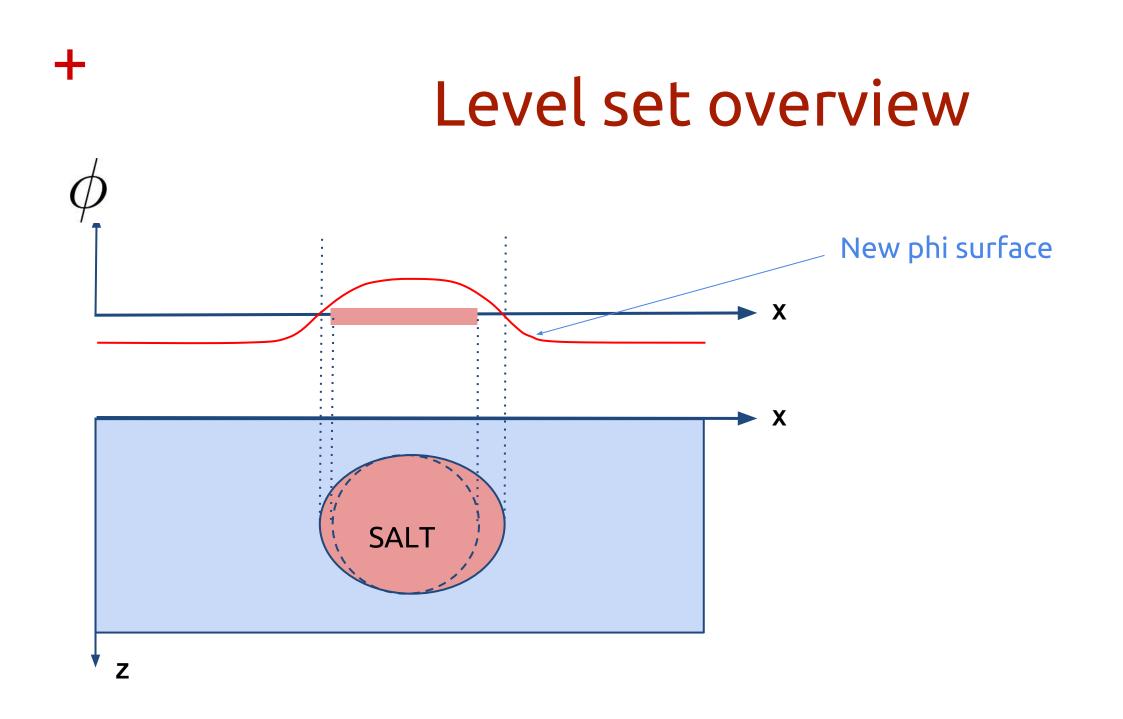


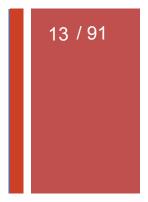






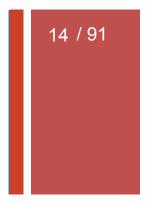


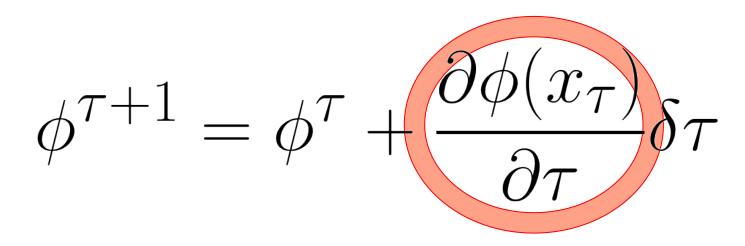




 $\phi^{\tau+1} = \phi^{\tau} + \frac{\partial \phi(x_{\tau})}{\partial \tau} \delta \tau$

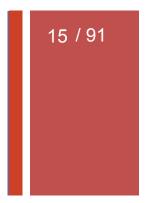
+





┿

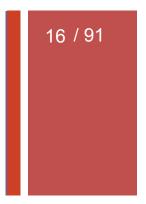
How do we derive this gradient?

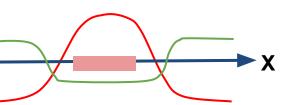


$\phi(x_{\tau}) = 0$

┿

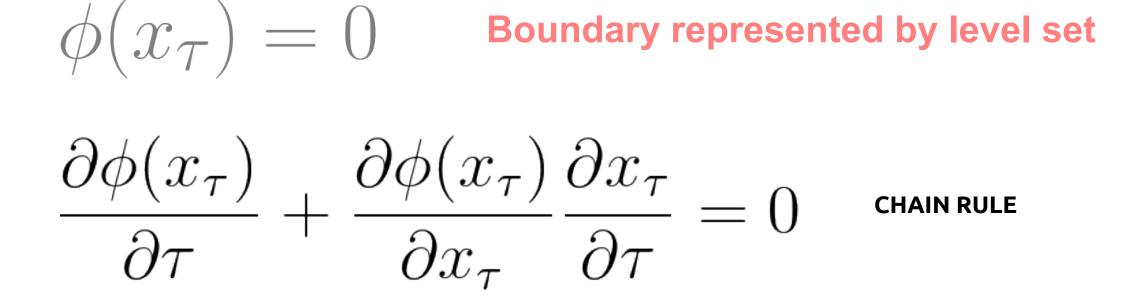
Boundary represented by level set

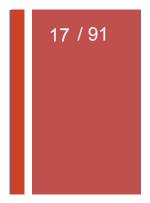




┿

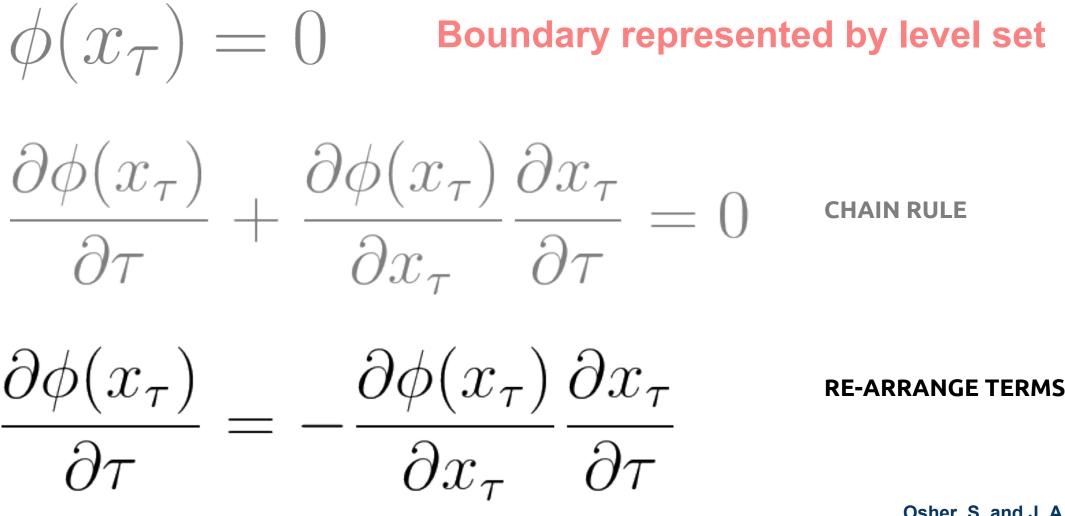
Basic gradient derivation

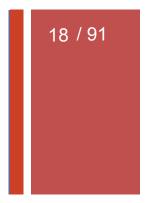


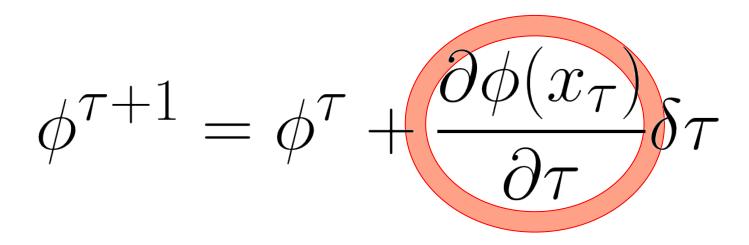


┿

Basic gradient derivation





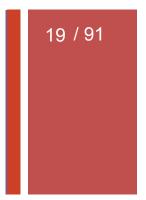


┿

EVOLUTION UPDATE EQUATION

 $\frac{\partial \phi(x_{\tau})}{\partial x_{\tau}} \frac{\partial x_{\tau}}{\partial \tau}$

RE-ARRANGE TERMS

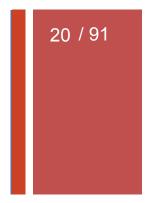


$$\min_{m} \|F(m) - d_{\rm obs}\|$$

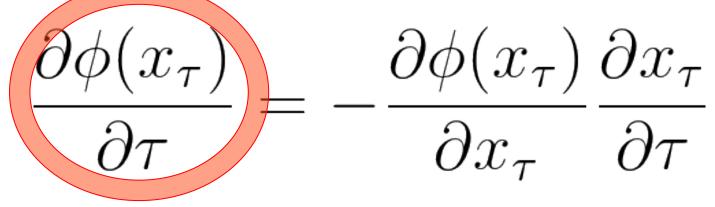
┿

FWI OBJECTIVE FUNCTION

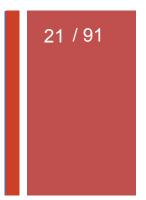
 $\frac{\partial \phi(x_{\tau})}{\partial x_{\tau}} \frac{\partial x_{\tau}}{\partial \tau}$ $\frac{\partial \phi(x_{\tau})}{\partial \tau}$



$$\frac{\partial \phi(x_{\tau})}{\partial \tau} = (m_s - m_b) \sum_k \int_0^T \lambda_k(x, z, t) \frac{\partial^2 u_k(x, z, t)}{\partial^2 t}$$



┿



$\frac{(z,z,t)}{dt} dt |\nabla \phi|$

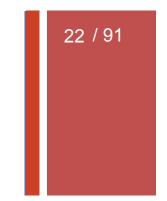
Guo, Z. and M. de Hoop, 2013

$$\frac{\partial \phi(x_{\tau})}{\partial \tau} = (m_s - m_b) \sum_k \int_0^T \lambda_k(x, z, t) \frac{\partial^2 u_k(x, z, t)}{\partial^2 t}$$

SPATIAL GRADIENT OF PHI

 $r (x_{\tau})$ (x_{τ}) ∂x_{τ} ∂x_{2}

┿



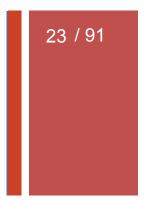
, z,

Guo, Z. and M. de Hoop, 2013

 $(m_s - m_b) \sum_{t=0}^{T} \lambda_k(x, z, t) \frac{\partial^2 u_k(x, z, t)}{\partial^2 t} dt$ $\frac{\partial \phi(x_{\tau})}{\partial \phi(x_{\tau})}$

SCALAR "SPEED" TERM

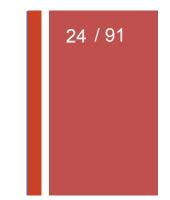
┿

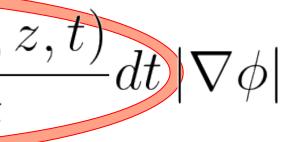


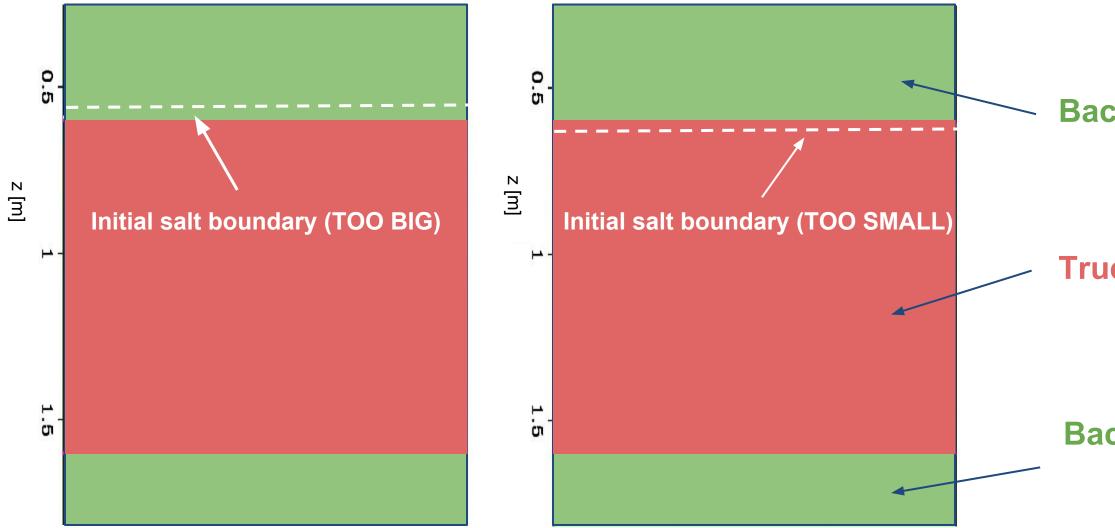
$$\frac{\partial \phi(x_{\tau})}{\partial \tau} = (m_s - m_b) \sum_k \int_0^T \lambda_k(x, z, t) \frac{\partial^2 u_k(x, z, t)}{\partial^2 t}$$

┿

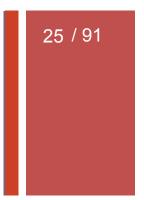
Back-propagated residual (RTM image)







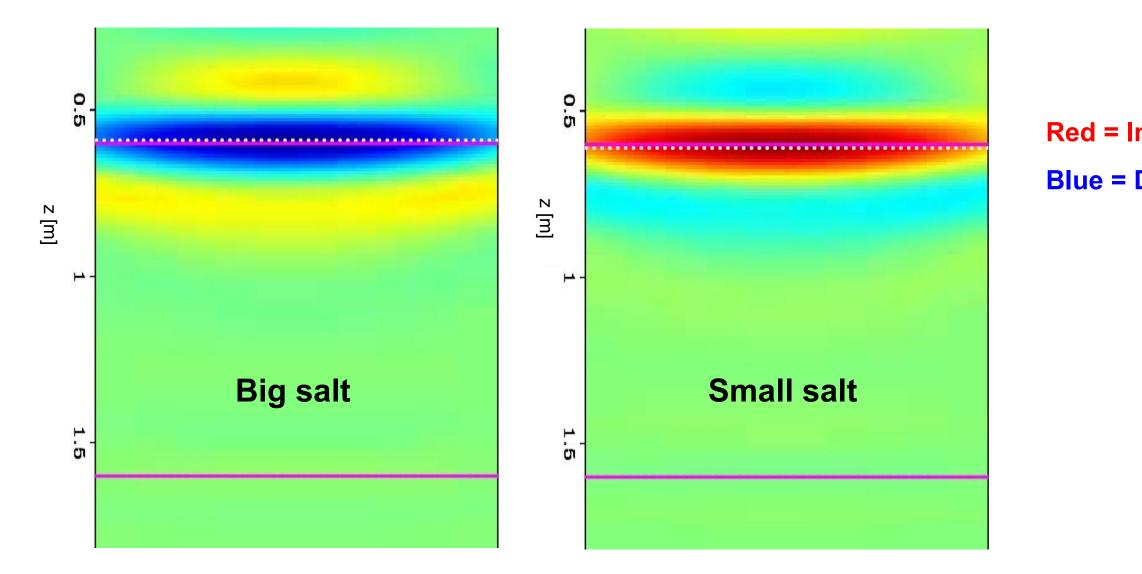
┿



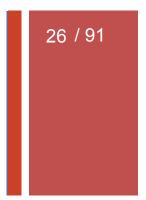
Background velocity

True salt

Background velocity



┿

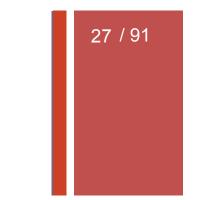


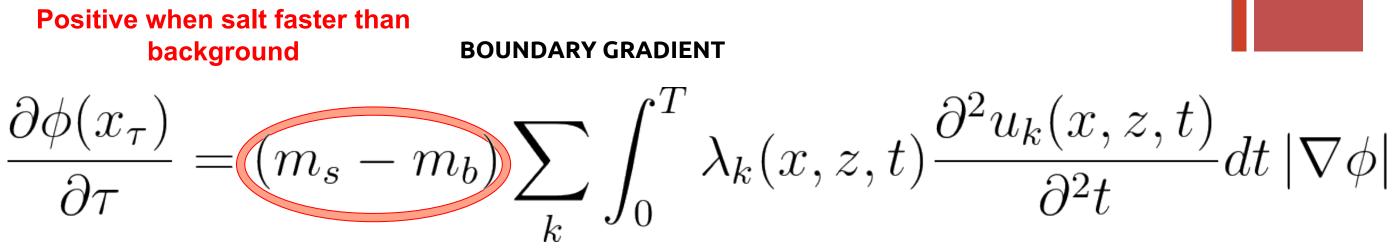
Red = Increase velocity Blue = Decrease velocity

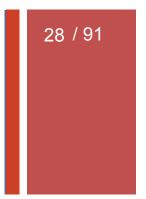
BOUNDARY GRADIENT

 $\lambda_k(x, z, t) \frac{\partial^2 u_k(x, z, t)}{\partial^2 t} dt$ $\frac{\partial \phi(x_{\tau})}{\partial \tau} = (m_s - m_b)$

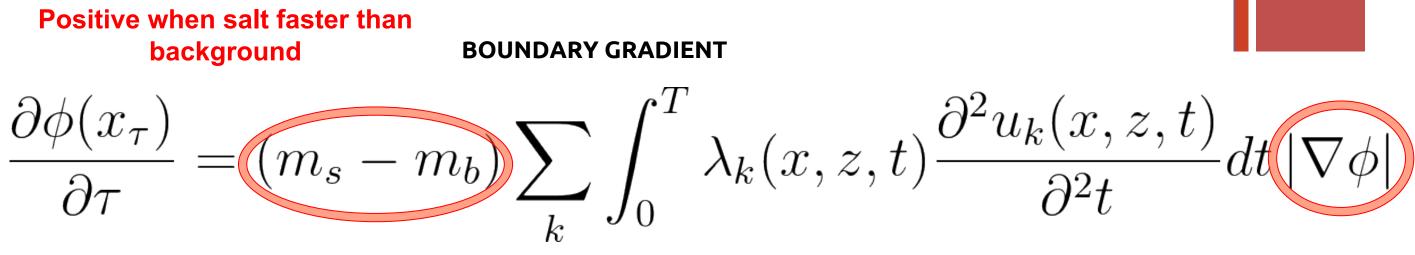
┿



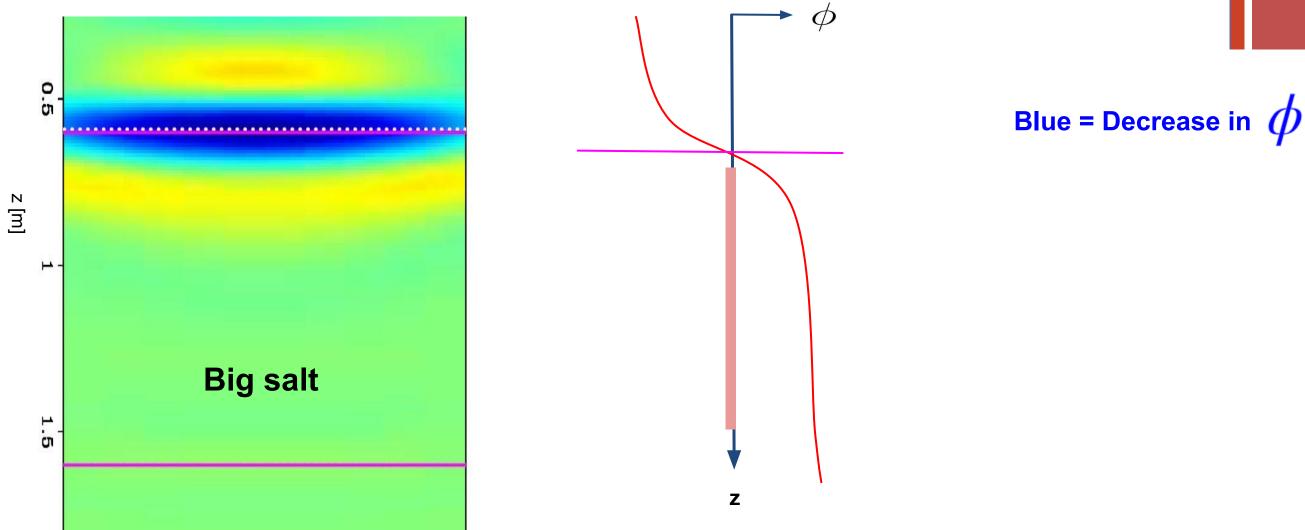


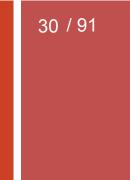


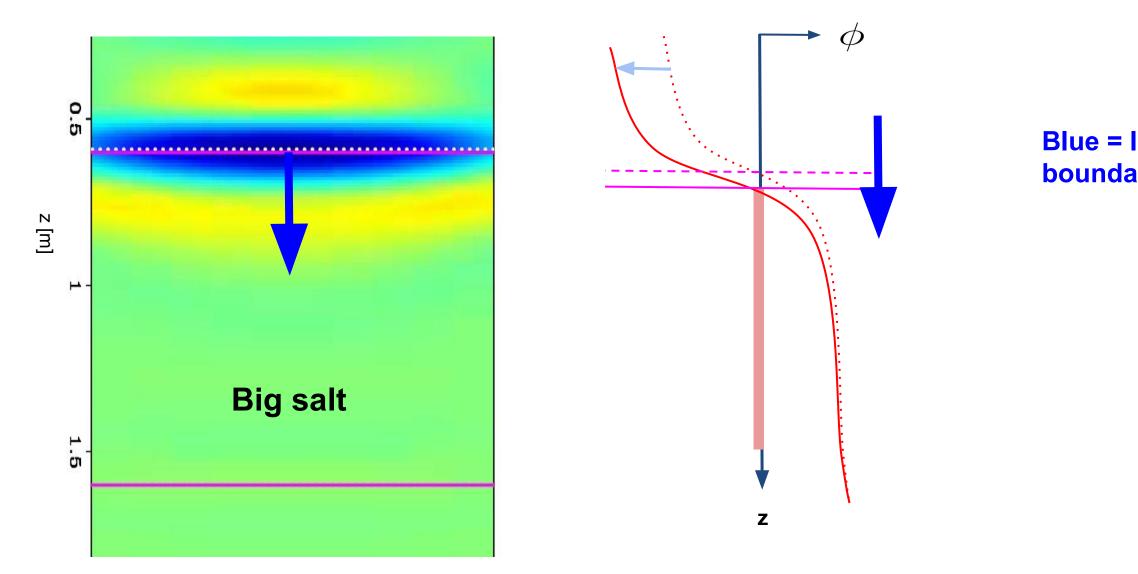
┿



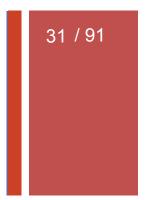
Always positive, regularization keeps gradient to ~1.0





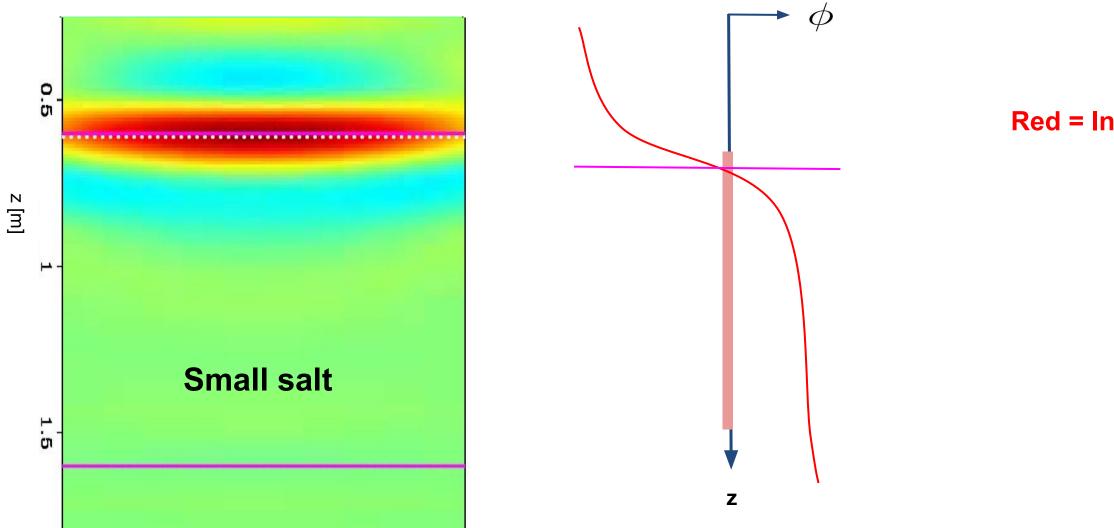


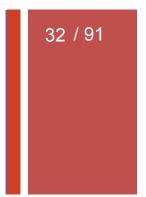
╋



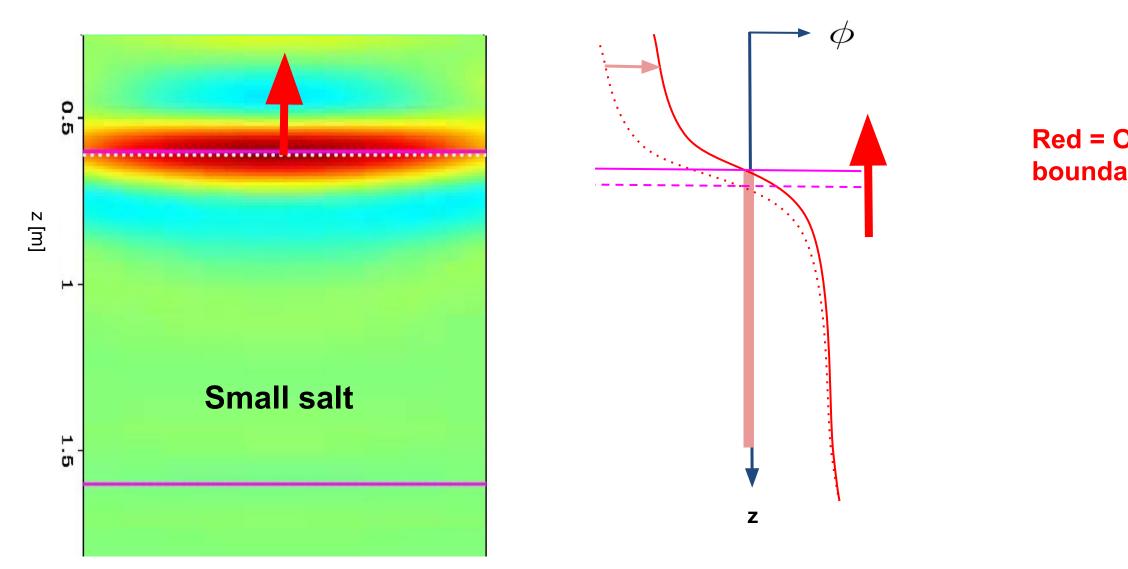
Blue = Inward salt boundary movement

┿

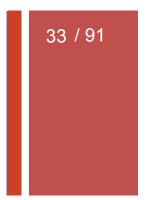




Red = Increase in ϕ

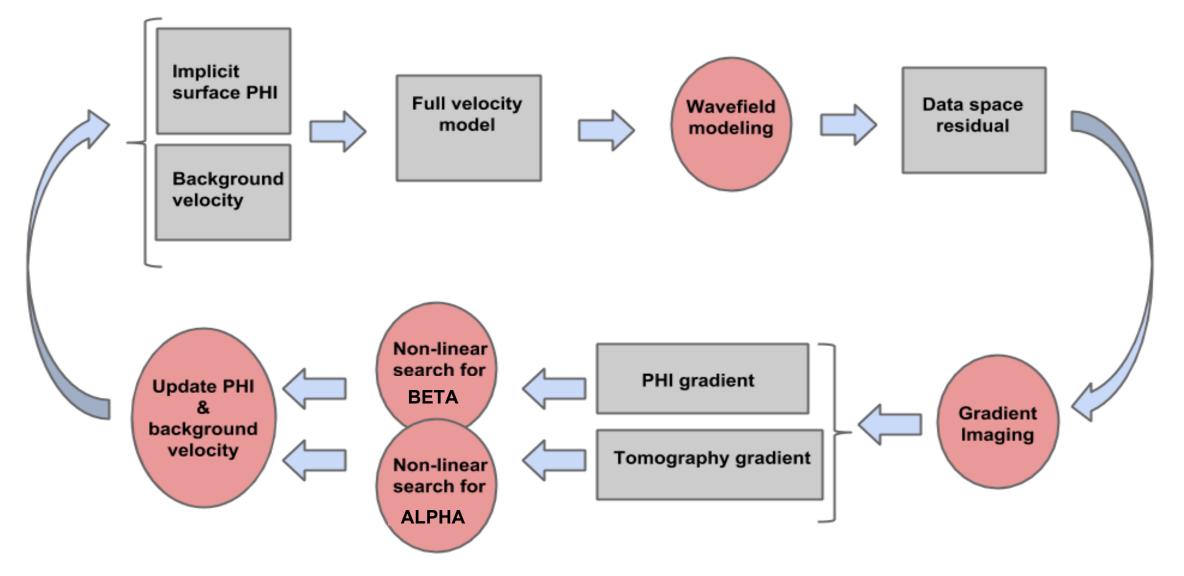


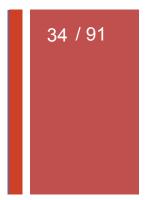
┿



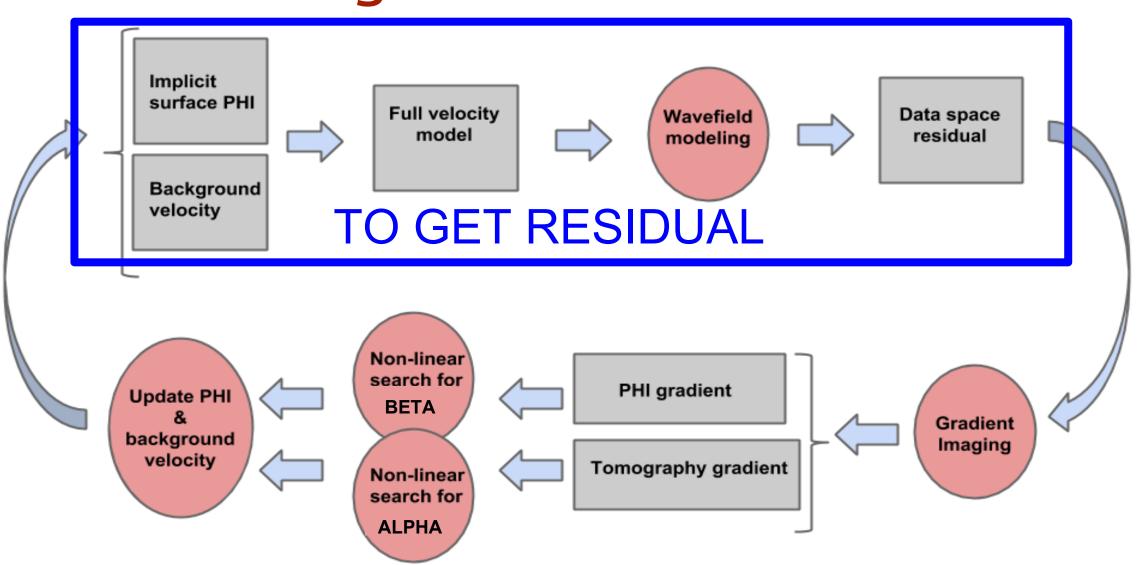
Red = Outward salt boundary movement

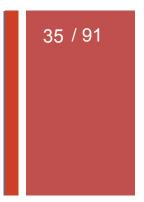
Algorithm workflow



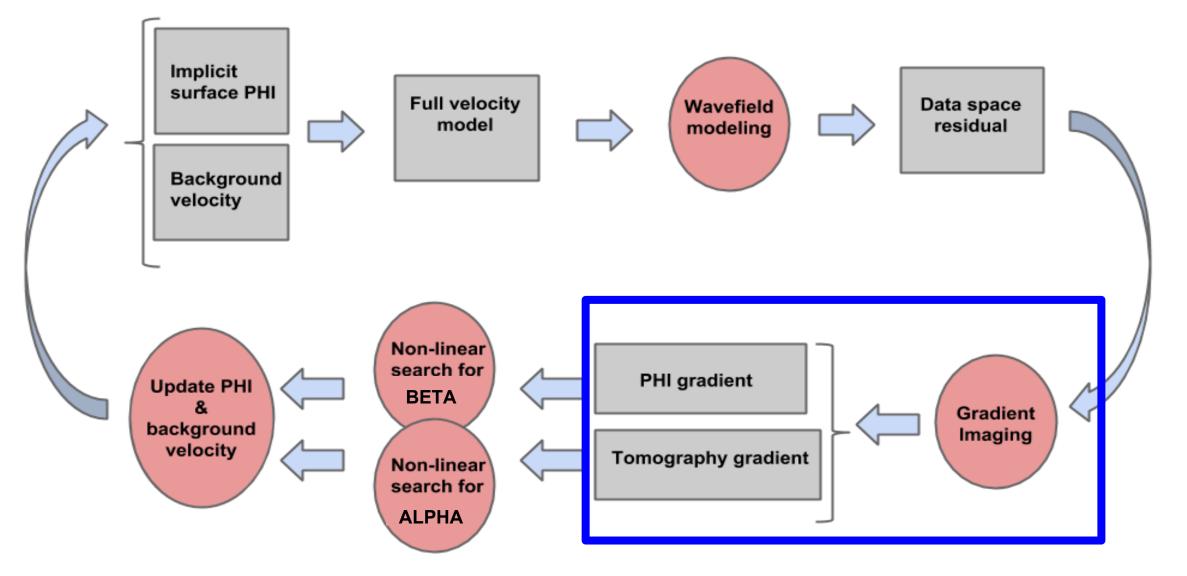


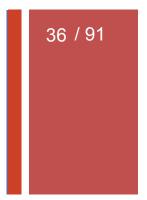
Algorithm workflow





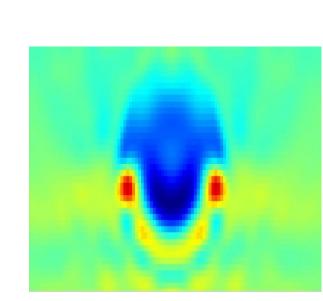
Algorithm workflow





+ Calculate gradients

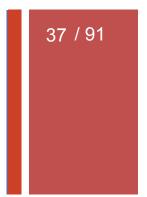
Salt Boundary



$$\frac{\partial \phi}{\partial \tau} = (m_s - m_b) \sum_k \int_0^T \lambda_k(x, z, t) \frac{\partial^2 u_k(z, z, t)}{\partial t} \frac{\partial^2 u_k(z, z, t)}{\partial t}$$

$$\frac{\partial V_{back}}{\partial \tau} = \sum_{k} \int_{0}^{T} \lambda_{k}(x, z, t) \frac{\partial^{2} u_{k}(x, z, t)}{\partial t^{2}}$$

Background velocity



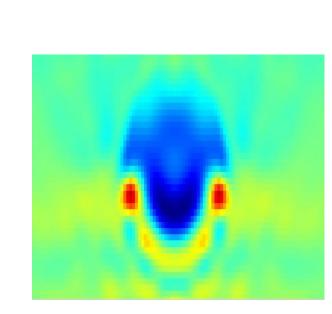
 $\frac{(x,z,t)}{\partial t^2} dt \left| \bigtriangledown \phi \right|$

+ Calculate gradients

Salt Boundary

Background

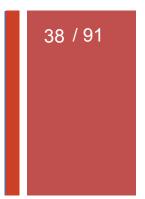
velocity



$$\frac{\partial \phi}{\partial \tau} = (m_s - m_b) \sum_k \int_0^T \lambda_k(x, z, t) \frac{\partial^2 u_k(z, z, t)}{\partial t} \frac{\partial^2 u_k(z, z, t)}{\partial t}$$

Adjoint linearized Born operator (RTM)

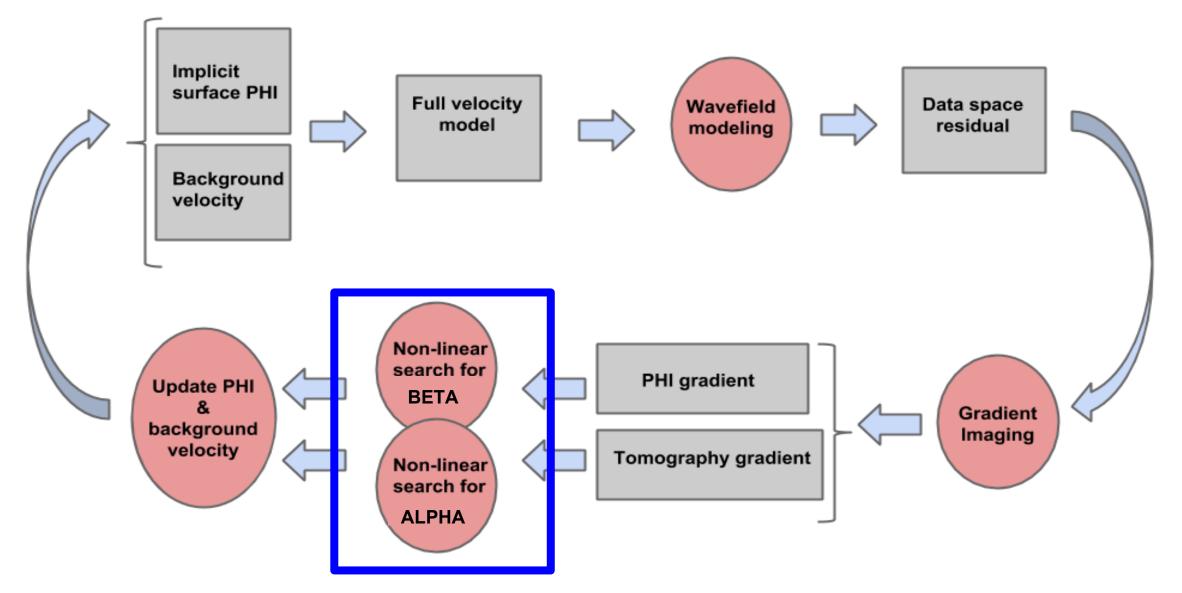
$$\frac{\partial V_{back}}{\partial \tau} = \sum_{k} \int_{0}^{T} \lambda_{k}(x, z, t) \frac{\partial^{2} u_{k}(x, z, t)}{\partial t^{2}}$$

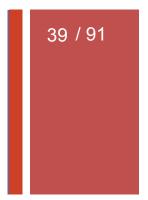


(x, z, t) $dt |\nabla \phi|$ $)t^2$

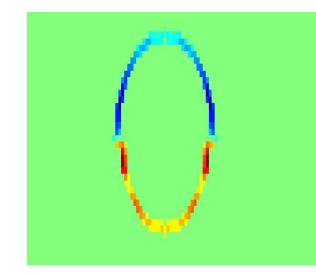
Algorithm workflow

╋





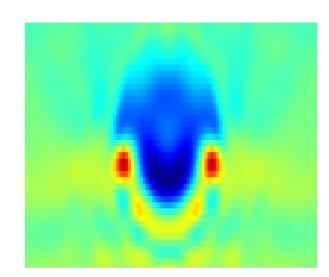
Non-linear search for gamma ┿



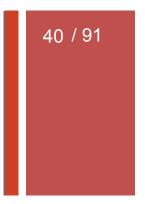
 $\min_{\beta} \|F(m(\beta)) - d\|$

Salt

Boundary

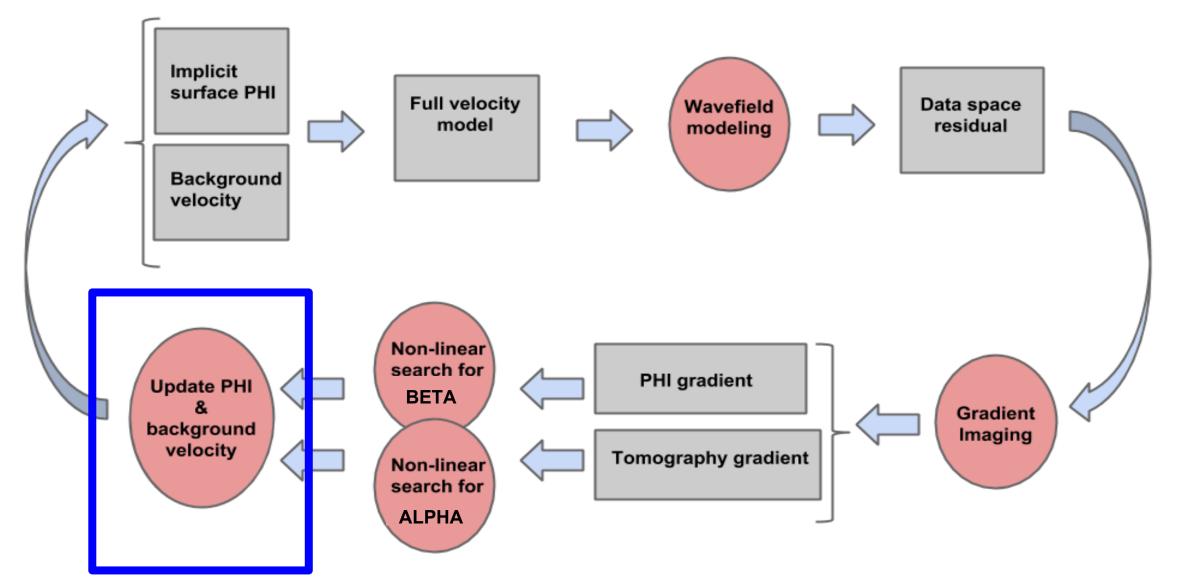


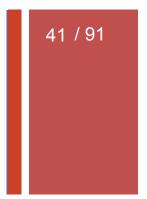
 $\min_{\alpha} \|F(m(\alpha)) - d\|$



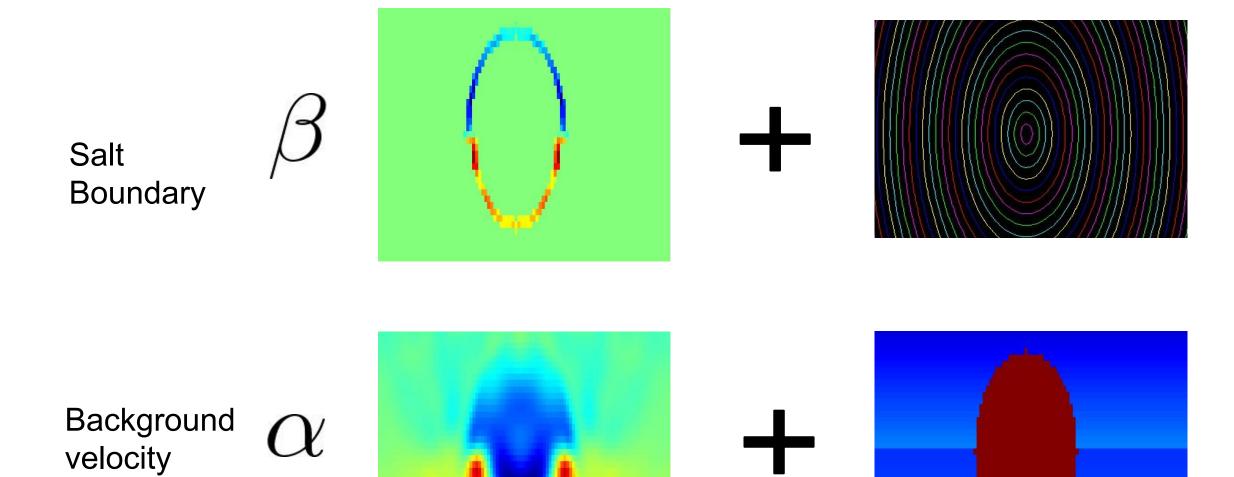
Algorithm workflow

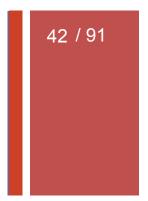
╋





+ Apply scaling and update fields





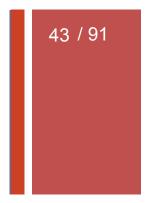
Implicit surface phi

Background velocity model

+

Outline

- What do you mean by domain decomposition?
 - How does it work?
 - Demonstration of method on various models

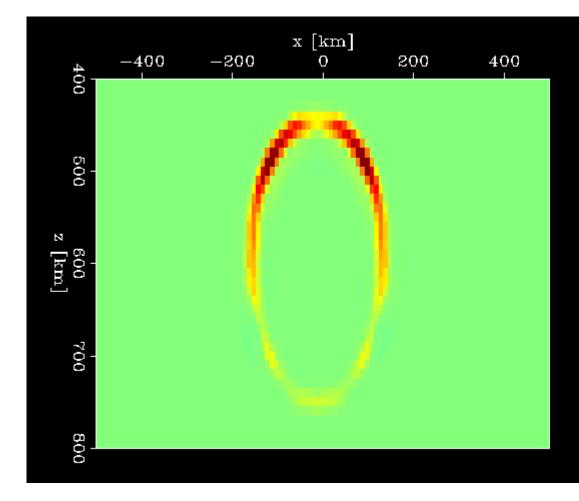


Why domain decomposition?

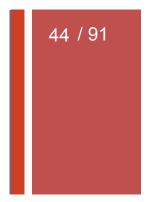
- Top of salt (TOS) dominates the salt updating
- Shows up as strongest reflector

┿

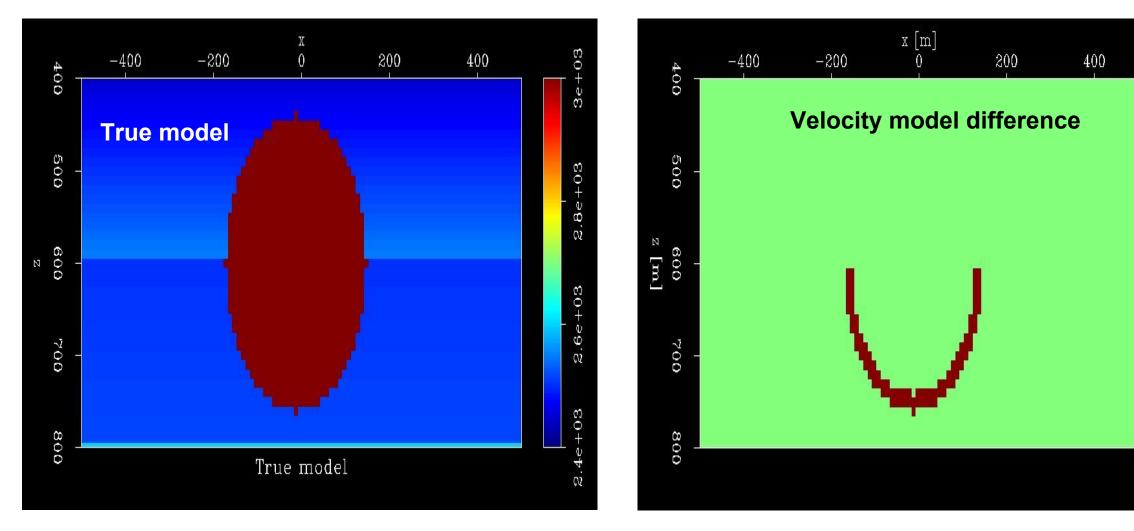
- Non-linear step search prefers to correct TOS
- Leaves BOS undercorrected



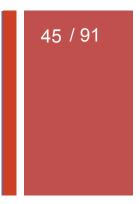
Example of salt boundary update gradient



Salt update example

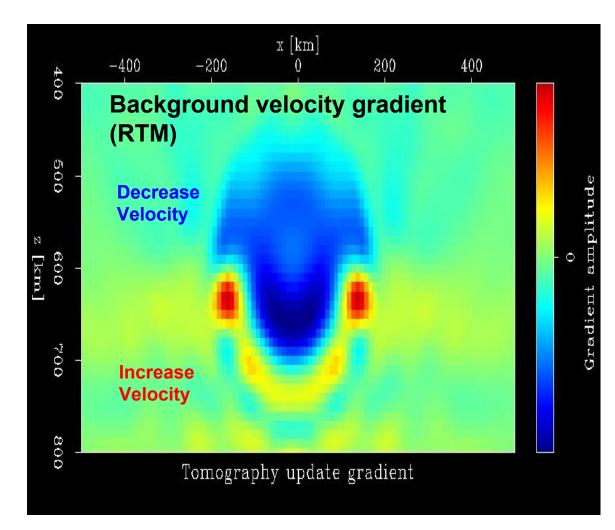


╋

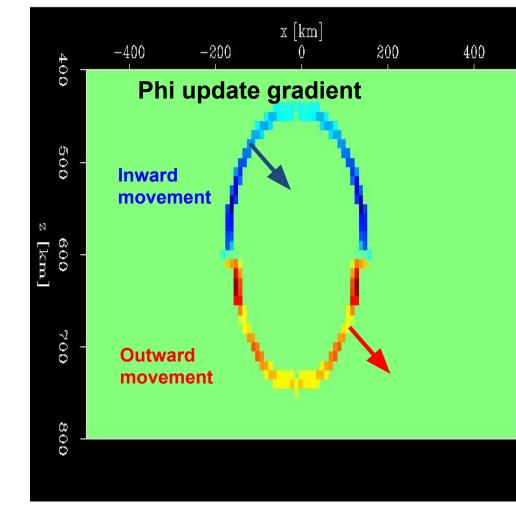


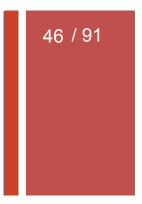
Perfect top of salt (TOS) model

Salt update example



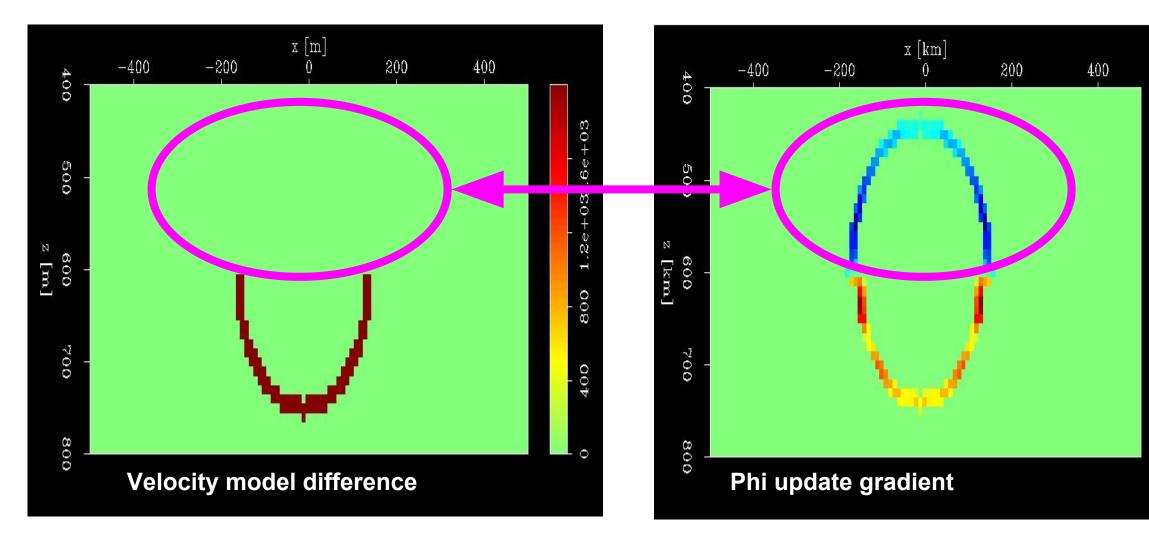
╋



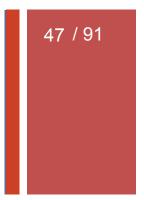


Gradients at first iteration for model with perfect TOS

Salt update example



╋

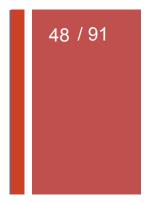


No update necessary!

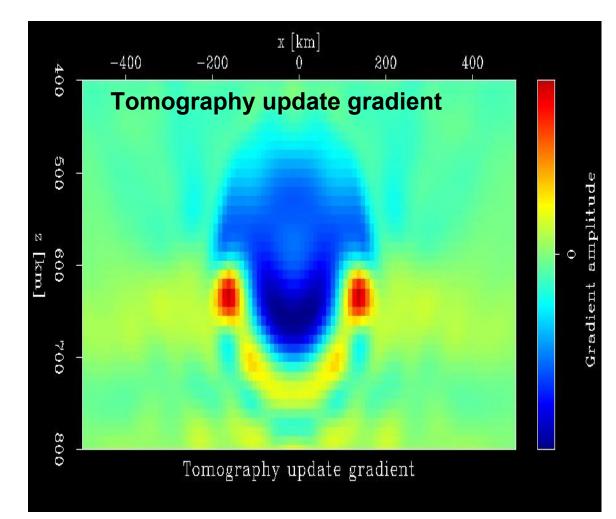
+

Fundamental problem

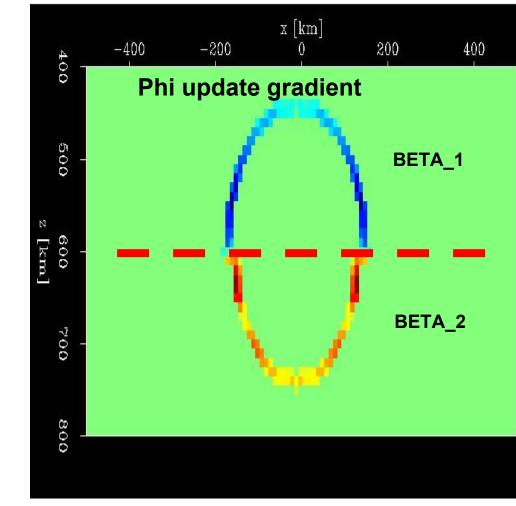
- Background velocity gradient will have 'wrong' update at salt boundary for perfect TOS model.
- This is because RTM imaging cannot discern between velocity and reflector position errors, so it tries to correct both.
- Boundary update gradient based on RTM image, so it inherits "wrong" update.

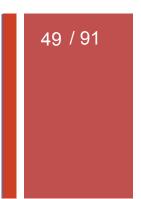


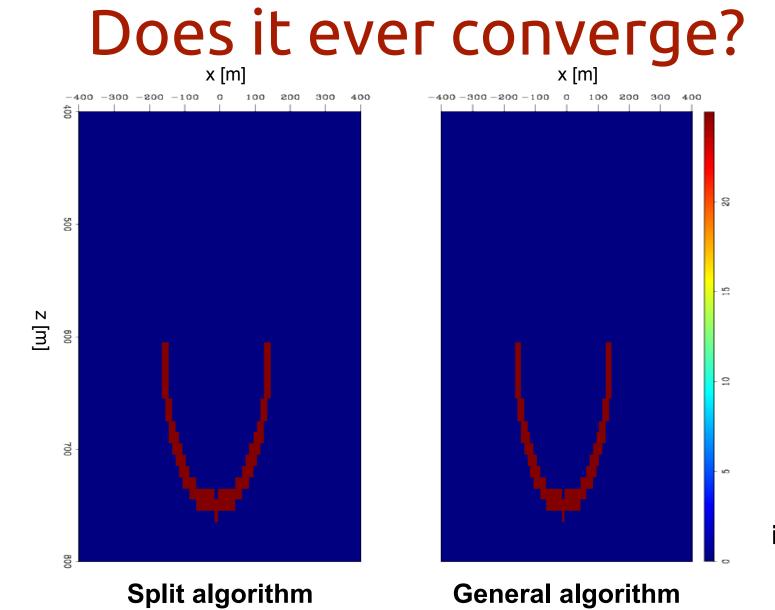
What if we split the top/bottom?



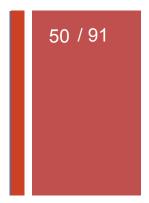
+





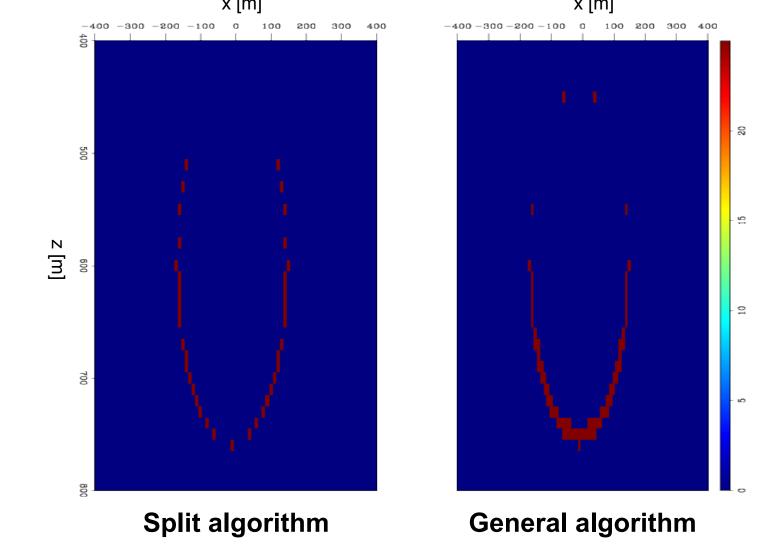


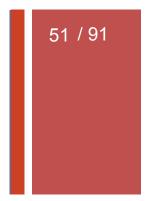
╋



Does it ever converge?

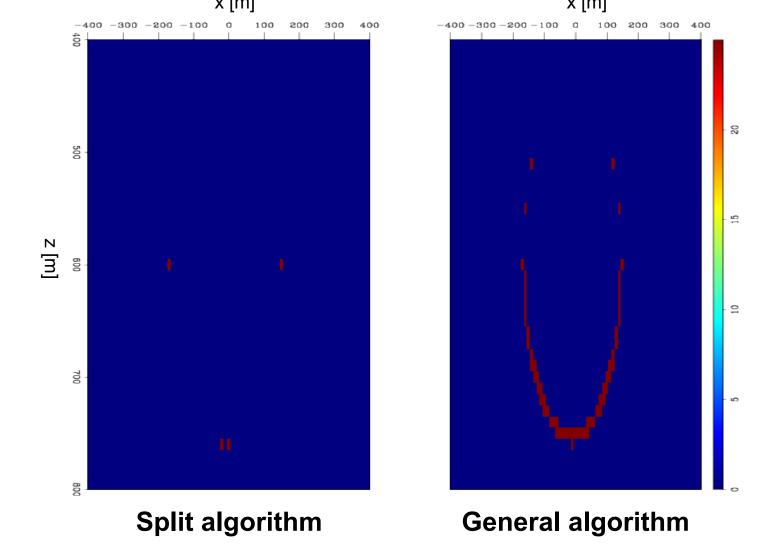
┿

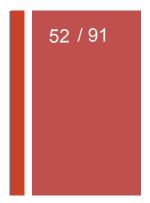


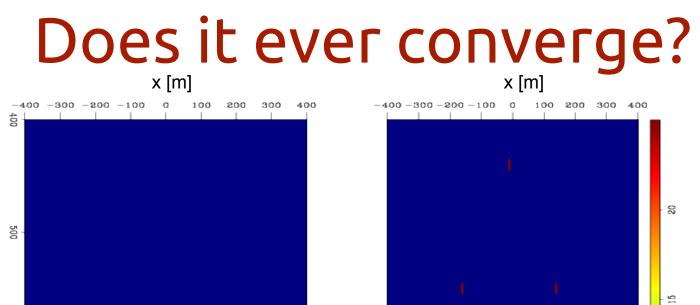


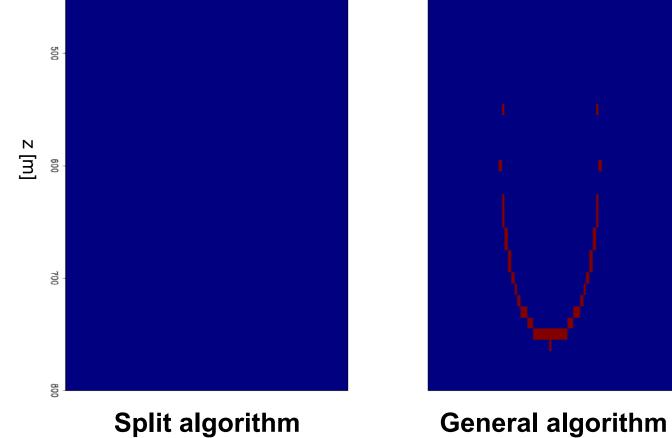
Does it ever converge?

╈





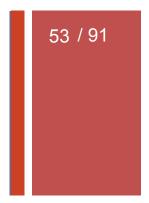




╈

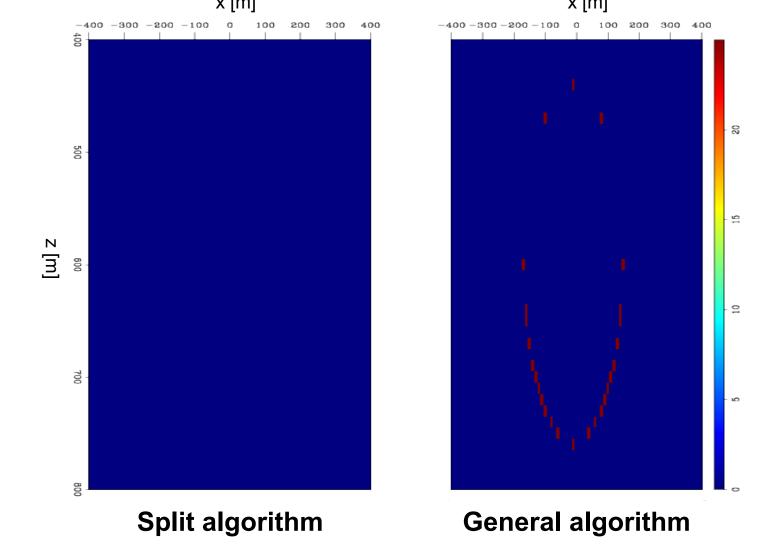
iteration = 25

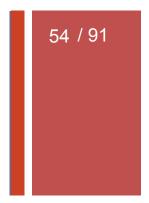
10

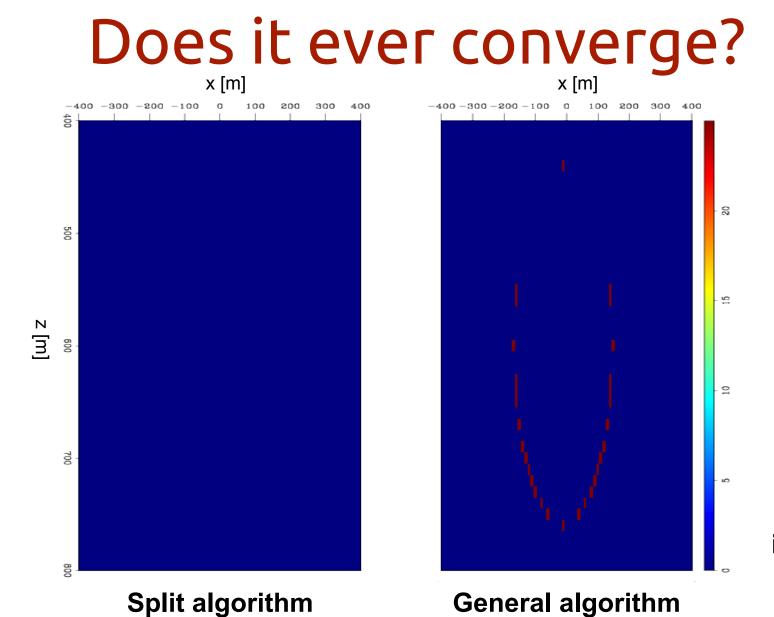


Does it ever converge?

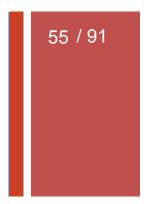
╈





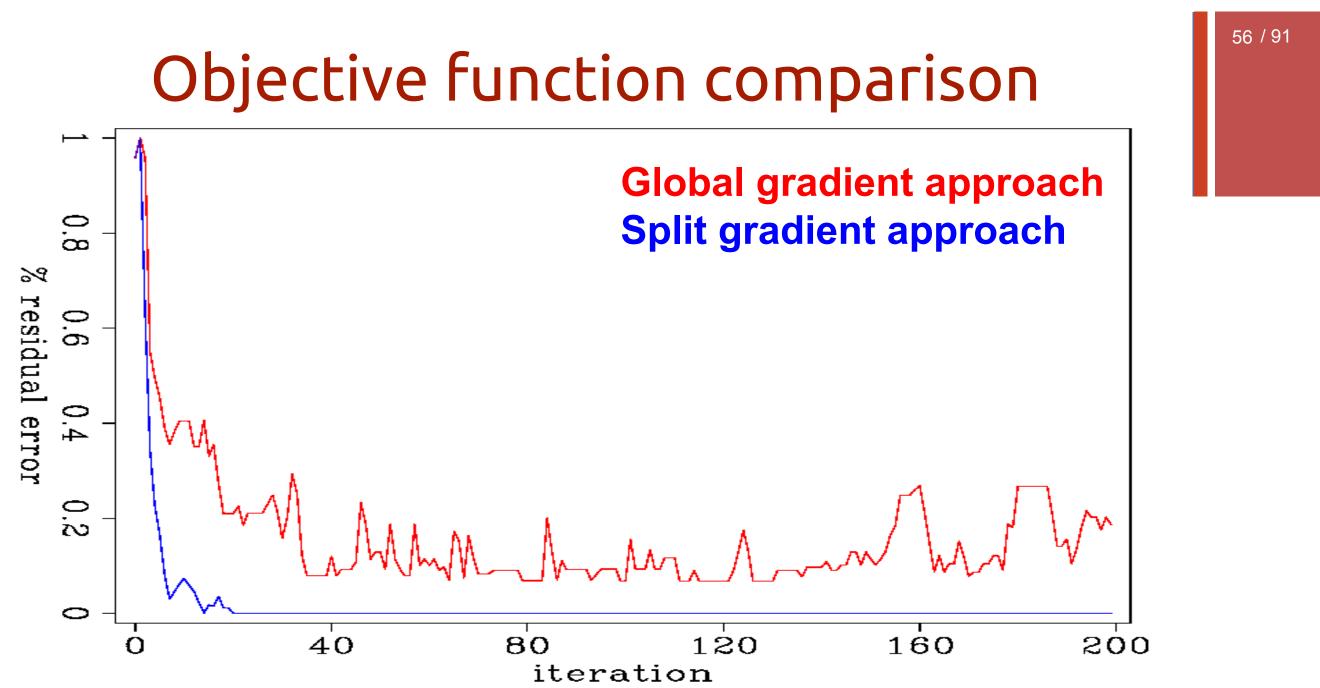


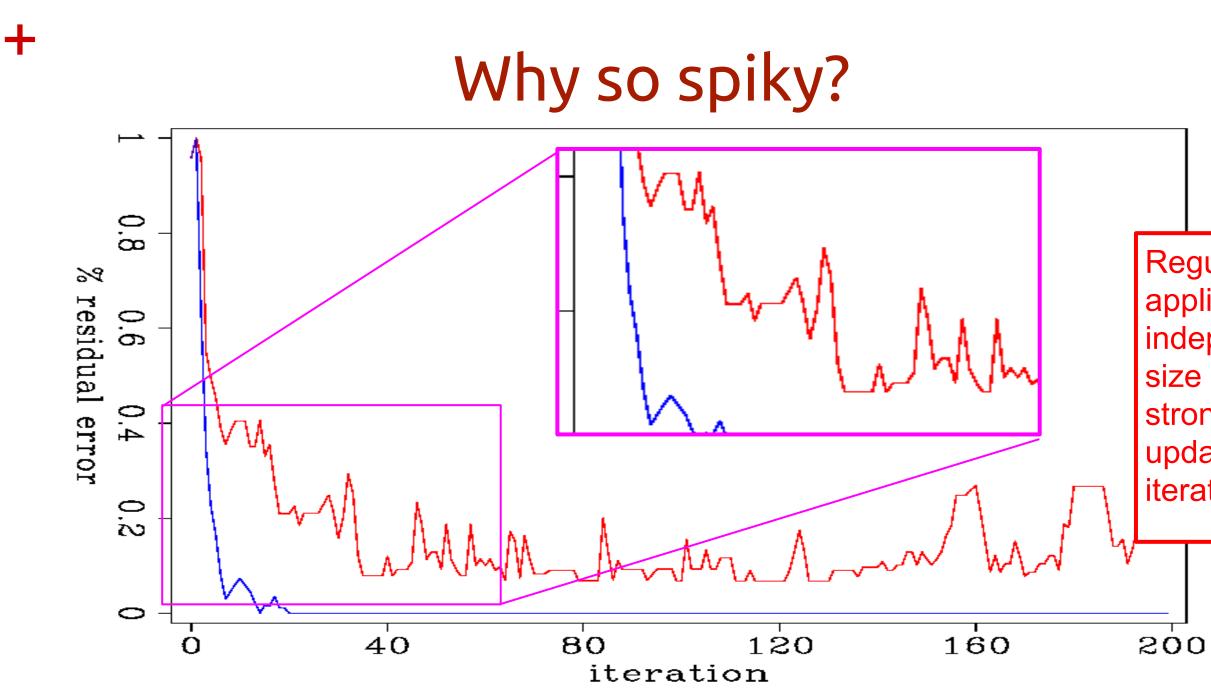
iteration = 175

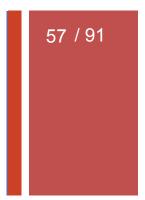


The general algorithm hasn't converged after 175 iterations, while the split algorithm converges in 20.

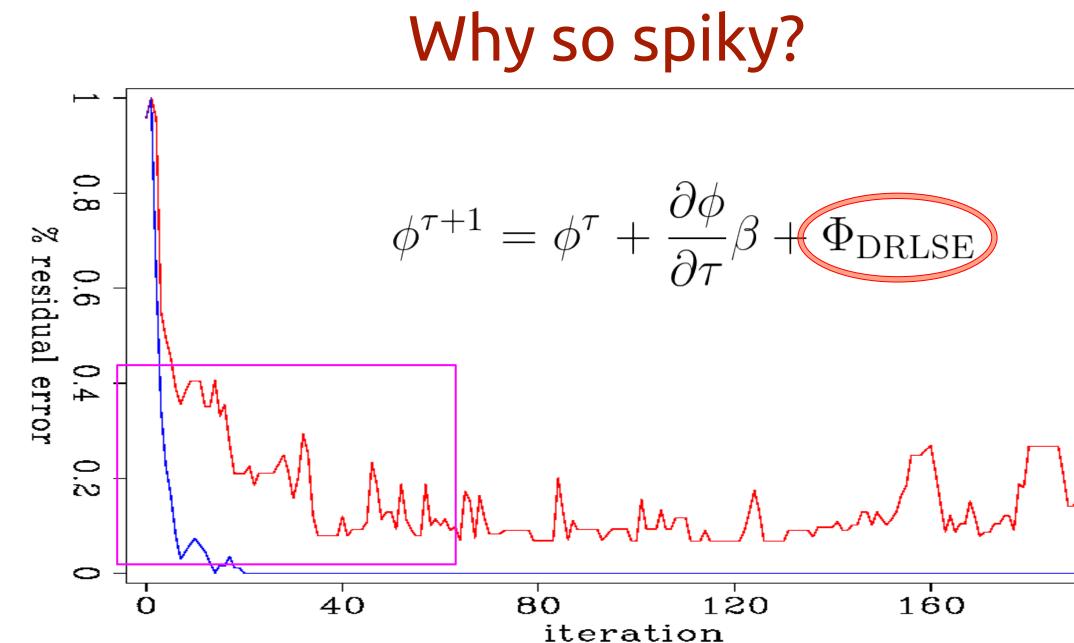
╋



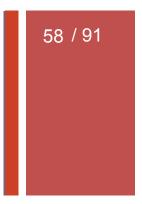




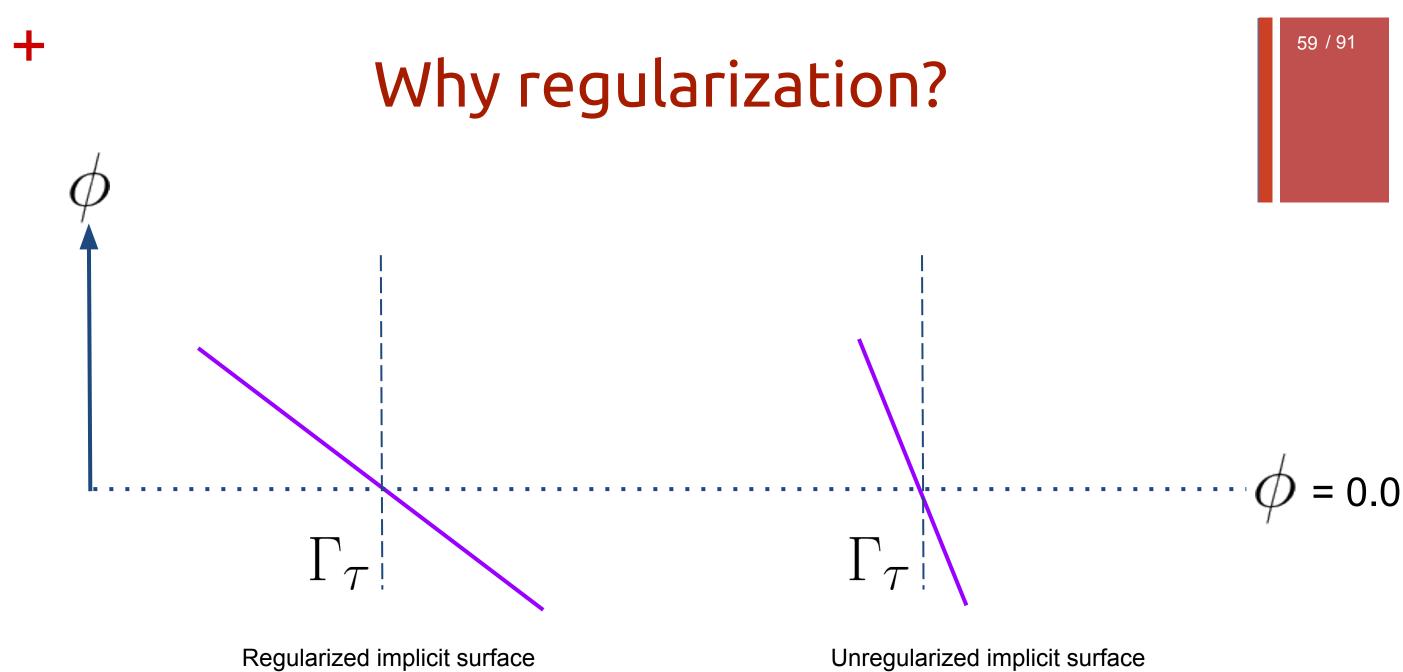
Regularization is applied independent of step size beta. Gets stronger relative to update gradient as iterations progress.



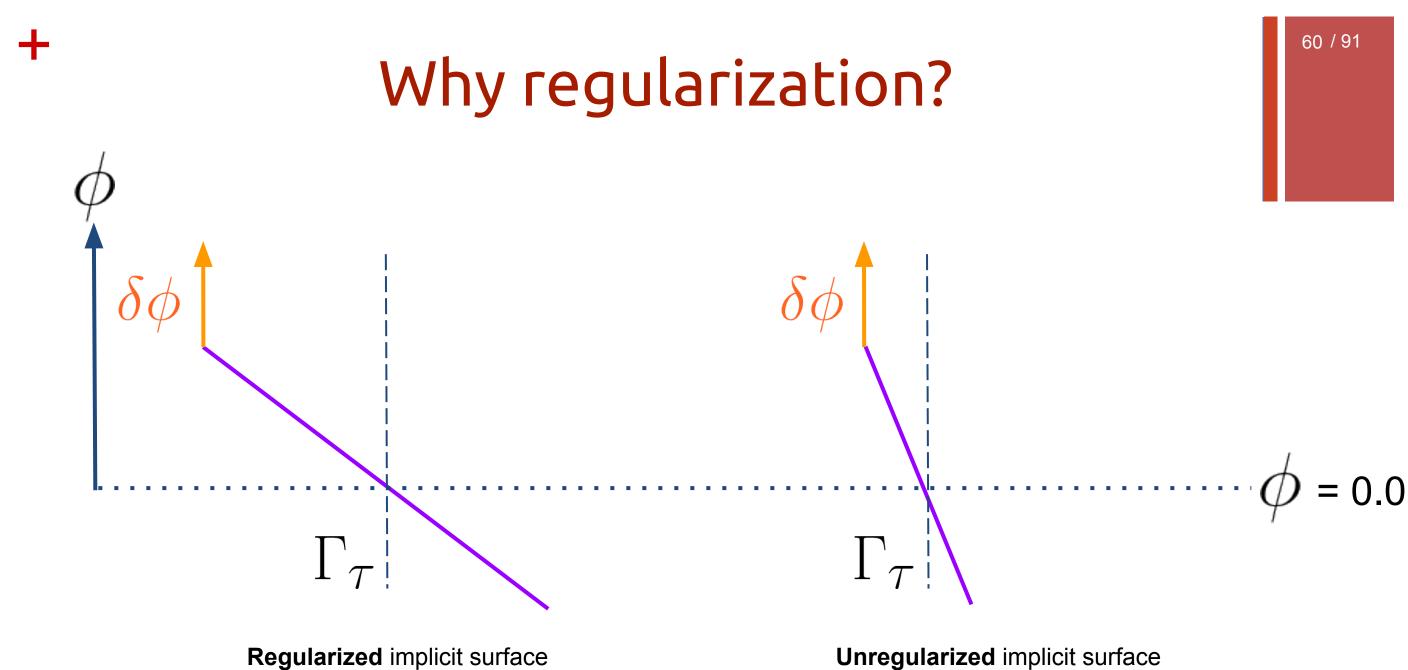
╋

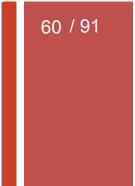


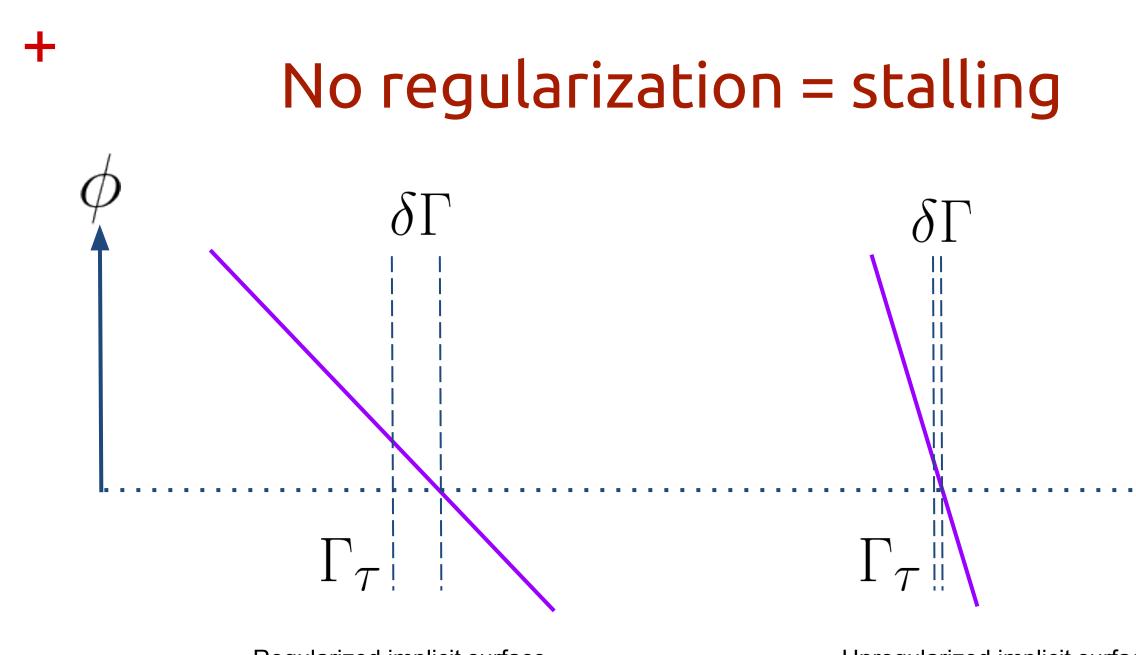
Regularization is applied independent of step size beta Gets stronger relative to update gradient as iterations progress.





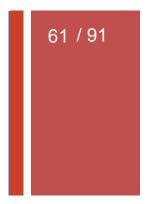


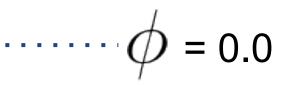




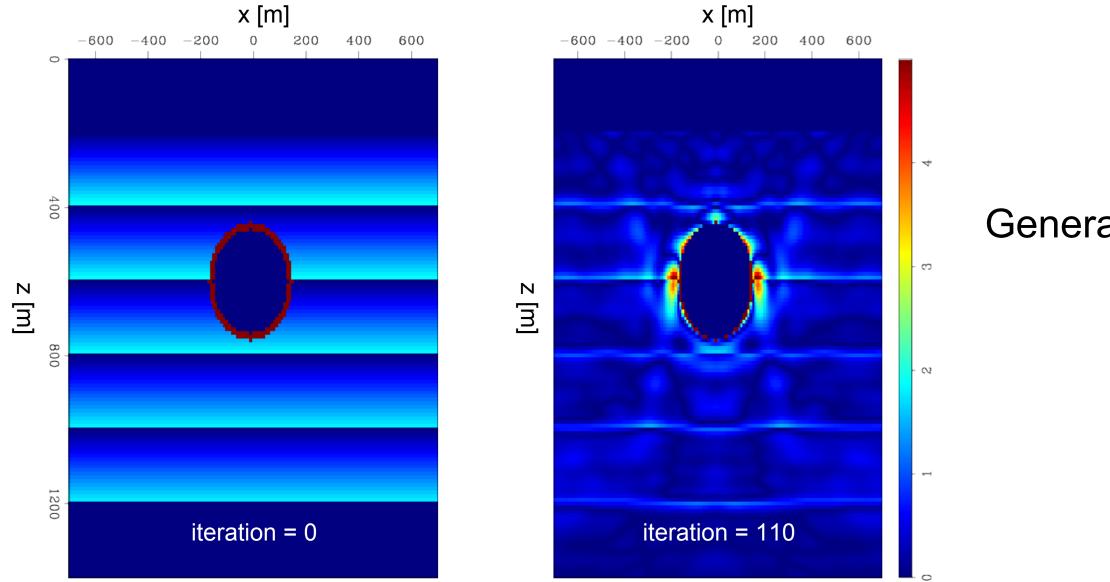
Regularized implicit surface

Unregularized implicit surface





Algorithm comparison: w/ tomography

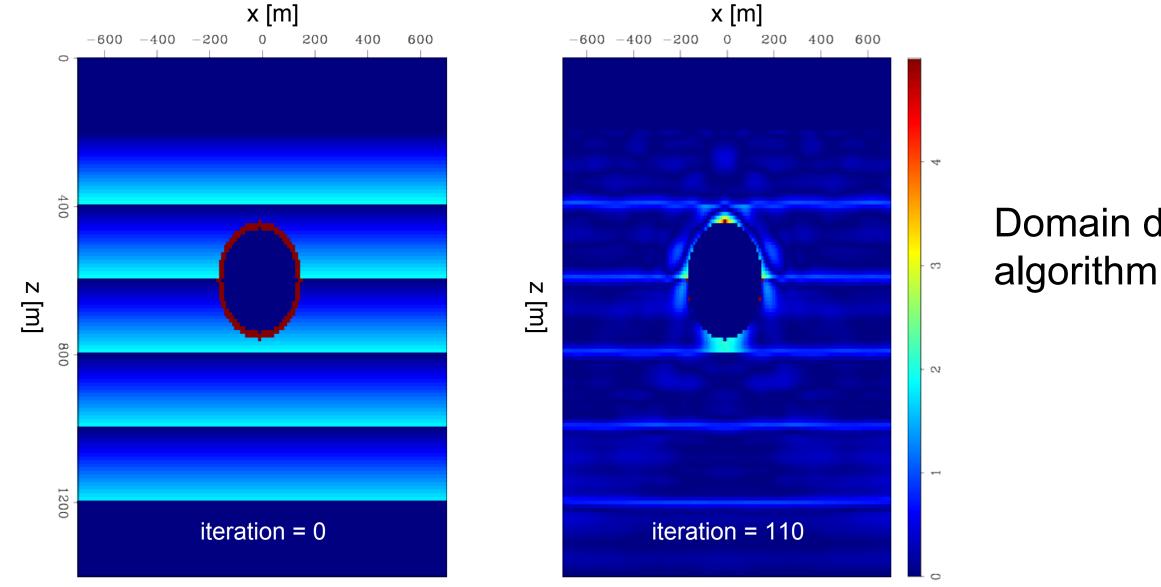


+

General algorithm

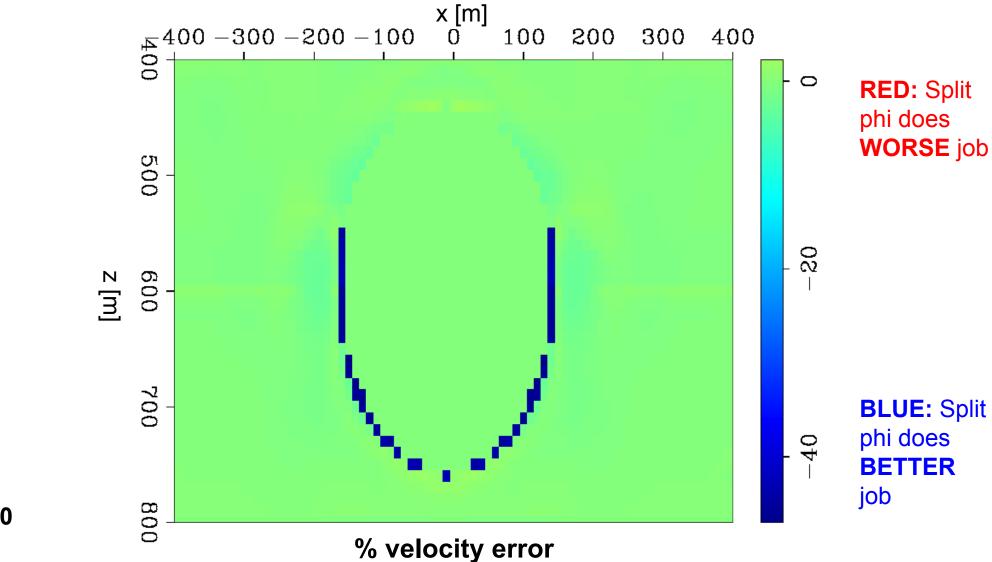
Algorithm comparison: w/ tomography

+

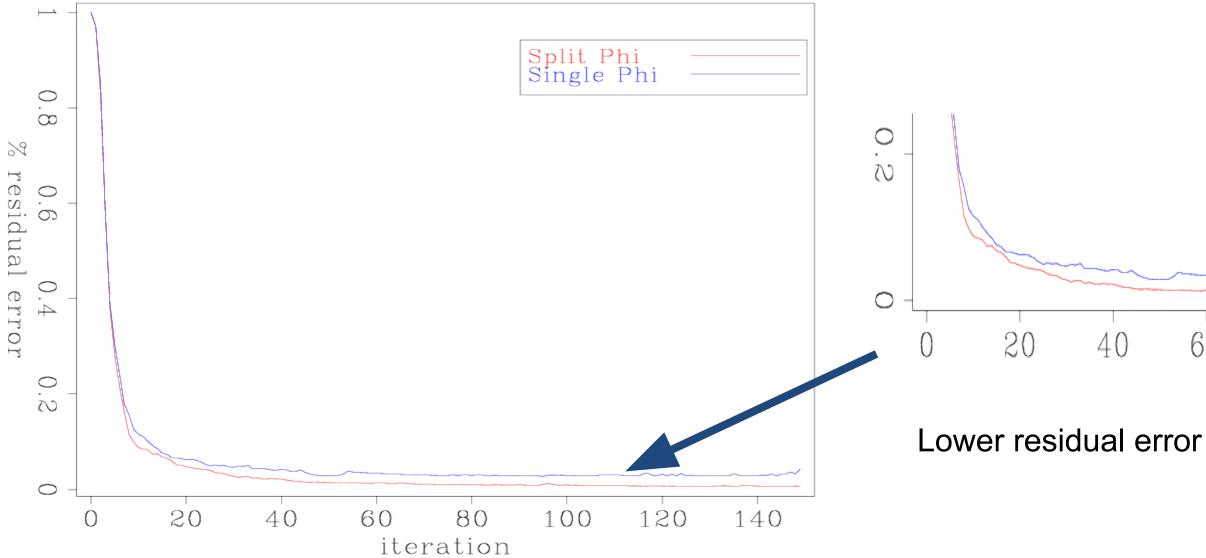


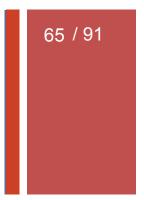
Domain decomposition algorithm

+Algorithm comparison: w/ tomography



╋ Algorithm comparison: w/ tomography

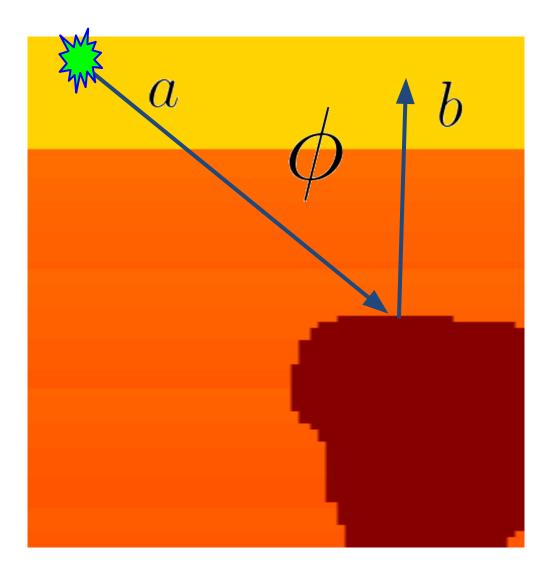


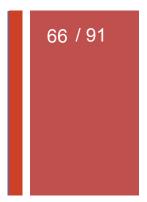


60 80 100 iteration

 $a \cdot b = |a| |b| \cos(\theta)$ $\phi < 90.0$ $a \cdot b > 0.0$

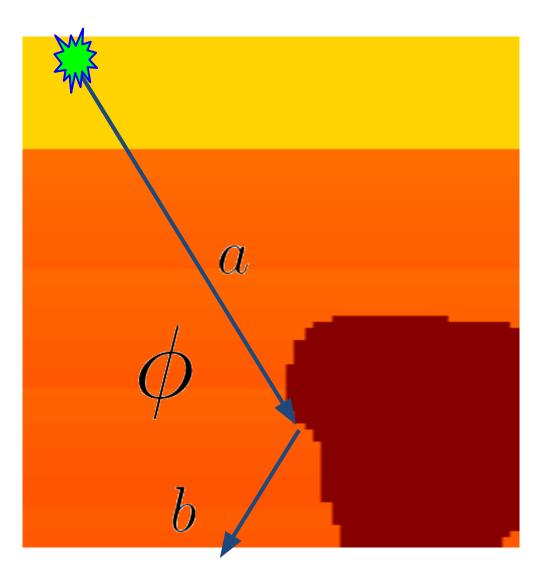
So considered a 'top' section

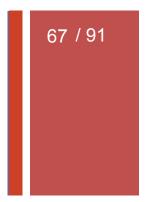




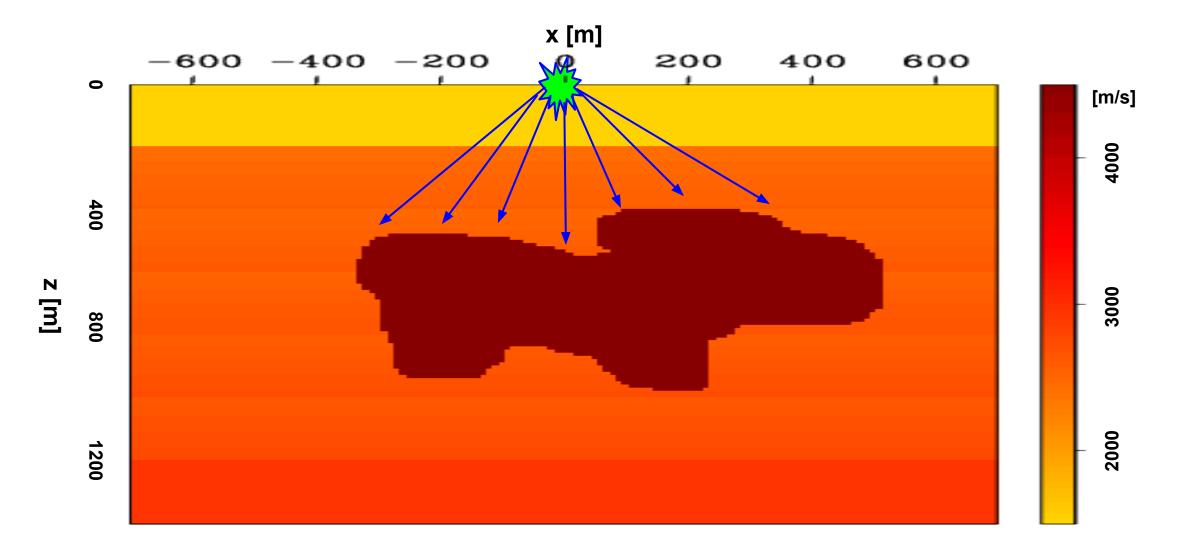
Direct ray paths from shot

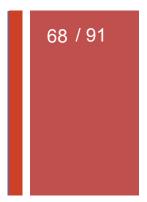
- $a \cdot b = |a| |b| \cos(\theta)$ $\phi > 90.0$ $a \cdot b < 0.0$
- So considered a 'bottom' section for that shot



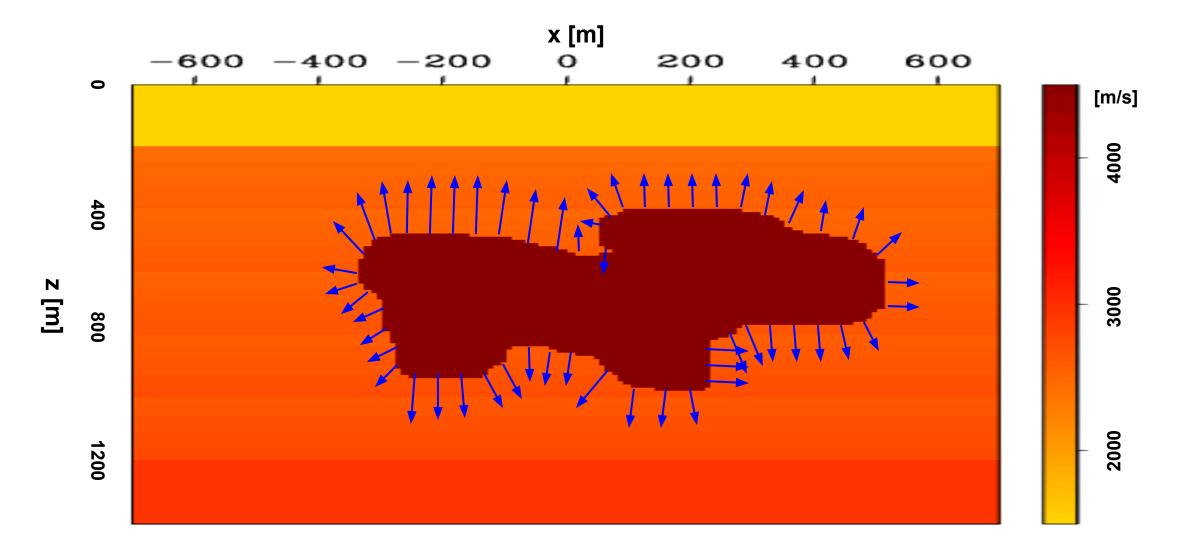


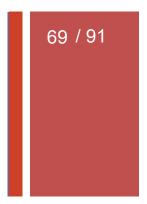
Direct ray paths from shot



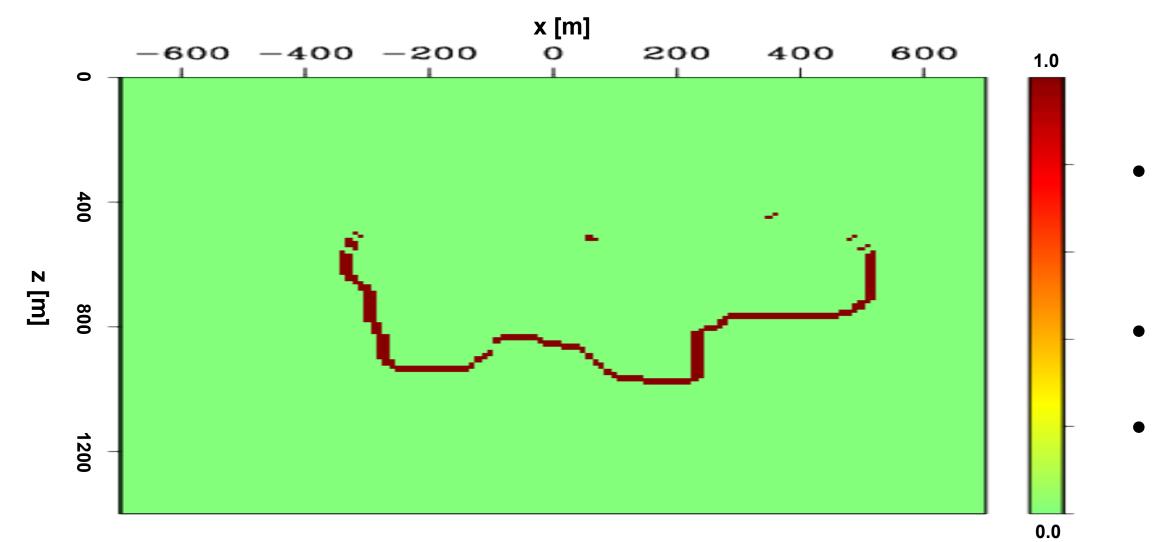


Direct ray paths from shot

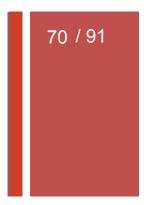




Boundary normal vector field



'Bottom' gradient domain partition

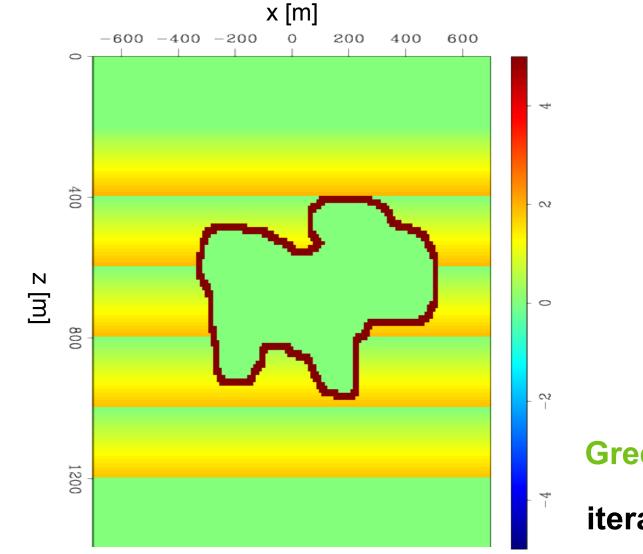


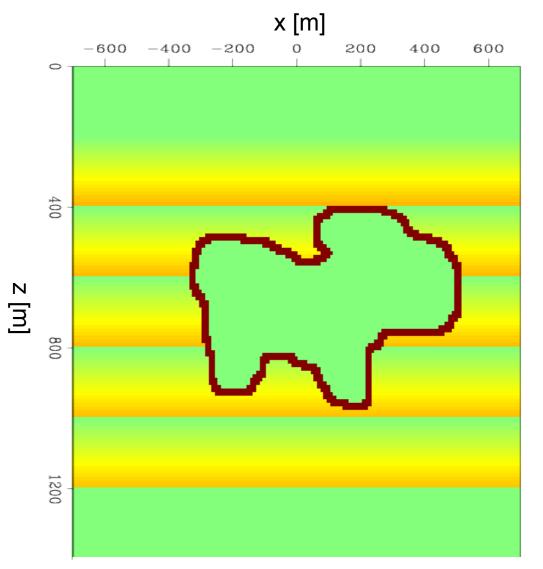
Take dot product of both vector fields to get a weighting map

Repeat, and sum for all shots

Threshold to make binary selector.

Domain decomposition comparison





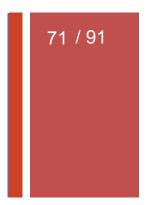
┿

Split algorithm % vel error

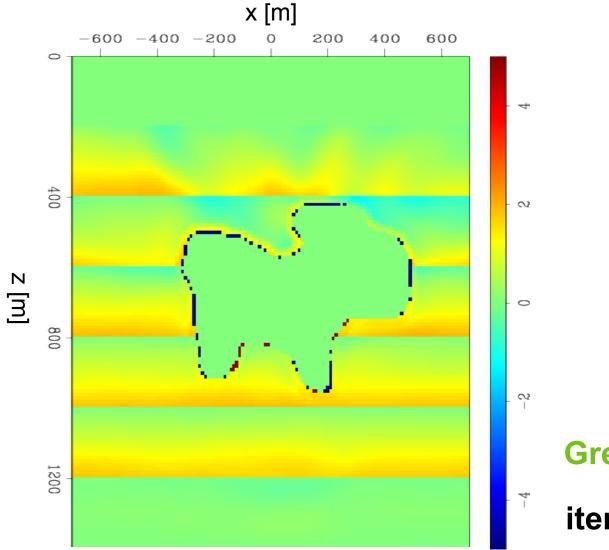
General algorithm % vel error

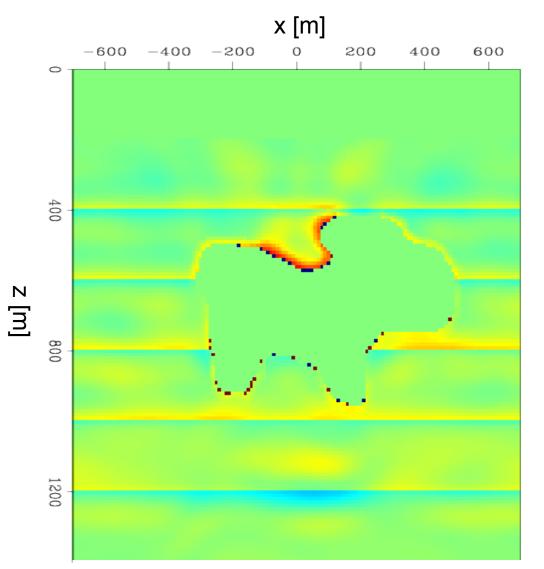
iteration = 0

Green = good match



Domain decomposition comparison





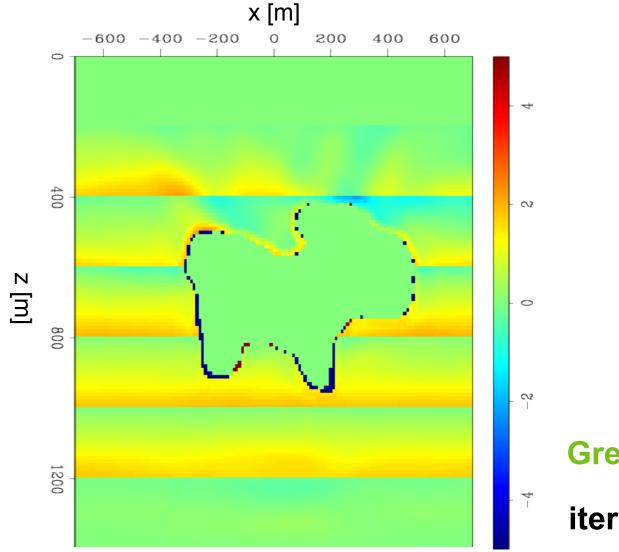
┿

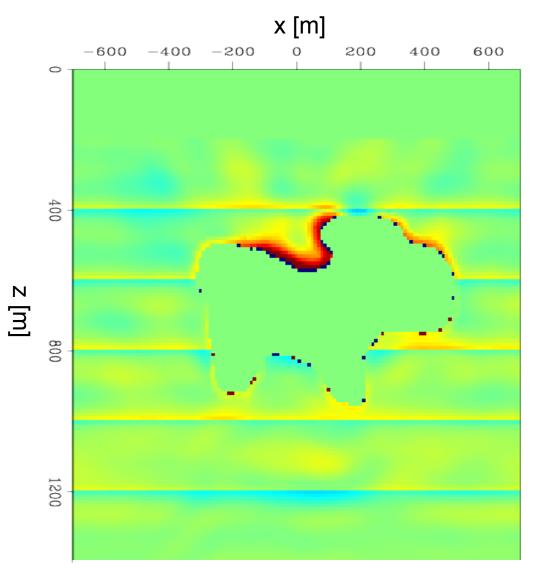
Split algorithm % vel error

General algorithm % vel error

iteration = 65

Green = good match



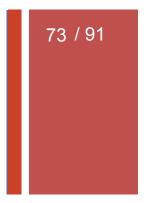


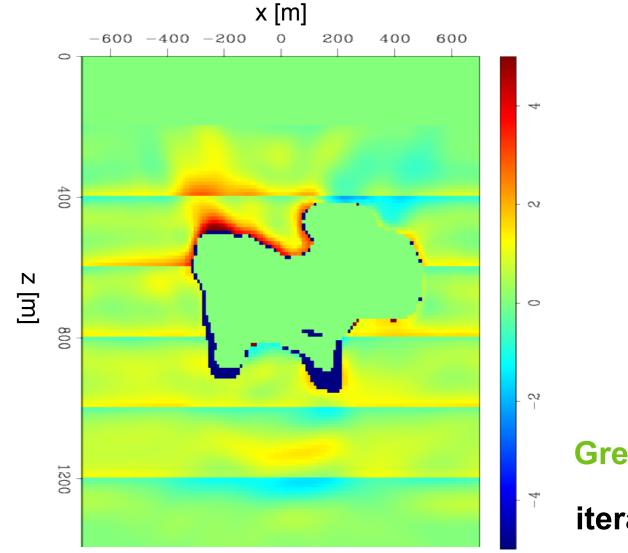
┿

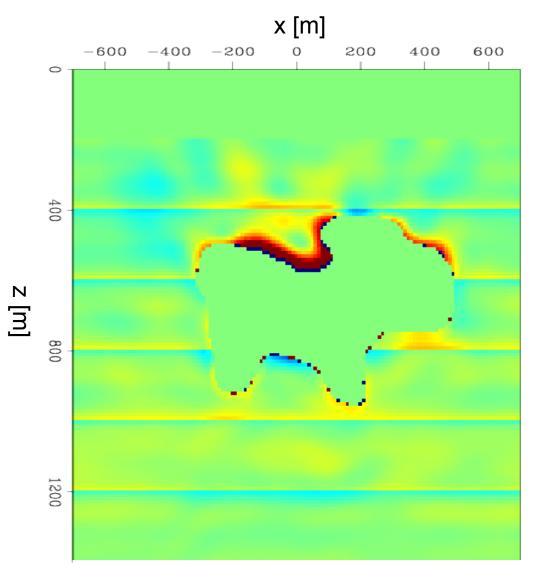
Split algorithm % vel error

General algorithm % vel error

iteration = 120





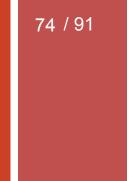


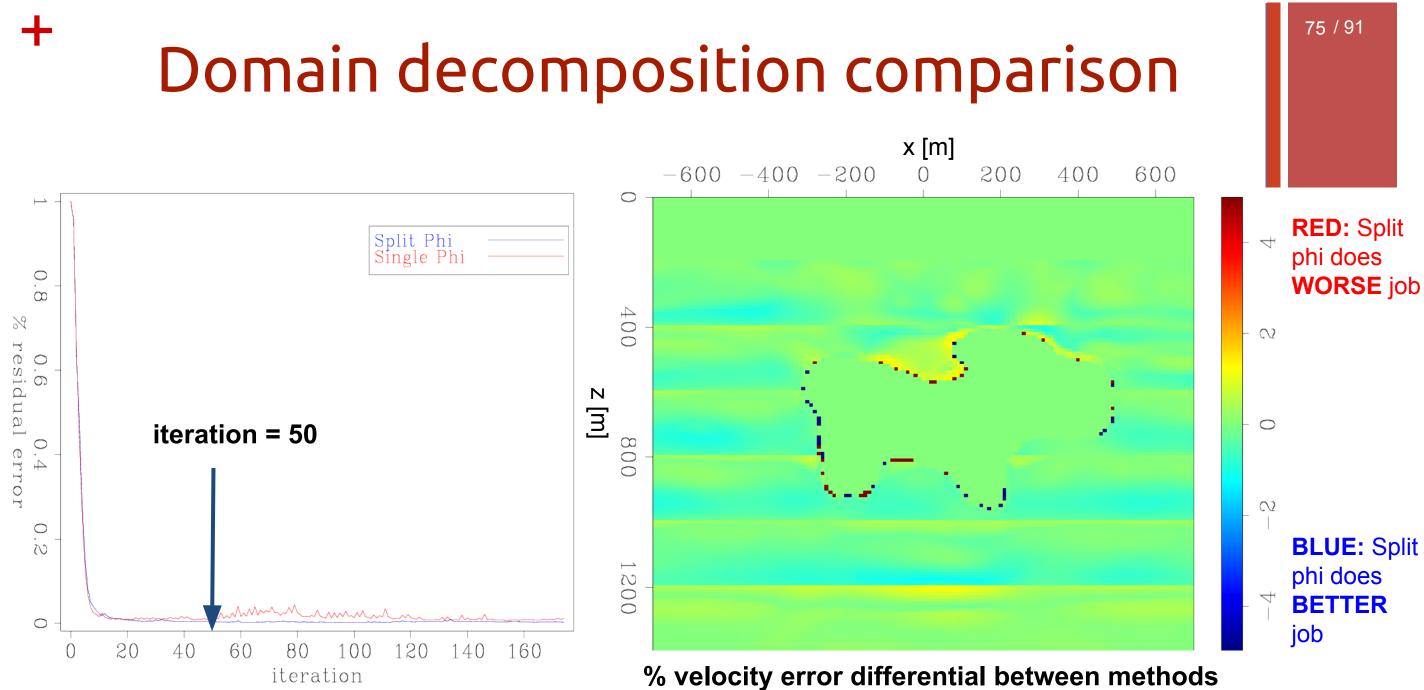
┿

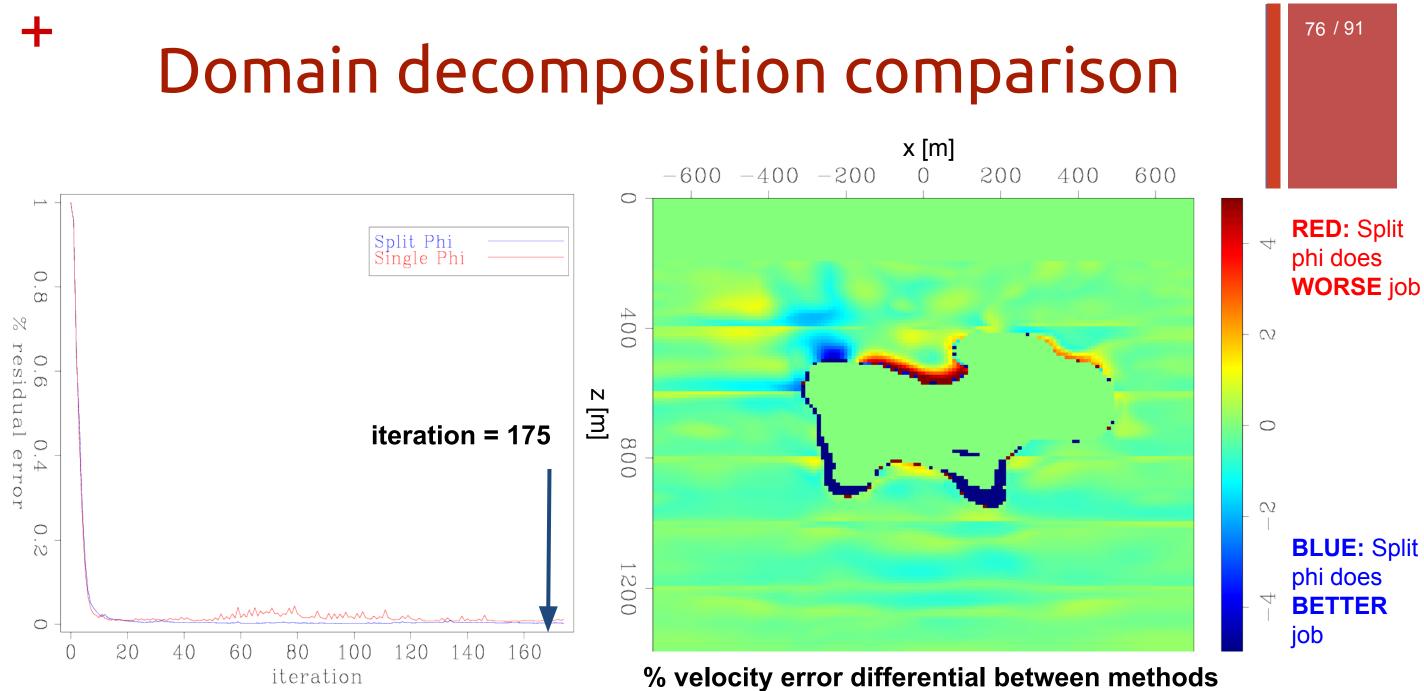
Split algorithm % vel error

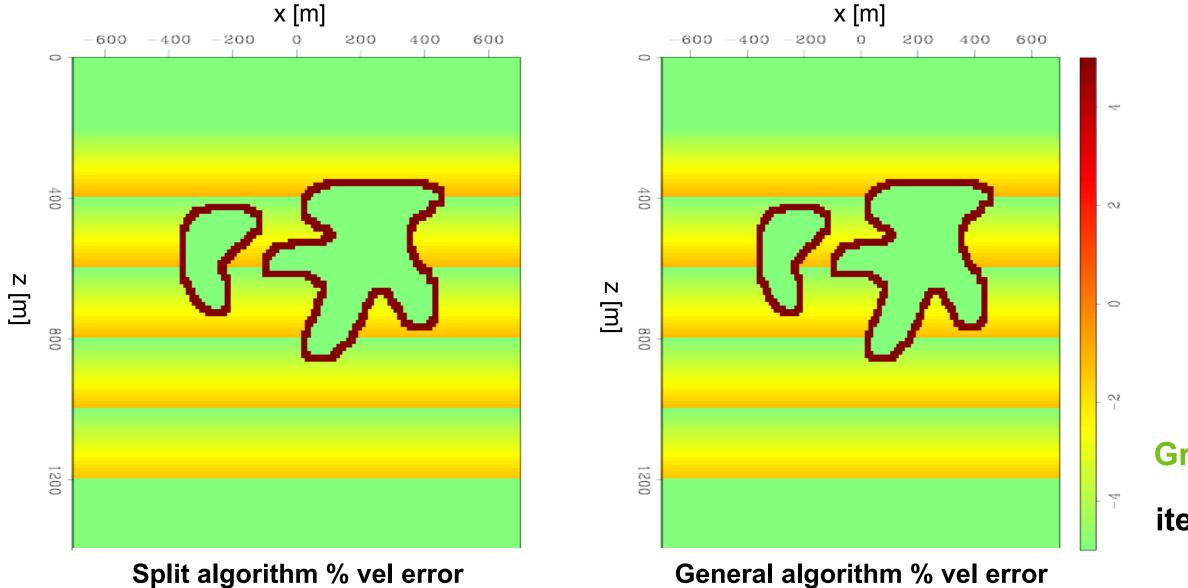
General algorithm % vel error

iteration = 175





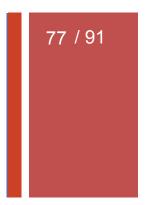


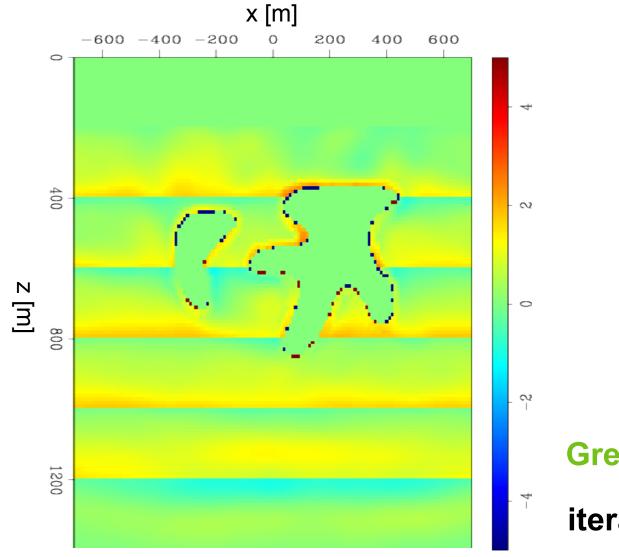


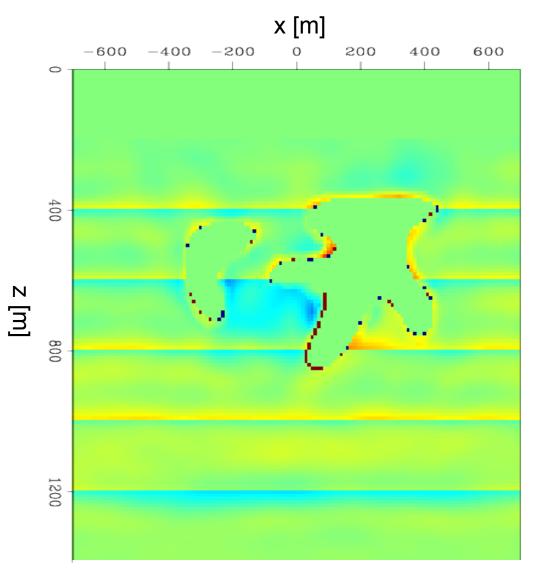
Split algorithm % vel error

+

iteration = 0





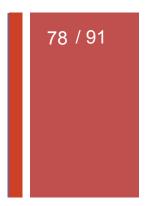


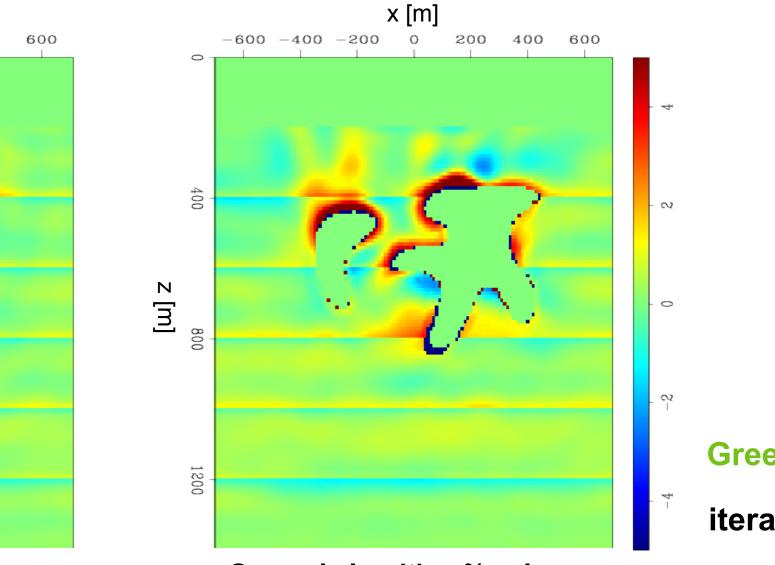
┿

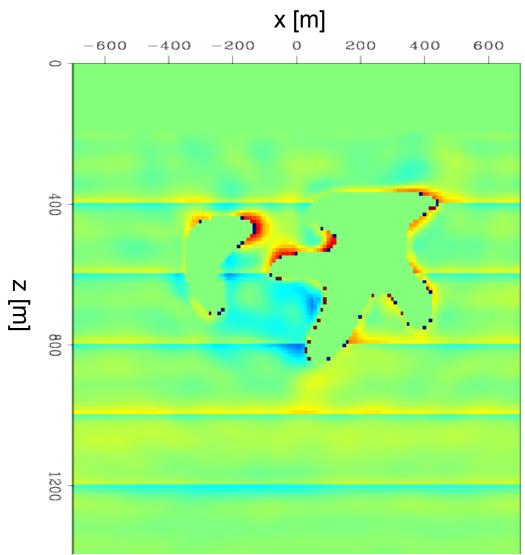
Split algorithm % vel error

General algorithm % vel error

iteration = 80





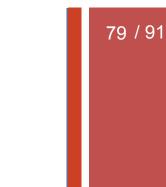


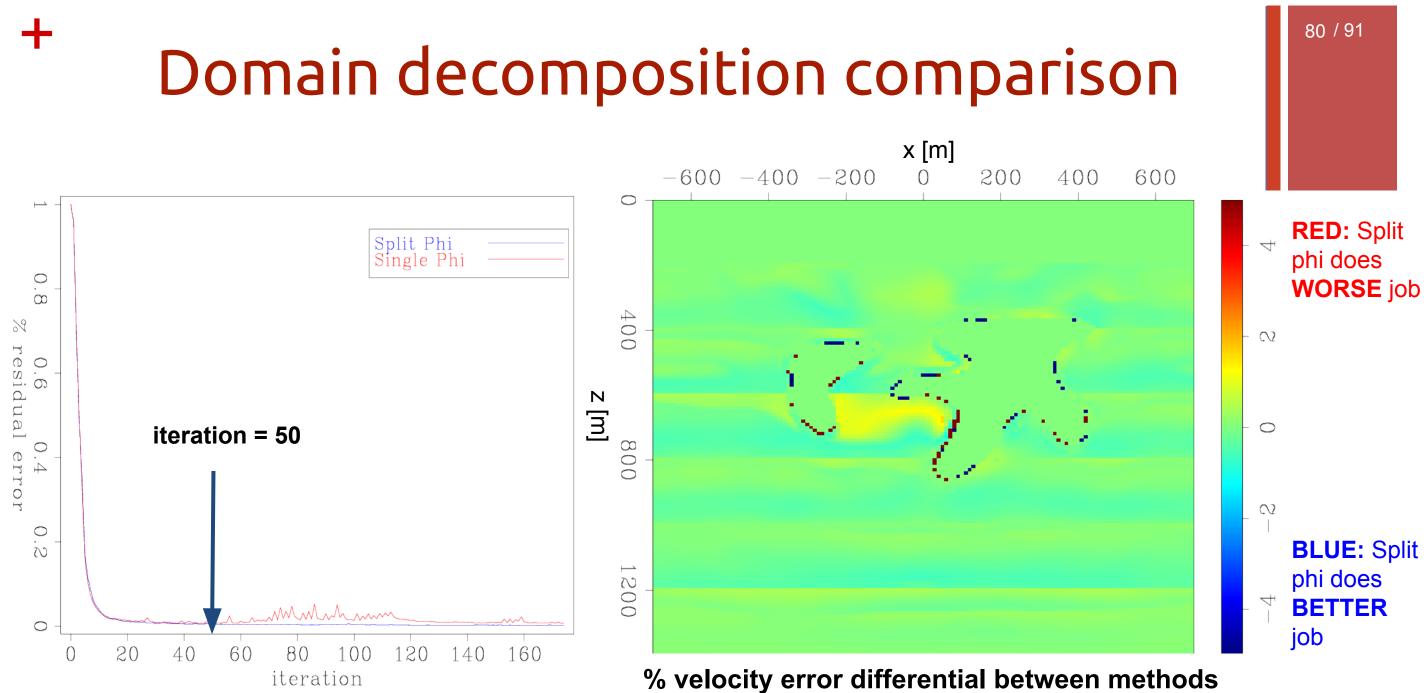
┿

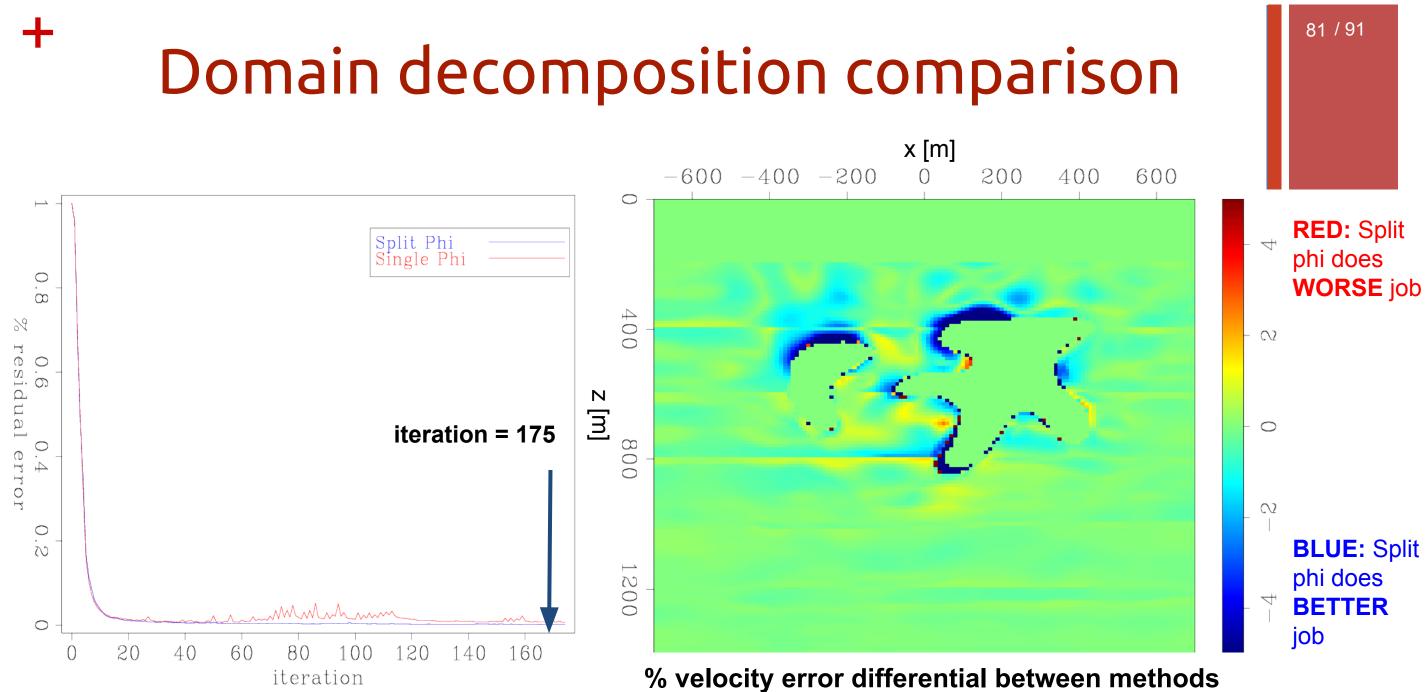
Split algorithm % vel error

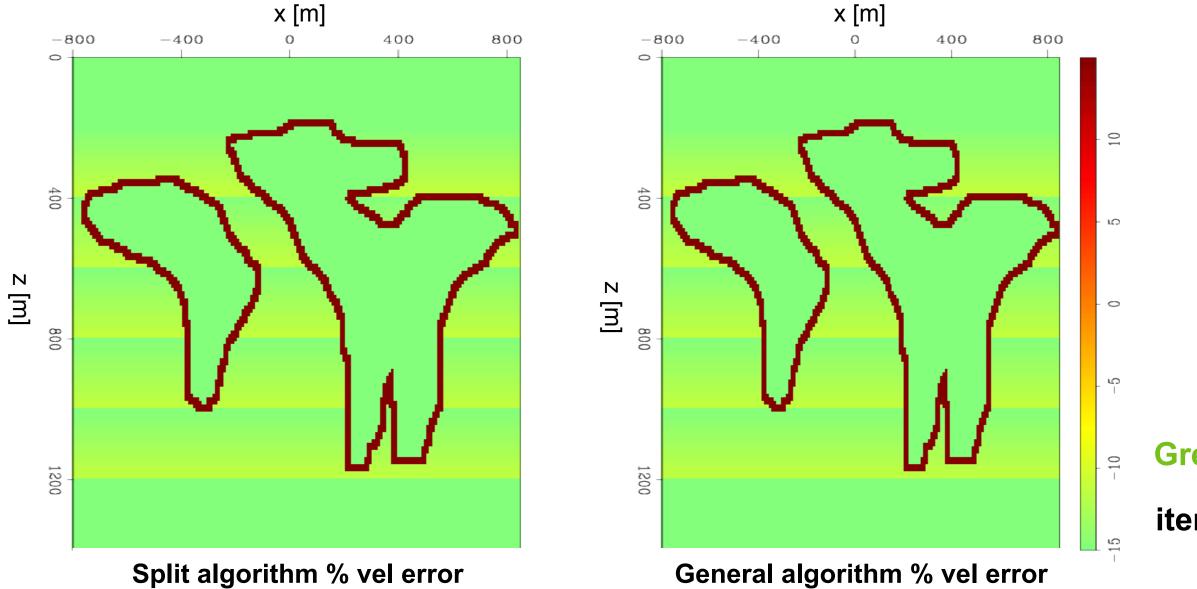
General algorithm % vel error

iteration = 175



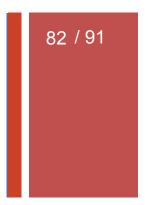


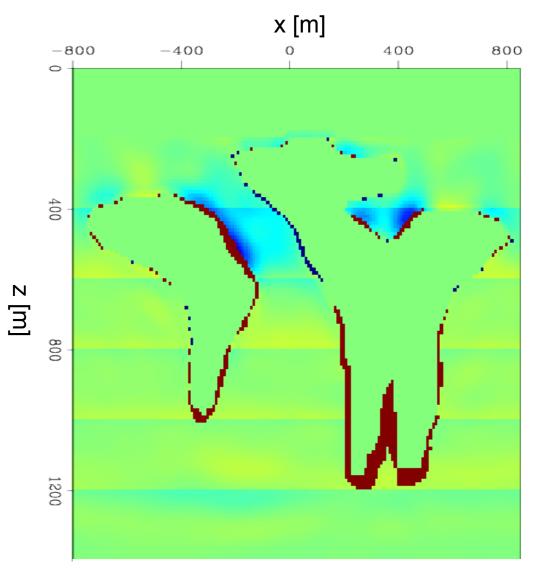




╋

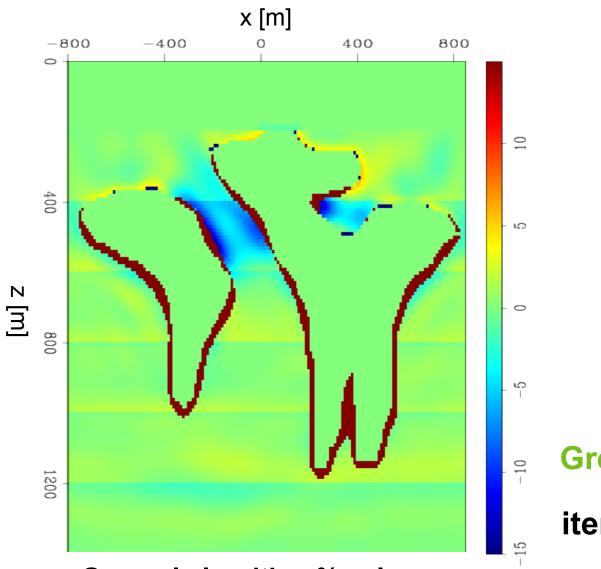
iteration = 0





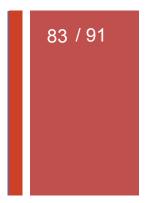
╋

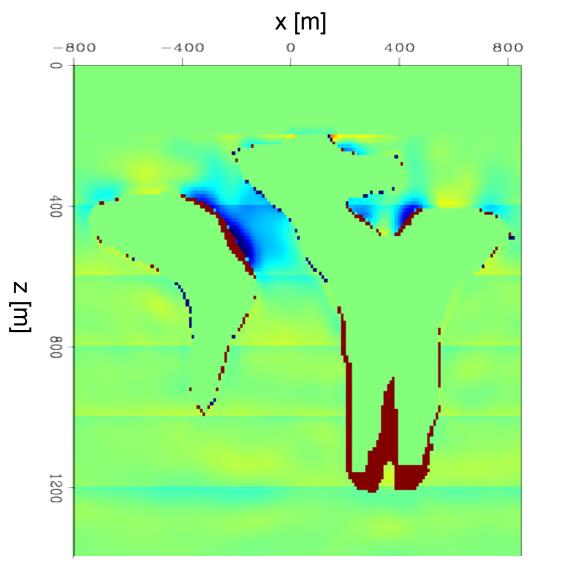
Split algorithm % vel error



General algorithm % vel error

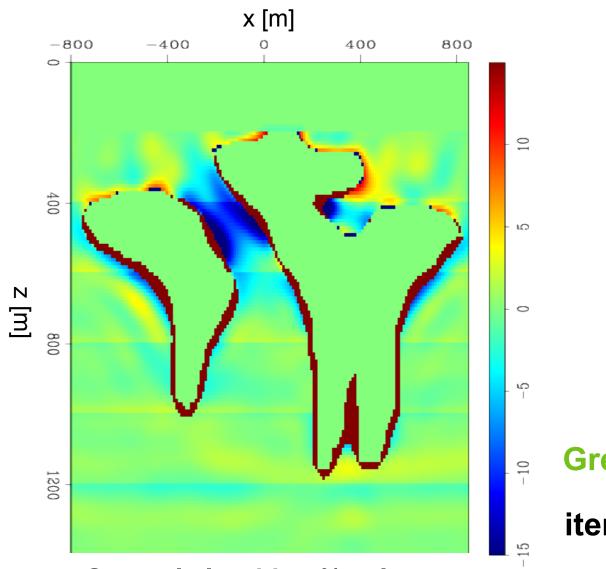
iteration = 50





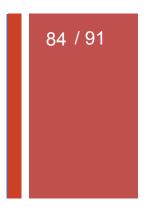
╋

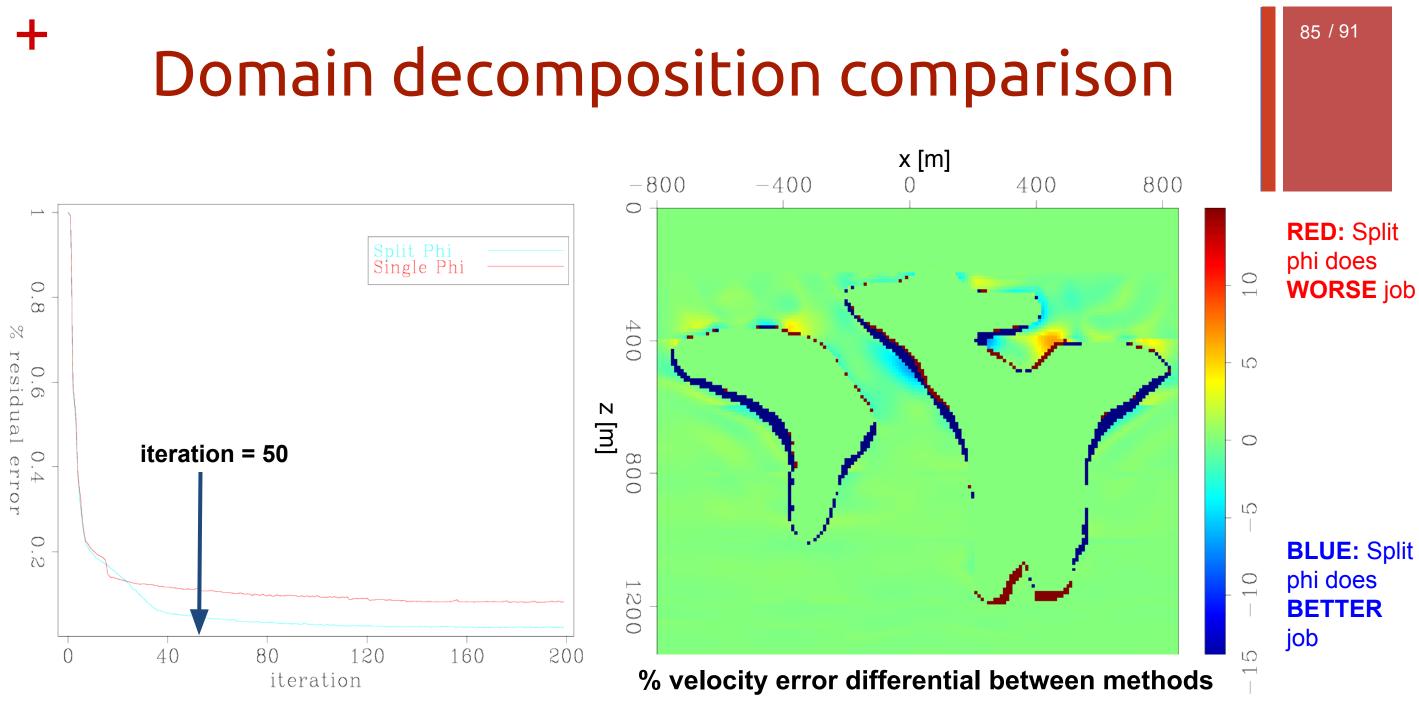
Split algorithm % vel error



General algorithm % vel error

iteration = 100

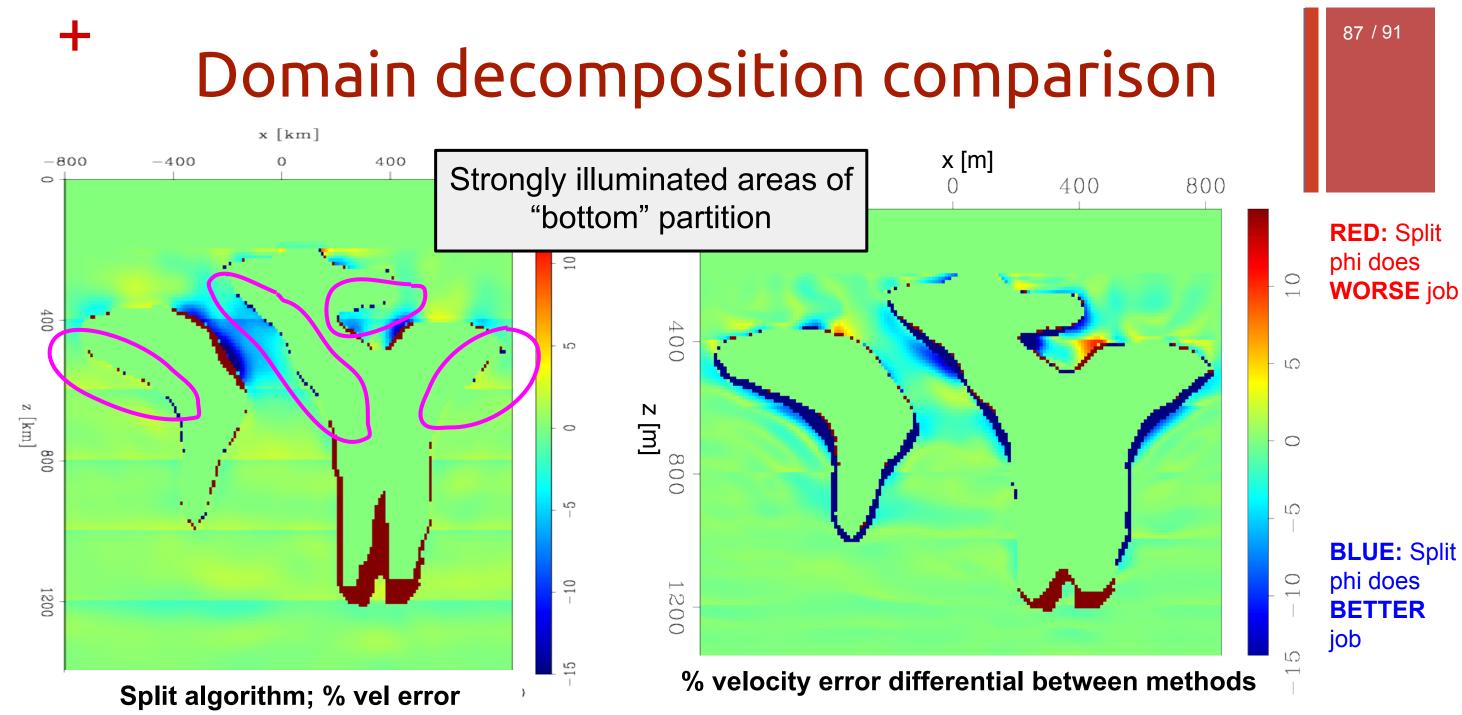




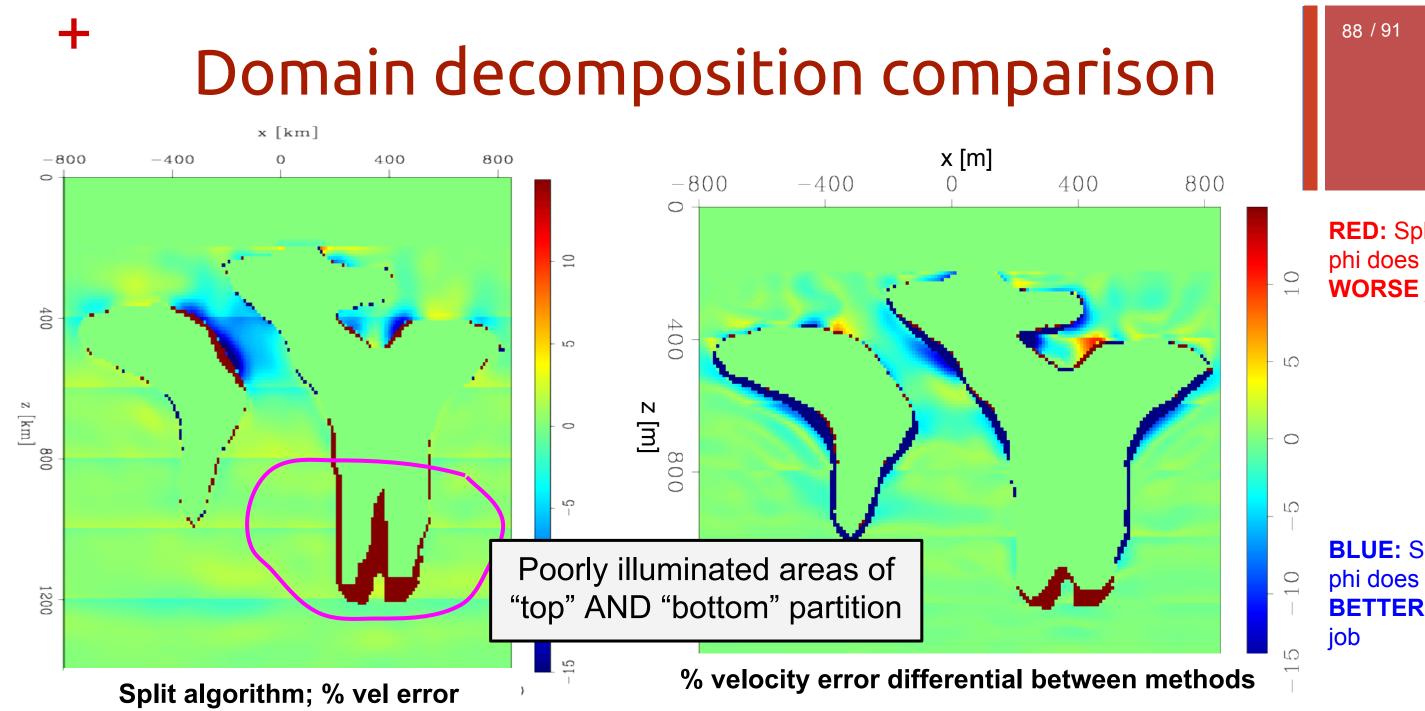


RED: Split phi does WORSE job

BLUE: Split **BETTER**



RED: Split WORSE job



RED: Split phi does WORSE job

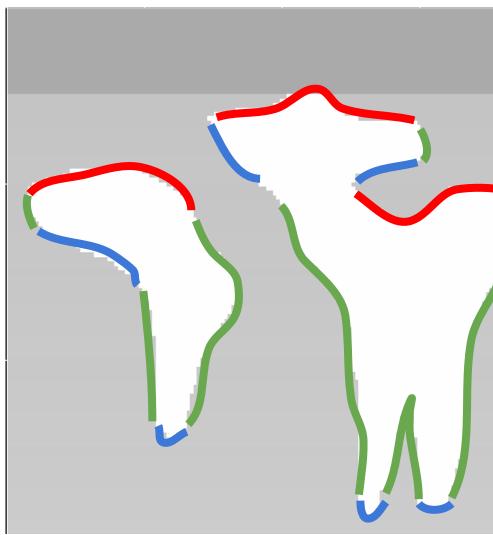
BLUE: Split **BETTER**

Future work

• Better splitting / domain decomposition method (takes into account illumination, etc).

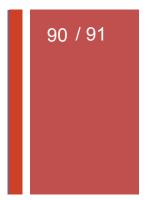
┿

- More than two decomposed domains.
 - For example; top, base, flanks.





- Level set theory offers distinct advantages to identifying salt boundaries.
- Domain decomposition allows for more accurate convergence on true salt.
- Expanding this method to more partitions could further improve the convergence on the flanks and base of salt.



Acknowledgements

• Current SEP students (Ali, Musa, Yang, Ohad).

┿

• Recent SEP alumni (Sjoerd, Adam, Mandy, Xukai, Elita).

