
+

Domain decomposition of
level set updates for salt

segmentation

Taylor Dahlke
5/19/2015

SEP 158, pg. 51

+ / 91+
Outline

2

● What are the problems?

● Why level sets?

● Why domain decomposition?

+ / 91+
Motivation

3

+ / 91+
Motivation

4

● Is that really where
the salt boundary is?

● Can test with
trial/error (expensive).

● What about inversion
approach?

+ / 91+
Motivation

5

● Inverting for the
velocity field (FWI)
can’t give us sharp
edges on salt

● What about
parameterizing the
body and inverting for
that?

Final FWI result

Figure, Xukai Shen 2015

+ / 91+
Motivation

6

● Inverting for the
velocity field (FWI)
can’t give us sharp
edges on salt

● What about
parameterizing the
body and inverting for
that?

True Model

Figure, Xukai Shen 2015

+ / 91+
Motivation

7

● How do we define the salt
body parameterization so
that we can handle
complex topologies?

● Can the topology change
as we iteratively invert?

SALT BODY #1

+ / 91+
Motivation

8

● How do we define the salt
body parameterization so
that we can handle
complex topologies?

● Can the topology change
as we iteratively invert?

Inclusions?

+ / 91+
Motivation

9

● How do we define the salt
body parameterization so
that we can handle
complex topologies?

● Can the topology change
as we iteratively invert?

+ / 91+
Outline

● Why level sets?
■ It can delineate sharp boundaries

■ It can handle complex geometries, inclusions,
merging, separation of bodies as inversion
progresses.

● How does it work?

10

+ / 91+
Level set overview

True model extent

Phi surface (profile view)

X

X

Z

11

SALT

+ / 91+

SALT

Phi surface (profile view)

X

X

Z

Phi gradient update

Level set overview
12

+ / 91+

SALT

X

X

Z

New phi surface

Level set overview
13

+ / 91+
Basic gradient derivation

14

+ / 91+
Basic gradient derivation

15

How do we derive this gradient?

+ / 91+

Boundary represented by level set

Basic gradient derivation
16

Osher, S. and J. A. Sethian, 1988; Burger, M., 2003

X

+ / 91+

Boundary represented by level set

CHAIN RULE

Basic gradient derivation
17

Osher, S. and J. A. Sethian, 1988; Burger, M., 2003

+ / 91+

CHAIN RULE

RE-ARRANGE TERMS

Basic gradient derivation

Boundary represented by level set

18

Osher, S. and J. A. Sethian, 1988; Burger, M., 2003

+ / 91+

RE-ARRANGE TERMS

EVOLUTION UPDATE EQUATION

Basic gradient derivation
19

Osher, S. and J. A. Sethian, 1988; Burger, M., 2003

+ / 91+

FWI OBJECTIVE FUNCTION

Basic gradient derivation
20

Osher, S. and J. A. Sethian, 1988; Burger, M., 2003

+ / 91+
Basic gradient derivation

21

Guo, Z. and M. de Hoop, 2013

+ / 91+

SPATIAL GRADIENT OF PHI

Basic gradient derivation
22

Guo, Z. and M. de Hoop, 2013

+ / 91+

SCALAR “SPEED” TERM

Basic gradient derivation
23

+ / 91+
Basic gradient derivation

Back-propagated residual
(RTM image)

24

+ / 91+
Relationship to RTM image

25

True salt
Initial salt boundary (TOO BIG) Initial salt boundary (TOO SMALL)

Background velocity

Background velocity

z [m
]

z [m
]

+ / 91+
Relationship to RTM image

26

Big salt Small salt

Red = Increase velocity

Blue = Decrease velocity

z [m
]

z [m
]

+ / 91+
Relationship to RTM image

BOUNDARY GRADIENT

27

+ / 91+
Relationship to RTM image

BOUNDARY GRADIENT

28

Positive when salt faster than
background

+ / 91+
Relationship to RTM image

BOUNDARY GRADIENT

29

Positive when salt faster than
background

Always positive, regularization
keeps gradient to ~1.0

+ / 91+
Relationship to RTM image

30

Big salt

Blue = Decrease in

z

z [m
]

+ / 91+
Relationship to RTM image

31

Big salt

Blue = Inward salt
boundary movement

z

z [m
]

+ / 91+
Relationship to RTM image

32

Big salt

Red = Increase in

Small salt

z

z [m
]

+ / 91+
Relationship to RTM image

33

Big salt

Red = Outward salt
boundary movement

Small salt

z

z [m
]

+ / 91+
Algorithm workflow

34

ALPHA

BETA

+ / 91+
Algorithm workflow

TO GET RESIDUAL

35

ALPHA

BETA

+ / 91+
Algorithm workflow

36

BETA

ALPHA

+ / 91+ Calculate gradients

Salt Boundary

Background
velocity

37

+ / 91+ Calculate gradients

Adjoint linearized Born operator (RTM)

38

Background
velocity

Salt Boundary

+ / 91+
Algorithm workflow

39

ALPHA

BETA

+ / 91+ Non-linear search for gamma 40

Salt
Boundary

Background
velocity

+ / 91+
Algorithm workflow

41

ALPHA

BETA

+ / 91+ Apply scaling and update fields

Implicit
surface phi

Background
velocity
model

42

Background
velocity

Salt
Boundary

+ / 91+
Outline

● What do you mean by domain decomposition?

● How does it work?

● Demonstration of method on various models

43

+ / 91+
Why domain decomposition?

● Top of salt (TOS) dominates
the salt updating

● Shows up as strongest
reflector

● Non-linear step search
prefers to correct TOS

● Leaves BOS under-
corrected Example of salt boundary update gradient

44

+ / 91+
Salt update example

Velocity model differenceTrue model Perfect top of
salt (TOS)
model

45

+ / 91+
Salt update example

Phi update gradientBackground velocity gradient
(RTM) Gradients at

first iteration
for model with
perfect TOS

Decrease
Velocity

Increase
Velocity

Inward
movement

Outward
movement

46

+ / 91+
Salt update example

Phi update gradient

No update
necessary!

Velocity model difference

47

+ / 91+
Fundamental problem

● Background velocity gradient will have ‘wrong’ update at
salt boundary for perfect TOS model.

● This is because RTM imaging cannot discern between
velocity and reflector position errors, so it tries to correct
both.

● Boundary update gradient based on RTM image, so it
inherits “wrong” update.

48

+ / 91+
What if we split the top/bottom?

Phi update gradientTomography update gradient

BETA_1

BETA_2

49

+ / 91+
Does it ever converge?

iteration = 0

50

General algorithmSplit algorithm

z [m
]

x [m] x [m]

+ / 91+
Does it ever converge?

iteration = 5

51

Split algorithm General algorithm

z [m
]

x [m] x [m]

+ / 91+
Does it ever converge?

iteration = 15

52

Split algorithm General algorithm

z [m
]

x [m] x [m]

+ / 91+
Does it ever converge?

iteration = 25

53

Split algorithm General algorithm

z [m
]

x [m] x [m]

+ / 91+
Does it ever converge?

iteration = 125

54

Split algorithm General algorithm

z [m
]

x [m] x [m]

+ / 91+
Does it ever converge?

iteration = 175

The general
algorithm hasn’t
converged after 175
iterations, while the
split algorithm
converges in 20.

55

Split algorithm General algorithm

z [m
]

x [m] x [m]

+ / 91+
Objective function comparison

56

Global gradient approach
Split gradient approach

+ / 91+
Why so spiky?

Regularization is
applied
independent of step
size beta. Gets
stronger relative to
update gradient as
iterations progress.

57

+ / 91+
Why so spiky?

Regularization is
applied
independent of
step size beta
Gets stronger
relative to update
gradient as
iterations progress.

58

+ / 91+
Why regularization?

Unregularized implicit surfaceRegularized implicit surface

= 0.0

59

+ / 91+
Why regularization?

Unregularized implicit surfaceRegularized implicit surface

= 0.0

60

+ / 91+
No regularization = stalling

Unregularized implicit surfaceRegularized implicit surface

= 0.0

61

+ / 91+
Algorithm comparison: w/ tomography

iteration = 110iteration = 0

General algorithm

62

z [m
]

x [m] x [m]

z [m
]

+ / 91+
Algorithm comparison: w/ tomography

iteration = 0 iteration = 110

Domain decomposition
algorithm

63

z [m
]

x [m] x [m]

z [m
]

+ / 91+
Algorithm comparison: w/ tomography

iteration = 110

RED: Split
phi does
WORSE job

BLUE: Split
phi does
BETTER
job

64

% velocity error

z [m
]

x [m]

+ / 91+
Algorithm comparison: w/ tomography

Lower residual error

65

+ / 91+
Generalized gradient splitting

Direct ray paths
from shot< 90.0

So considered a
‘top’ section

66

+ / 91+
Generalized gradient splitting

Direct ray paths
from shot> 90.0

So considered a
‘bottom’ section for
that shot

67

+ / 91+
Generalized gradient splitting

Direct ray paths
from shot

68

x [m]

40
00

30
00

20
00

[m/s]

400
800

1200
0

z [m
]

+ / 91+
Generalized gradient splitting

Boundary normal
vector field

69

x [m]

40
00

30
00

20
00

[m/s]

400
800

1200
0

z [m
]

+ / 91+

● Take dot product
of both vector
fields to get a
weighting map

● Repeat, and sum
for all shots

● Threshold to
make binary
selector.

70

‘Bottom’ gradient domain partition

1.0

0.0

x [m]

z [m
]

0
400

800
1200

Generalized gradient splitting

+ / 91+
Domain decomposition comparison

71

iteration = 0

Green = good match

General algorithm % vel errorSplit algorithm % vel error

x [m]x [m]

z [m
]

z [m
]

+ / 91+
Domain decomposition comparison

72

iteration = 65

Green = good match

General algorithm % vel errorSplit algorithm % vel error

x [m]x [m]

z [m
]

z [m
]

+ / 91+
Domain decomposition comparison

73

iteration = 120

Green = good match

General algorithm % vel errorSplit algorithm % vel error

x [m]x [m]

z [m
]

z [m
]

+ / 91+
Domain decomposition comparison

74

iteration = 175

Green = good match

General algorithm % vel errorSplit algorithm % vel error

x [m]x [m]

z [m
]

z [m
]

+ / 91+
Domain decomposition comparison

RED: Split
phi does
WORSE job

BLUE: Split
phi does
BETTER
job

iteration = 50

75

% velocity error differential between methods

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

RED: Split
phi does
WORSE job

BLUE: Split
phi does
BETTER
job

iteration = 175

76

% velocity error differential between methods

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

77

iteration = 0

Green = good match

Split algorithm % vel error General algorithm % vel error

z [m
]

x [m]

z [m
]

x [m]

+ / 91+
Domain decomposition comparison

78

iteration = 80

Green = good match

Split algorithm % vel error General algorithm % vel error

x [m]

z [m
]

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

79

iteration = 175

Green = good match

Split algorithm % vel error General algorithm % vel error

x [m]

z [m
]

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

RED: Split
phi does
WORSE job

BLUE: Split
phi does
BETTER
job

iteration = 50

80

% velocity error differential between methods

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

RED: Split
phi does
WORSE job

BLUE: Split
phi does
BETTER
job

iteration = 175

81

% velocity error differential between methods

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

82

iteration = 0

Green = good match

Split algorithm % vel error General algorithm % vel error

x [m]

z [m
]

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

83

iteration = 50

Green = good match

Split algorithm % vel error General algorithm % vel error

x [m]

z [m
]

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

84

iteration = 100

Green = good match

Split algorithm % vel error General algorithm % vel error

x [m]

z [m
]

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

iteration = 50

RED: Split
phi does
WORSE job

BLUE: Split
phi does
BETTER
job

85

% velocity error differential between methods

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

iteration = 100

RED: Split
phi does
WORSE job

BLUE: Split
phi does
BETTER
job

86

% velocity error differential between methods

x [m]

z [m
]

+ / 91+
Domain decomposition comparison

RED: Split
phi does
WORSE job

BLUE: Split
phi does
BETTER
job

87

% velocity error differential between methods

x [m]

z [m
]

Split algorithm; % vel error

Strongly illuminated areas of
“bottom” partition

+ / 91+
Domain decomposition comparison

RED: Split
phi does
WORSE job

BLUE: Split
phi does
BETTER
job

88

% velocity error differential between methods

x [m]

z [m
]

Split algorithm; % vel error

Poorly illuminated areas of
“top” AND “bottom” partition

+ / 91+
Future work

● Better splitting / domain
decomposition method (takes
into account illumination, etc).

● More than two decomposed
domains.

○ For example; top, base,
flanks.

89

+ / 91+
Summary

● Level set theory offers distinct advantages to identifying salt
boundaries.

● Domain decomposition allows for more accurate convergence on
true salt.

● Expanding this method to more partitions could further improve the
convergence on the flanks and base of salt.

90

+ / 91+
Acknowledgements

91

● Current SEP students (Ali, Musa, Yang, Ohad).

● Recent SEP alumni (Sjoerd, Adam, Mandy, Xukai, Elita).

