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Outline

2

● What are the problems?

● Why level sets?

● Why domain decomposition?
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Motivation
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Motivation

4

● Is that really where 
the salt boundary is?

● Can test with 
trial/error (expensive).

● What about inversion 
approach?
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Motivation

5

● Inverting for the 
velocity field (FWI) 
can’t give us sharp 
edges on salt

● What about 
parameterizing the 
body and inverting for 
that?

Final FWI result

Figure, Xukai Shen 2015
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Motivation

6

● Inverting for the 
velocity field (FWI) 
can’t give us sharp 
edges on salt

● What about 
parameterizing the 
body and inverting for 
that?

True Model

Figure, Xukai Shen 2015
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Motivation

7

● How do we define the salt 
body parameterization so 
that we can handle 
complex topologies?

● Can the topology change 
as we iteratively invert?

SALT BODY #1
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Motivation

8

● How do we define the salt 
body parameterization so 
that we can handle 
complex topologies?

● Can the topology change 
as we iteratively invert?

Inclusions?
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Motivation

9

● How do we define the salt 
body parameterization so 
that we can handle 
complex topologies?

● Can the topology change 
as we iteratively invert?
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Outline

● Why level sets?
■ It can delineate sharp boundaries

■ It can handle complex geometries, inclusions, 
merging, separation of bodies as inversion 
progresses.

● How does it work?

10
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Level set overview

True model extent

Phi surface (profile view)

X

X

Z

11

SALT
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SALT

Phi surface (profile view)

X

X

Z

Phi gradient update

Level set overview
12



+ / 91+

SALT

X

X

Z

New phi surface 

Level set overview
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Basic gradient derivation

14
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Basic gradient derivation

15

How do we derive this gradient?
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Boundary represented by level set

Basic gradient derivation
16

Osher, S. and J. A. Sethian, 1988; Burger, M., 2003

X
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Boundary represented by level set

CHAIN RULE

Basic gradient derivation
17

Osher, S. and J. A. Sethian, 1988; Burger, M., 2003
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CHAIN RULE

RE-ARRANGE TERMS

Basic gradient derivation

Boundary represented by level set

18

Osher, S. and J. A. Sethian, 1988; Burger, M., 2003
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RE-ARRANGE TERMS

EVOLUTION UPDATE EQUATION

Basic gradient derivation
19

Osher, S. and J. A. Sethian, 1988; Burger, M., 2003
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FWI  OBJECTIVE  FUNCTION

Basic gradient derivation
20

Osher, S. and J. A. Sethian, 1988; Burger, M., 2003
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Basic gradient derivation

21

Guo, Z. and M. de Hoop, 2013
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SPATIAL GRADIENT OF PHI

Basic gradient derivation
22

Guo, Z. and M. de Hoop, 2013
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SCALAR “SPEED” TERM

Basic gradient derivation
23
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Basic gradient derivation

Back-propagated residual 
(RTM image) 

24
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Relationship to RTM image
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True salt
Initial salt boundary (TOO BIG) Initial salt boundary (TOO SMALL)

Background velocity

Background velocity

z [m
]

z [m
]
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Relationship to RTM image
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Big salt Small salt

Red = Increase velocity

Blue = Decrease velocity

z [m
]

z [m
]
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Relationship to RTM image

BOUNDARY GRADIENT 

27



+ / 91+
Relationship to RTM image

BOUNDARY GRADIENT 

28

Positive when salt faster than 
background
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Relationship to RTM image

BOUNDARY GRADIENT 

29

Positive when salt faster than 
background

Always positive, regularization 
keeps gradient to ~1.0
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Relationship to RTM image
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Big salt

Blue = Decrease in 

z

z [m
]
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Relationship to RTM image
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Big salt

Blue = Inward salt 
boundary movement 

z

z [m
]
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Relationship to RTM image
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Big salt

Red = Increase in

Small salt

z

z [m
]
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Relationship to RTM image

33

Big salt

Red = Outward salt 
boundary movement

Small salt

z

z [m
]
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Algorithm workflow

34

ALPHA

BETA
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Algorithm workflow

TO GET RESIDUAL

35

ALPHA

BETA
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Algorithm workflow

36

BETA

ALPHA



+ / 91+ Calculate gradients

Salt Boundary

Background 
velocity

37



+ / 91+ Calculate gradients

Adjoint linearized Born operator (RTM)

38

Background 
velocity

Salt Boundary
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Algorithm workflow

39

ALPHA

BETA



+ / 91+ Non-linear search for gamma 40

Salt 
Boundary

Background 
velocity
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Algorithm workflow

41

ALPHA

BETA



+ / 91+ Apply scaling and update fields

Implicit 
surface phi

Background 
velocity 
model

42

Background 
velocity

Salt 
Boundary
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Outline

● What do you mean by domain decomposition?

● How does it work?

● Demonstration of method on various models

43
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Why domain decomposition?

● Top of salt (TOS) dominates 
the salt updating

● Shows up as strongest 
reflector

● Non-linear step search 
prefers to correct TOS

● Leaves BOS under- 
corrected Example of salt boundary update gradient

44
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Salt update example

Velocity model differenceTrue model Perfect top of 
salt (TOS) 
model

45
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Salt update example

Phi update gradientBackground velocity gradient 
(RTM) Gradients at 

first iteration 
for model with 
perfect TOS

Decrease 
Velocity

Increase 
Velocity

Inward 
movement

Outward 
movement

46
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Salt update example

Phi update gradient

No update 
necessary!

Velocity model difference

47
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Fundamental problem

● Background velocity gradient will have ‘wrong’ update at 
salt boundary for perfect TOS model. 

● This is because RTM imaging cannot discern between 
velocity and reflector position errors, so it tries to correct 
both.

● Boundary update gradient based on RTM image, so it 
inherits “wrong” update. 

48
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What if we split the top/bottom?

Phi update gradientTomography update gradient

BETA_1

BETA_2

49
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Does it ever converge?

iteration = 0

50

General algorithmSplit algorithm

z [m
]

x [m] x [m]
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Does it ever converge?

iteration = 5

51

Split algorithm General algorithm

z [m
]

x [m] x [m]
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Does it ever converge?

iteration = 15

52

Split algorithm General algorithm

z [m
]

x [m] x [m]
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Does it ever converge?

iteration = 25

53

Split algorithm General algorithm

z [m
]

x [m] x [m]
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Does it ever converge?

iteration = 125

54

Split algorithm General algorithm

z [m
]

x [m] x [m]
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Does it ever converge?

iteration = 175

The general 
algorithm hasn’t 
converged after 175 
iterations, while the 
split algorithm 
converges in 20.

55

Split algorithm General algorithm

z [m
]

x [m] x [m]
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Objective function comparison
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Global gradient approach
Split gradient approach
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Why so spiky?

Regularization is 
applied 
independent of step 
size beta. Gets 
stronger relative to 
update gradient as 
iterations progress.
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Why so spiky?

Regularization is 
applied 
independent of 
step size beta 
Gets stronger 
relative to update 
gradient as 
iterations progress.
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Why regularization?

Unregularized implicit surfaceRegularized implicit surface

= 0.0
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Why regularization?

Unregularized implicit surfaceRegularized implicit surface

= 0.0
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No regularization = stalling

Unregularized implicit surfaceRegularized implicit surface

= 0.0

61
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Algorithm comparison: w/ tomography

iteration = 110iteration = 0

General algorithm

62

z [m
]

x [m] x [m]

z [m
]
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Algorithm comparison: w/ tomography

iteration = 0 iteration = 110

Domain decomposition  
algorithm

63

z [m
]

x [m] x [m]

z [m
]
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Algorithm comparison: w/ tomography

iteration = 110

RED: Split 
phi does 
WORSE job

BLUE: Split 
phi does 
BETTER 
job

64

% velocity error

z [m
]

x [m]
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Algorithm comparison: w/ tomography

Lower residual error

65
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Generalized gradient splitting

Direct ray paths 
from shot< 90.0

So considered a 
‘top’ section
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Generalized gradient splitting

Direct ray paths 
from shot> 90.0

So considered a 
‘bottom’ section for 
that shot

67
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Generalized gradient splitting

Direct ray paths 
from shot

68

x [m]

40
00

30
00

20
00

[m/s]

400
800

1200
0

z [m
]
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Generalized gradient splitting

Boundary normal 
vector field

69

x [m]

40
00

30
00

20
00

[m/s]

400
800

1200
0

z [m
]
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● Take dot product 
of both vector 
fields to get a 
weighting map

● Repeat, and sum 
for all shots

● Threshold to 
make binary 
selector.

70

‘Bottom’ gradient domain partition

1.0

0.0

x [m]

z [m
]

0
400

800
1200

Generalized gradient splitting
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Domain decomposition comparison

71

iteration = 0

Green = good match

General algorithm % vel errorSplit algorithm % vel error

x [m]x [m]

z [m
]

z [m
]
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Domain decomposition comparison
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iteration = 65

Green = good match

General algorithm % vel errorSplit algorithm % vel error

x [m]x [m]

z [m
]

z [m
]
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Domain decomposition comparison
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iteration = 120

Green = good match

General algorithm % vel errorSplit algorithm % vel error

x [m]x [m]

z [m
]

z [m
]
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Domain decomposition comparison

74

iteration = 175

Green = good match

General algorithm % vel errorSplit algorithm % vel error

x [m]x [m]

z [m
]

z [m
]
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Domain decomposition comparison

RED: Split 
phi does 
WORSE job

BLUE: Split 
phi does 
BETTER 
job

iteration = 50

75

% velocity error differential between methods

x [m]

z [m
]
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Domain decomposition comparison

RED: Split 
phi does 
WORSE job

BLUE: Split 
phi does 
BETTER 
job

iteration = 175

76

% velocity error differential between methods

x [m]

z [m
]
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Domain decomposition comparison

77

iteration = 0

Green = good match

Split algorithm % vel error General algorithm % vel error

z [m
]

x [m]

z [m
]

x [m]
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Domain decomposition comparison
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iteration = 80

Green = good match

Split algorithm % vel error General algorithm % vel error

x [m]

z [m
]

x [m]

z [m
]
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Domain decomposition comparison

79

iteration = 175

Green = good match

Split algorithm % vel error General algorithm % vel error

x [m]

z [m
]

x [m]

z [m
]
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Domain decomposition comparison

RED: Split 
phi does 
WORSE job

BLUE: Split 
phi does 
BETTER 
job

iteration = 50

80

% velocity error differential between methods

x [m]

z [m
]
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Domain decomposition comparison

RED: Split 
phi does 
WORSE job

BLUE: Split 
phi does 
BETTER 
job

iteration = 175

81

% velocity error differential between methods

x [m]

z [m
]
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Domain decomposition comparison

82

iteration = 0

Green = good match

Split algorithm % vel error General algorithm % vel error

x [m]

z [m
]

x [m]

z [m
]
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Domain decomposition comparison

83

iteration = 50

Green = good match

Split algorithm % vel error General algorithm % vel error

x [m]

z [m
]

x [m]

z [m
]
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Domain decomposition comparison
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iteration = 100

Green = good match

Split algorithm % vel error General algorithm % vel error

x [m]

z [m
]

x [m]

z [m
]
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Domain decomposition comparison

iteration = 50

RED: Split 
phi does 
WORSE job

BLUE: Split 
phi does 
BETTER 
job

85

% velocity error differential between methods

x [m]

z [m
]
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Domain decomposition comparison

iteration = 100

RED: Split 
phi does 
WORSE job

BLUE: Split 
phi does 
BETTER 
job

86

% velocity error differential between methods

x [m]

z [m
]
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Domain decomposition comparison

RED: Split 
phi does 
WORSE job

BLUE: Split 
phi does 
BETTER 
job

87

% velocity error differential between methods

x [m]

z [m
]

Split algorithm; % vel error

Strongly illuminated areas of 
“bottom” partition
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Domain decomposition comparison

RED: Split 
phi does 
WORSE job

BLUE: Split 
phi does 
BETTER 
job

88

% velocity error differential between methods

x [m]

z [m
]

Split algorithm; % vel error

Poorly illuminated areas of 
“top” AND “bottom” partition
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Future work

● Better splitting / domain 
decomposition method (takes 
into account illumination, etc).

● More than two decomposed 
domains.

○ For example; top, base, 
flanks.

89
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Summary

● Level set theory offers distinct advantages to identifying salt 
boundaries.

● Domain decomposition allows for more accurate convergence on 
true salt.

● Expanding this method to more partitions could further improve the 
convergence on the flanks and base of salt.

90



+ / 91+
Acknowledgements

91

● Current SEP students (Ali, Musa, Yang, Ohad).

● Recent SEP alumni (Sjoerd, Adam, Mandy, Xukai, Elita).


