Resolving the effects of production-induced overburden dilation using simultaneous TV-regularized time-lapse FWI

Application to field seismic data

Musa Maharramov, Biondo Biondi, and Mark Meadows

Stanford Exploration Project
May 19, 2015

- Current methods: conversion of time shifts \Rightarrow impedance changes
- More automated tomographic methods exist
- Goal: design a robust 4D FWI less sensitive to repeatability issues

Find a model \mathbf{m} that minimizes misfit between the true \mathbf{d} and predicted $\mathbf{u}(\mathbf{m})$ data (Lailly, 1983; Tarantola, 1984)

$$
\begin{equation*}
\text { Misfit }=\left\|\mathbf{W}_{d}[\mathbf{d}-\mathbf{u}(\mathbf{m})]\right\|^{2} \rightarrow \min \tag{1}
\end{equation*}
$$

with optional model regularization

$$
\begin{equation*}
\beta\left\|\mathbf{R} \mathbf{W}_{m}\left[\mathbf{m}-\mathbf{m}^{\text {prior }}\right]\right\|^{2} \tag{2}
\end{equation*}
$$

where \mathbf{m} is a subsurface velocity model, \mathbf{W}_{d} and \mathbf{W}_{m} are data residual and model weighting operators, \mathbf{R} is a model regularization operator, and $\mathbf{m}^{\text {prior }}$ is a model prior.

Existing model-space 4D FWI methods

- Parallel Difference FWI

- Sequential Difference FWI

Joint 4D FWI: simultaneous inversion and cross-updating

- NEW: Simultaneous FWI of baseline and monitor with difference regularization:

> Baseline Misfit + Monitor Misfit +

$$
\begin{equation*}
\alpha\left\|\mathbf{R} \mathbf{W}_{m}\left[\mathbf{m}_{2}-\mathbf{m}_{1}\right]\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

- NEW: Cross-updating Approximation to the Simultaneous FWI:

Total-variation difference regularization

- NEW: Simultaneous FWI of baseline and monitor with the total-variation difference regularization:
Baseline Misfit + Monitor Misfit +

$$
\begin{equation*}
\alpha\left\|\left|\nabla \mathbf{W}_{m}\left[\mathbf{m}_{2}-\mathbf{m}_{1}\right]\right|\right\|_{1} . \tag{6}
\end{equation*}
$$

- The Total-variation (TV) seminorm (6) provides edge-preserving regularization that promotes model "blockiness" and helps to reduce spurious oscillations ("ROF" model of Rudin, Osher, and Fatemi, 1992).

$7 \mathrm{~dB}=2.2$ SNR synthetic

"Marmousi" model: true baseline

$1.44 \mathrm{e}+03$
$1.94 \mathrm{e}+03$
$2.44 \mathrm{e}+03$
$2.94 \mathrm{e}+03$
$3.44 \mathrm{e}+03$
$3.94 \mathrm{e}+03$
$4.44 \mathrm{e}+03$
$4.94 e+03$
$5.44 \mathrm{e}+03$

Modified "Marmousi" : true monitor

$1.44 e+03$
$1.94 \mathrm{e}+03$
$2.44 \mathrm{e}+03$
$2.94 e+03$
$3.44 \mathrm{e}+03$
$3.94 \mathrm{e}+03$
$4.44 \mathrm{e}+03$
$4.94 \mathrm{e}+03$
$5.44 e+03$

True difference

inline (m)

Cross-updating

inline (m)

Total-variation difference regularization

inline (m)

GoM Genesis field data: estimating production-induced overburden dilation

Genesis target (Magesan et al., 2008)

Baseline time migration image by Chevron

Monitor-Baseline image difference by Chevron

Kinematic differences (time shifts) in 1074m common-offset gathers $\underset{\xi}{\xi}$

- Frequency-domain inversion, $3-30 \mathrm{~Hz}$
- Shot gathers interpolated from the provided sparse CDP gathers
- Phase-only inversion as prior processing made amplitude information unreliable
- Baseline: 1264 shots with up to 175 receivers each
- Monitor: 1264 shots with up to 175 receivers each (a platform gap exists)
- Maximum 10 iterations per frequency

Baseline inversion, 3-30Hz

Baseline target

Parallel Difference

Baseline target

Model difference, strong TV regularization

Baseline target

Model difference, strong TV regularization

Zoomed-in baseline target

Zoomed-in model difference, strong TV regularization

Migrated baseline image

Migrated image difference (target area)

Velocity difference

Image vs velocity difference

Genesis production wells (Rickett et al., 20007)

- TV-regularized simultaneous time-lapse FWI can resolve velocity changes induced by overburden dilation
- Peaks of inverted velocity difference match the largest observed time strains
- Resolving fine features of compacting reservoirs may require multi-scale inversion (Maharramov and Biondi, SEP155, pp 187-192)
- 3D time-lapse FWI experiments (including analysis of sensitivity to cycle-skipping) are underway

Acknowledgements

The authors thank Stewart Levin, Joseph Stefani, Dimitri Bevc, and Shuki Ronen for a number of useful discussions and suggestions; Chevron, ExxonMobil, and BHP Billiton for providing field data; and SEP affiliate members for their support.

Q\&A

Appendices

Appendices - discussion slides

Model decomposition into "blocky" and "wiggly" components $=$ cartoon+texture decomposition (Meyer, 2001):

$$
\begin{gathered}
\min _{\mathbf{m}, \mathbf{m}_{b}}\|\mathbf{F}(\mathbf{m})-\mathbf{d}\|_{2}^{2}+\alpha\left\|\left|\nabla \mathbf{m}_{b}\right|\right\|_{1}+\beta\left\|\mathbf{R} \mathbf{m}_{w}\right\|_{2}^{2}, \mathbf{m}=\mathbf{m}_{b}+\mathbf{m}_{w} \\
\text { where } \\
\mathbf{R}=\mathbf{I} \text { or } \boldsymbol{\Delta} .
\end{gathered}
$$

R-factor analysis

$$
\begin{gather*}
\frac{d \tau}{d t} \approx \frac{\Delta t}{t}=\frac{\Delta z}{z}-\frac{\Delta v}{v}, \tag{8}\\
\frac{\Delta v}{v}=-R \frac{\Delta z}{z}, \tag{9}\\
\frac{\Delta v}{v}=-\frac{R}{R+1} \frac{\Delta t}{t} \approx-\frac{\Delta t}{t} \approx-\frac{d \tau}{d t} . \tag{10}\\
\Delta v \approx-.02 \times 2,800 \mathrm{~m} / \mathrm{s}=-56 \mathrm{~m} / \mathrm{s} . \tag{11}
\end{gather*}
$$

Model difference, strong TV regularization

