Pseudo-acoustic modeling for tilted anisotropy with pseudo-source

 injectionComputationally efficient modeling for anisotropic media

May 19, 2015

- Computationally efficient pseudo-acoustic (no shear waves) modeling is of significant value for applications (Fowler et al, 2010)
- FD methods are fast but suffer from pseudo-shear artifacts (Alkhalifah, 2000; Zhang and Zhang, 2008; Fletcher et al., 2009)
- Artifact-free spectral methods require multiple FFTs per time step (Etgen and Brandsberg-Dahl, 2009)
- Innovation: a fast FD method with a significant reduction of pseudo-shear artifacts

Convert the directional pressure velocity curve $V(\theta)$ (Tsvankin 2001) into a pseudo-differential equation

$$
\begin{align*}
& \frac{V^{2}(\theta)}{V_{P}^{2}}=1+\epsilon \sin ^{2} \theta-\frac{1}{2} \pm \frac{1}{2} \sqrt{\left(1+2 \epsilon \sin ^{2} \theta\right)^{2}-2(\epsilon-\delta) \sin ^{2} 2 \theta}, \\
& \sin \theta=\frac{V(\theta)\left[\frac{\partial}{\partial x}\right]}{\left[\frac{\partial}{\partial t}\right]}, \cos \theta=\frac{V(\theta)\left[\frac{\partial}{\partial z}\right]}{\left[\frac{\partial}{\partial t}\right]} \tag{VEL}
\end{align*}
$$

and solve it using a spectral method plus interpolation.

Convert the directional pressure velocity curve $V(\theta)$ (Tsvankin 2001) into a pseudo-differential equation

$$
\begin{align*}
& \frac{V^{2}(\theta)}{V_{P}^{2}}=1+\epsilon \sin ^{2} \theta-\frac{1}{2} \pm \frac{1}{2} \sqrt{\left(1+2 \epsilon \sin ^{2} \theta\right)^{2}-2(\epsilon-\delta) \sin ^{2} 2 \theta}, \\
& \sin \theta=\frac{V(\theta)\left[\frac{\partial}{\partial x}\right]}{\left[\frac{\partial}{\partial t}\right]}, \cos \theta=\frac{V(\theta)\left[\frac{\partial}{\partial z}\right]}{\left[\frac{\partial}{\partial t}\right]} \tag{VEL}
\end{align*}
$$

and solve it using a spectral method plus interpolation.

Model 1 (45° homogeneous tilt)

Pseudo-differential operator result (the "gold standard")

A finite-difference method

Convert (VEL) into a DO by squaring the square root (Alkhalifah, 2000):

$$
\begin{align*}
\frac{\partial^{2} q}{\partial t^{2}} & =V_{P \mathrm{Hor}}^{2} \frac{\partial^{2} q}{\partial x^{2}}+V_{P}^{2} \frac{\partial^{2} q}{\partial z^{2}}+V_{P}^{2}\left(V_{P \mathrm{Hor}}^{2}-V_{P \mathrm{NMO}}^{2}\right) \frac{\partial^{4} r}{\partial x^{2} \partial z^{2}} \tag{FD}\\
\frac{\partial^{2} r}{\partial t^{2}} & =q
\end{align*}
$$

where

$$
V_{P \mathrm{Hor}}^{2}=V_{P}^{2}(1+2 \epsilon), V_{P \mathrm{NMO}}^{2}=V_{P}^{2}(1+2 \delta) .
$$

- r corresponds to solution of PDO (VEL)
- In conventional implementations source is injected in q

Pseudo-shear artifacts (source injected into r)

Pseudo-shear artifacts (source injected into q)

Pseudo-source injection

At each time step inject the active source ϕ into r and the pseudo-source into q :

$$
\begin{aligned}
& r\left(z, x, t_{n}\right) \leftarrow r\left(z, x, t_{n}\right)+\phi\left(z, x, t_{n}\right) \\
& q\left(z, x, t_{n}\right) \leftarrow q\left(z, x, t_{n}\right)+V(z, x)_{P}^{2}\left\{\frac{\Delta}{2}+\epsilon(z, x) \frac{\partial^{2}}{\partial x^{2}}+\right. \\
& \left.\frac{\Delta}{2} \sqrt{\left.\left[1+2 \epsilon(z, z) \frac{\partial^{2}}{\partial x^{2}} \frac{1}{\Delta}\right]^{2}-8(\epsilon(z, x)-\delta(z, x)) \frac{\partial^{2}}{\partial x^{2}} \frac{\partial^{2}}{\partial z^{2}} \frac{1}{\Delta^{2}}\right\}}\right\}
\end{aligned}
$$

Apply the finite-difference time step of (FD).

Model 1 (45° homogeneous tilt)

Pseudo-differential operator

Finite-difference with pseudo-sources

Finite-difference with pseudo-sources

Model $2\left(35^{\circ}, 25^{\circ}\right.$ tilt in the ovals, and 30° in the background)

Pseudo-differential operator

Finite-difference with pseudo-sources

Pseudo-differential operator - θ, ϵ, δ contrasts

Finite-difference - θ, ϵ, δ contrasts

Finite-difference - θ, ϵ, δ contrasts

Non-smoothed vs smoothed

Weak high-frequency artifacts appear where FD approximation has largest errors.

- Computationally cheap FD technique with artifacts suppressed by injecting a "pseudo-source"
- Savings come from spatial boundedness of pseudo-source support
- Achieves a significant reduction of shear artifacts
- Can be used with a wide range of PA systems (Fowler et al., 2010)
- Next steps: apply to energy-conserving tilted anisotropy systems (Zhang and Zhang, 2009; Macesanu, 2011)
- Combine with Lax-Wendroff to reduce dispersion

The authors thank Biondo Biondi for a number of useful discussions, and the affiliate members of Stanford Exploration Project for their support.

Q\&A

Appendices

Appendices - discussion slides

Evolutionary pseudo-differential operator

The full pseudo-differential operator equation (VEL) can be approximated with a trigonometric polynomial:

$$
\begin{equation*}
V^{2}(\theta) \approx V_{P}^{2} \sum_{n=0}^{N} a_{n} \sin ^{2 n}(\theta) \tag{1}
\end{equation*}
$$

leading to separable pseudo-differential operators used in practice:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}}=V_{P}^{2} \sum_{n=0}^{N} a_{n} \frac{\partial^{2 n}}{\partial x^{2 n}} \Delta^{1-n} \tag{2}
\end{equation*}
$$

Examples of (1), the weak anisotropy approximation:

$$
\begin{equation*}
V^{2}(\theta) \approx V_{P}^{2}\left(1+\delta \sin ^{2} \theta+\frac{\epsilon-\delta}{1+2 \delta} \sin ^{4} \theta\right) \tag{3}
\end{equation*}
$$

and Harlan and Lazear relation (Etgen and Brandsberg-Dahl, 2009):

$$
\begin{equation*}
V^{2}(\theta)=V_{P}^{2} \cos ^{2} \theta+\left(V_{P \mathrm{NMO}}^{2}-V_{P \mathrm{Hor}}^{2}\right) \cos ^{2} \theta \sin ^{2} \theta+V_{P \mathrm{Hor}}^{2} \sin ^{2} \theta, \tag{4}
\end{equation*}
$$

