Double-difference time-lapse FWI with a total-variation regularization **Overview and Synthetic Example**

Stanford Exploration Project

May 20, 2015

- Joint 4D FWI with total-variation regularization \Rightarrow recovery of large-scale features
- Model-space methods are less sensitive to repeatability, but what about starting velocity?
- Goal: design a robust 4D FWI less sensitive to errors in the starting velocity

Find a model ${\bf m}$ that minimizes misfit between the true ${\bf d}$ and predicted ${\bf u}({\bf m})$ data (Lailly, 1983; Tarantola, 1984)

$$\mathsf{Misfit} = \|\mathbf{W}_d \left[\mathbf{d} - \mathbf{u}(\mathbf{m}) \right] \|_2^2 \to \min, \tag{1}$$

with optional model regularization

$$\beta \| \mathbf{R} \mathbf{W}_m \mathbf{m} \|_2^2, \tag{2}$$

where \mathbf{m} is a subsurface velocity model, \mathbf{W}_d and \mathbf{W}_m are data and model weighting operators (masks), \mathbf{R} is a model regularization operator.

► NEW: *Simultaneous FWI* of baseline and monitor with the *total-variation difference regularization*:

$$\alpha \| |\nabla \mathbf{W}_m \left[\mathbf{m}_2 - \mathbf{m}_1 \right] | \|_1.$$
(4)

The Total-variation (TV) seminorm (4) provides edge-preserving regularization that promotes model "blockiness" and helps to reduce spurious oscillations (Rudin et al., 1992). The most general formulation may include a double difference term (DD) (Maharramov and Biondi, 2014):

$$\alpha \|\mathbf{u}(\mathbf{m}_b) - \mathbf{d}_b\|_2^2 + \beta \|\mathbf{u}(\mathbf{m}_m) - \mathbf{d}_m\|_2^2 +$$
(JOINT)

$$\gamma \| \left(\mathbf{u}(\mathbf{m}_m) - \mathbf{u}(\mathbf{m}_b) \right) - \left(\mathbf{d}_m - \mathbf{d}_b \right) \|_2^2 +$$
 (DD)

 $\delta \|\mathbf{WR}(\mathbf{m}_m - \mathbf{m}_b)\|_1 \to \min,$ (TVREG)

Regularization operator for Total Variation (TV):

$$\mathbf{R}f(x,y,z) = |\nabla f|.$$
(5)

1) Invert the baseline model \mathbf{m}_b :

$$\|\mathbf{u}(\mathbf{m}_b) - \mathbf{d}_b\|_2^2 \to \min.$$
 (6)

2) Generate new synthetic monitor survey data \mathbf{d}_2 by adding the observed data difference $\mathbf{d}_m - \mathbf{d}_b$ to the forward-modeled baseline data $\mathbf{u}(\mathbf{m}_b)$:

$$\mathbf{d}_2 = \mathbf{u}(\mathbf{m}_b) + (\mathbf{d}_m - \mathbf{d}_b), \qquad (7)$$

3) Invert the monitor model \mathbf{m}_m from the new synthetic data \mathbf{d}_2 :

$$\| (\mathbf{u}(\mathbf{m}_m) - \mathbf{d}_2) \|_2^2 +$$
 (8)

$$\delta \|\mathbf{WR}(\mathbf{m}_m - \mathbf{m}_b)\|_2^2 \to \min.$$
(9)

Regularization operator for Steering Total Variation (Ma et al., 2015):

$$\mathbf{R}f(x,y,z) = |\nabla_{\boldsymbol{\xi}}f|, \, \boldsymbol{\xi} \text{ is parallel to dip.}$$
 (10)

Test: Linearized Waveform Inversion with Steering Total Variation (STV) regularization

True baseline model

Maharramov, Ma, and Biondi (SEP)

True monitor model

Maharramov, Ma, and Biondi (SEP)

Simultaneous LWI with STV using true velocity

Double Difference using the true velocity

Simultaneous LWI with STV using 10% too-high velocity

Double Difference using the wrong velocity

Simultaneous LWI—production or inversion artifacts?

Double Difference using the wrong velocity

- Double difference is sensitive to repeatability issues but more stable with respect to wrong model
- Joint double-difference + simultaneous 4D FWI (JOINT, DD, TVREG)—best of both methods?
- ► Next: TV-regularized double-difference experiments

The authors thank **Stewart Levin** for a number of useful discussions and suggestions, and the **affiliate members** of Stanford Exploration Project for their support.

Q&A

