Anisotropic Full Waveform Inversion SEP163, p. 155-162

Huy Le

April 12, 2016

- Full waveform inversion (FWI) can retrieve very accurate velocity models.
- Kinematics vs amplitude.
- Accurate kinematics requires anisotropy.

Wavefronts in isotropic and anisotropic media

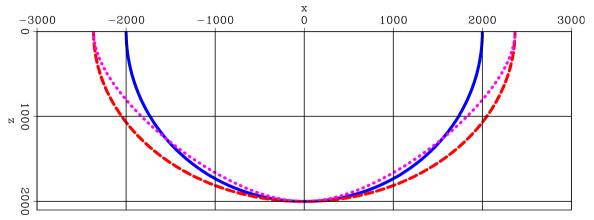


Figure 1: Wavefronts in isotropic (blue) and anisotropic (magenta and red) media (Courtesy of Elita Li).

- Multiple parameters.
- Multiple parameterizations.
- Sensitivity.
- Crosstalk.

- Multiple parameters.
- Multiple parameterizations: **stiffnesses** versus **velocity and Thomsen's parameters**.
- Sensitivity.
- Crosstalk.

VTI pseudo-acoustic wave equations

$$\begin{cases} \partial_t^2 \boldsymbol{p} = \boldsymbol{c}_{11} \partial_x^2 \boldsymbol{p} + \boldsymbol{c}_{13} \partial_z^2 \boldsymbol{q} + \boldsymbol{f}_x, \\ \partial_t^2 \boldsymbol{q} = \boldsymbol{c}_{13} \partial_x^2 \boldsymbol{p} + \boldsymbol{c}_{33} \partial_z^2 \boldsymbol{q} + \boldsymbol{f}_z. \end{cases}$$

- p and q are the normal stresses in the x-direction and z-direction.
- f_i are the sources.
- c_{ij} are the stiffness coefficients.

VTI pseudo-acoustic wave equations

$$egin{aligned} c_{11} &= v_{pz}^2(1+2\epsilon) = v_{px}^2, \ c_{13} &= v_{pz}^2\sqrt{1+2\delta}, \ c_{33} &= v_{pz}^2. \end{aligned}$$

- v_{pz} is vertical P-velocity.
- v_{px} is horizontal P-velocity.
- $\bullet~\epsilon$ and δ are Thomsen's parameters.

Wavefronts in isotropic and anisotropic media

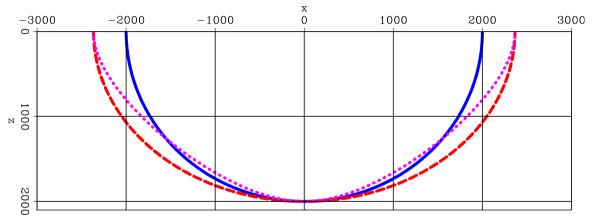


Figure 2: Wavefronts in isotropic (blue) and anisotropic (magenta and red) media (Courtesy of Elita Li).

Modeled data:

$$d=\frac{1}{2}(p+q)\delta(x-x_r).$$

Observed data d_0 . Objective function:

$$\chi = \frac{1}{2} \| d - d_0 \|_2^2.$$

Example 1

- Stiffness
 - parameterization c_{ij} .
- Shots and receivers every where on surface.
- 40 shots, 200 m spacing; 800 receivers, 10 m spacing.

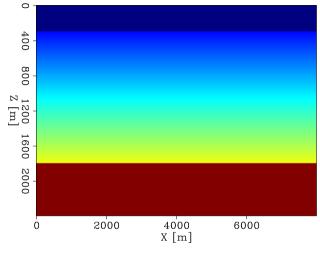
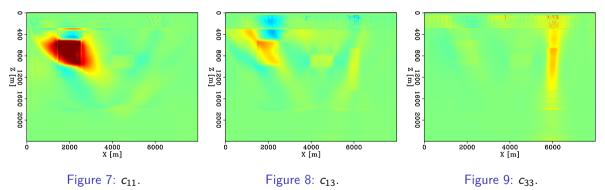


Figure 3: Initial models.

Example 1- True perturbations



Example 1 Inverted perturbations



Example 1- Radiation patterns

- Scattered energy as a function of angle.
- Partial derivatives of wavefields with respect to model parameters.

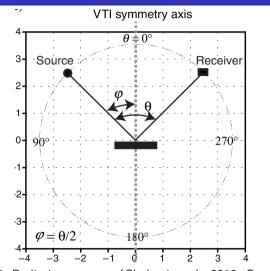


Figure 10: Radiation patterns (Gholami et al., 2013, Geophysics, 78, No. 2, R81-R105).

Example 1- Radiation patterns

- c₁₃ is the least resolved.
- Strong crosstalk from c_{11} and c_{33} to c_{13} .
- Very weak crosstalk between *c*₁₁ and *c*₃₃:

$$c_{11} = v_{px}^2, \ c_{33} = v_{pz}^2.$$

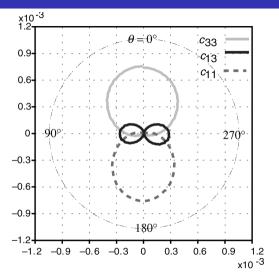


Figure 11: Radiation patterns (Gholami et al., 2013, Geophysics, 78, No. 2, R81-R105).

- v_{pz} , ϵ , and δ parameterization.
- Simultaneous inversion inverts for all parameters.
- Fixed- δ inversion inverts for v_{pz} and ϵ .

Example 2- True models

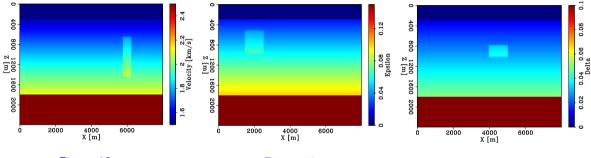


Figure 12: v_{pz}

Figure 13: ϵ

Figure 14: δ

Example 2- Simultaneous inversion

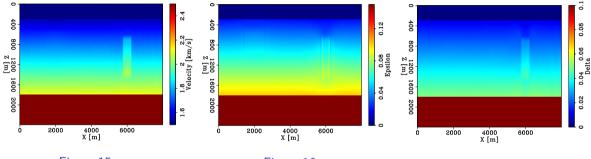


Figure 15: v_{pz}

Figure 16: ϵ

Figure 17: δ

Example 2- Fix- δ inversion

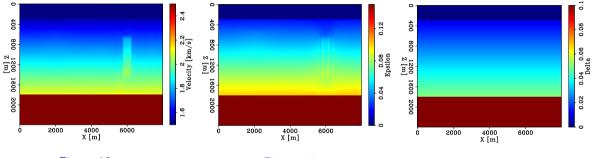


Figure 18: v_{pz}

Figure 19: ϵ

Figure 20: δ

Example 2- Radiation patterns

- v_{pz} is the best resolved and δ the least.
- Strong crosstalk from v_{pz} to ϵ and δ .

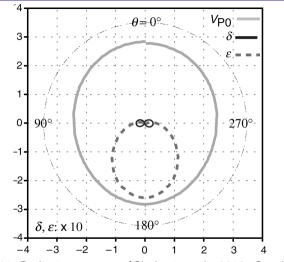


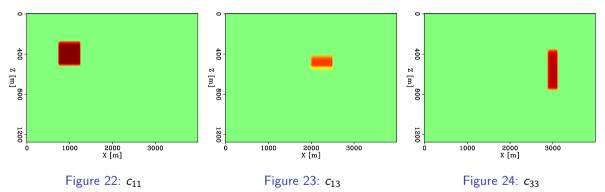
Figure 21: Radiation patterns (Gholami et al., 2013, Geophysics, 78, No. 2, R81-R105).

Can the Hessian reduce crosstalk?

$$\mathbf{p} = -\mathbf{H}^{-1}\mathbf{g},$$

- **p**: Newton search direction.
- H: Hessian.
- g: gradient.

Example 3- True perturbations



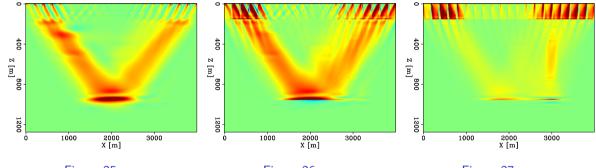


Figure 25: *c*₁₁

Figure 26: *c*₁₃

Figure 27: *c*₃₃

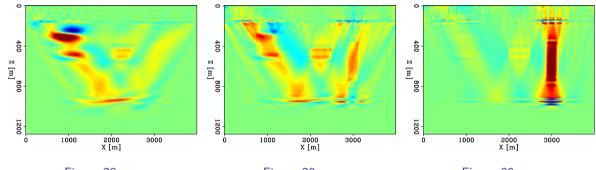
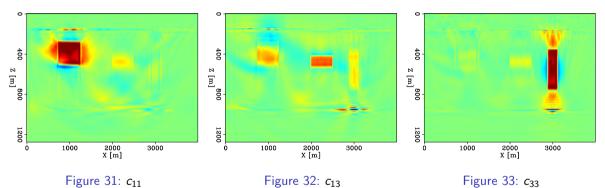


Figure 28: *c*₁₁

Figure 29: *c*₁₃

Figure 30: *c*₃₃

Example 3- Gauss-Newton search direction



Huy Le

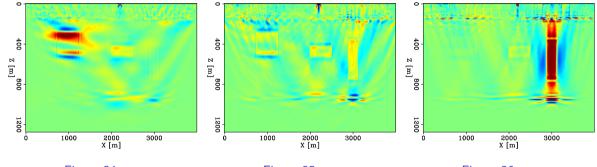


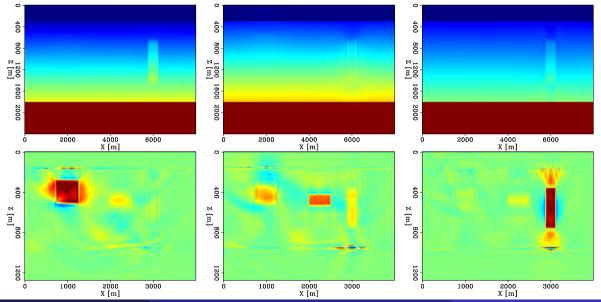
Figure 34: *c*₁₁

Figure 35: *c*₁₃

Figure 36: *c*₃₃

- Different parameterizations, different sensitivity, different crosstalk.
- Less sensitive parameters: can regularization with additional information/constraints help?
- Hessian can precondition and reduce crosstalk.
- Gauss-Newton Hessian better than full Hessian.
- Hessian to study sensitivity by eigenvalue decomposition.

Thank you!



Huy Le

Anisotropic Full Waveform Inversion