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Subtle subsurface change indicators

- Fluid movement ⇒ subsurface velocity changes.

- Stress changes ⇒ subsurface velocity changes.

- Simultaneous regularized 4D FWI can resolve significant model
changes at a reservoir/overburden scale (Maharramov et al, 2016).

- Question: Can FWI resolve subtle model changes associated with
continuous subsurface stressing?

- Question: Can FWI resolve relative magnitudes of changes to
understand the evolution of subsurface stress?
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Response of velocity to stress

- Dependence of acoustic velocity V on isotropic effective stress P can
be described empirically:

V = V∞

(
1− A exp− P

P0

)
, (1)

where V∞, A, P0 are positive fitting constants for various types of
rocks (Domenico, 1977; Zimmer, 2003; Lee, 2003; Johnston, 2013).

- Note the flattening of velocity for large effective stress.

- High-stress anomalies may be localized and “spiky”, e.g. near the
tips of slipping faults.
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Response to effective stress change (from Zimmer (2003))
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Response of loose quartz layers to shear (from Knuth et al. (2013))
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Total-variation difference regularization to extract “blocky” changes

I STAGE 1: Simultaneous FWI of baseline and monitor with the
total-variation (TV) difference regularization (Maharramov et al,
2016):

Baseline Misfit + Monitor Misfit + (2)

α‖|∇Wm [mm −mb] |‖1. (3)

I The total-variation (TV) seminorm (3) promotes model blockiness
while reducing spurious oscillations.
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Field data example: “blocky” ∆v due to overburden dilation
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Field data: ∆s vs image difference (Maharramov et al, 2016)
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L1 difference regularization to extract “spiky” changes

I STAGE 2: Simultaneous FWI of baseline and monitor with the L1

difference regularization:

Baseline Misfit + Monitor Misfit + (4)

β‖|Wm [mm −mb] |‖1. (5)

I The L1 norm (5) provides a sparsifying regularization that promotes
model sparsity while still reducing spurious oscillations.
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Improving resolution: the role of sparsity

I 4D phase-only FWI is to a first order ≈ tomographic 4D inversion (Maharramov and
Biondi, 2016):

‖Aδs − δτ‖2 < σ,

‖δs‖0 = k, (6)

where δτ = observed time shifts, δs is the unknown slowness change, A is the travel-time
modeling operator, σ is the 2-norm of measurement errors.

I Any minimizer δs of (6) satisfies the estimate:

‖δs− δs0‖2 ≤
2

c2k
σ, (7)

where the lower restricted isometry constant c2k = minJ :|J |=2k λmin (AJ).

I L1-regularized inversion (4,5) approximates L0 regularized inversion (Elad, 2010).

I Continuous observations boost qualitative resolution (the “peaks” of δs will stand out).
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Experiment: true base
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True monitor-baseline model difference at 10 m/s scale
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True monitor-baseline difference at 50 m/s scale
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True second-first monitor model difference at 10 m/s scale
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True second-first monitor model difference at 50 m/s scale
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Inverted monitor-baseline difference; clean synthetics, PD FWI
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Inverted second-first monitor difference; clean synthetics, PD FWI
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Monitor-baseline; clean synthetics, TV FWI, 10 m/s scale
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Second-first monitor; clean synthetics, TV FWI, 10 m/s scale
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Adding white Gaussian noise
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Inverted monitor-baseline difference; noisy synthetics, PD FWI
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Inverted second-first monitor difference; noisy synthetics, PD FWI
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Monitor-baseline; noisy synthetics, TV FWI
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Second-first monitor; noisy synthetics, TV FWI
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Monitor-baseline; noisy synthetics, cascaded TV − L1 FWI
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Second-first monitor; noisy synthetics, cascaded TV − L1 FWI
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Conclusions and way forward

- Cascaded simultaneous regularized FWI can resolve subtle
subsurface velocity changes associated with subsurface stressing in
the presence of strong noise.

- Inversion can detect relative magnitudes of velocity changes.

- Potential applications in reservoir and earthquake monitoring,
engineering geophysics.

- Future work: feasibility for continuous weak and passive sources.
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