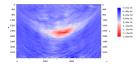
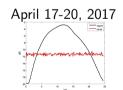
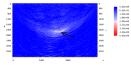
## Subsurface model inversion Pushing the limits of subsurface resolution

#### Musa Maharramov<sup>1</sup> and Biondo L. Biondi<sup>2\*</sup>









<sup>1</sup>presently ExxonMobil Upstream Research Company; formerly Stanford Exploration Project <sup>2</sup>Stanford Exploration Project; presenting author

Maharramov and Biondi (SEP)



- Fluid movement  $\Rightarrow$  subsurface velocity changes.
- Stress changes  $\Rightarrow$  subsurface velocity changes.
- **Simultaneous regularized 4D FWI** can resolve significant model changes at a reservoir/overburden scale (Maharramov et al, 2016).
- **Question**: Can FWI resolve subtle model changes associated with continuous subsurface stressing?
- Question: Can FWI resolve relative magnitudes of changes to understand the evolution of subsurface stress?

## Response of velocity to stress



- Dependence of acoustic velocity V on isotropic effective stress P can be described empirically:

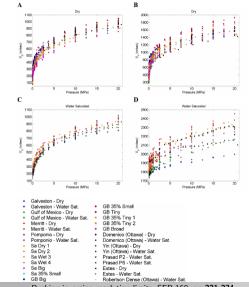
$$V = V_{\infty} \left( 1 - A \exp{-\frac{P}{P_0}} \right), \tag{1}$$

where  $V_{\infty}$ , A,  $P_0$  are positive fitting constants for various types of rocks (Domenico, 1977; Zimmer, 2003; Lee, 2003; Johnston, 2013).

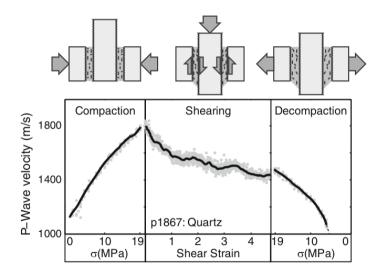
- Note the flattening of velocity for large effective stress.
- High-stress anomalies may be localized and "**spiky**", e.g. near the tips of slipping faults.

#### Response to effective stress change (from Zimmer (2003))





# Response of loose quartz layers to shear (from Knuth et al. (2013))



Total-variation difference regularization to extract "**blocky**" changes

STAGE 1: Simultaneous FWI of baseline and monitor with the total-variation (TV) difference regularization (Maharramov et al, 2016):

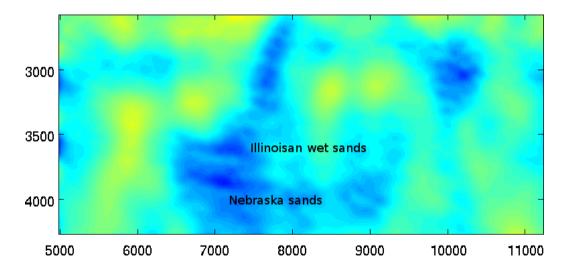
Baseline Misfit + Monitor Misfit + (2)

$$\alpha \| |\nabla \mathbf{W}_m [\mathbf{m}_m - \mathbf{m}_b] | \|_1.$$
(3)

 The total-variation (TV) seminorm (3) promotes model blockiness while reducing spurious oscillations.

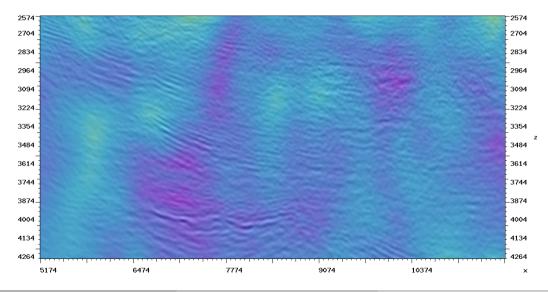


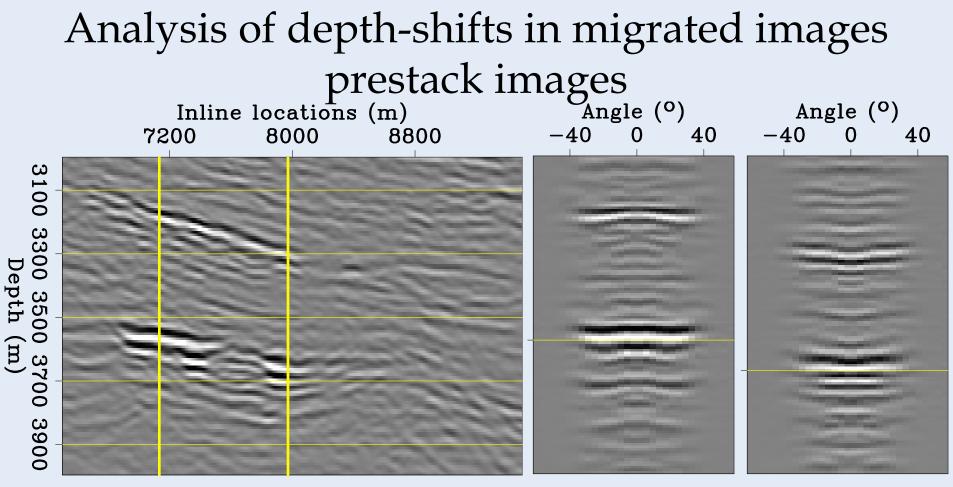
7 / 28



## Field data: $\Delta s$ vs image difference (Maharramov et al, 2016)

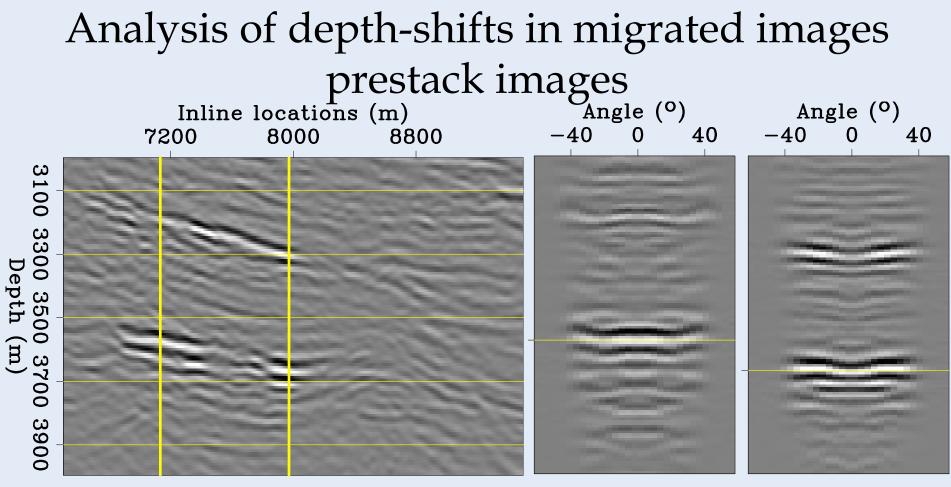






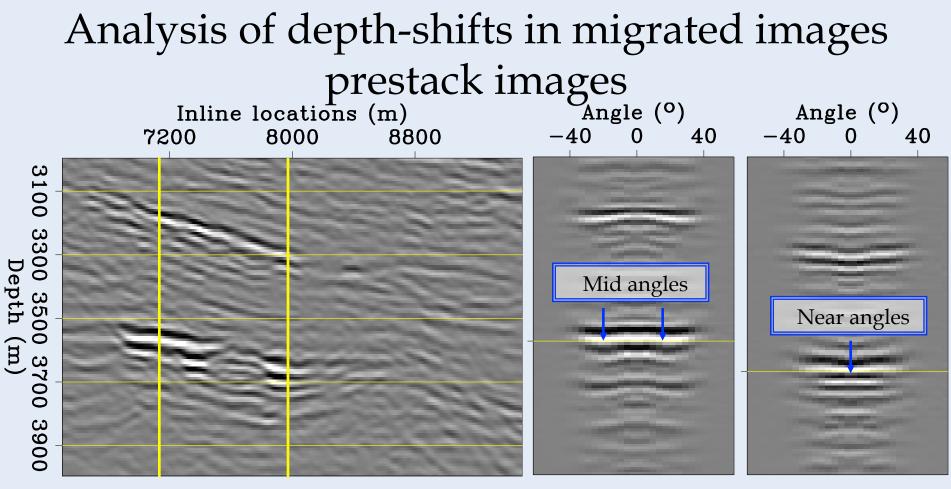
Anisotropic migration of baseline

Angle gathers of baseline



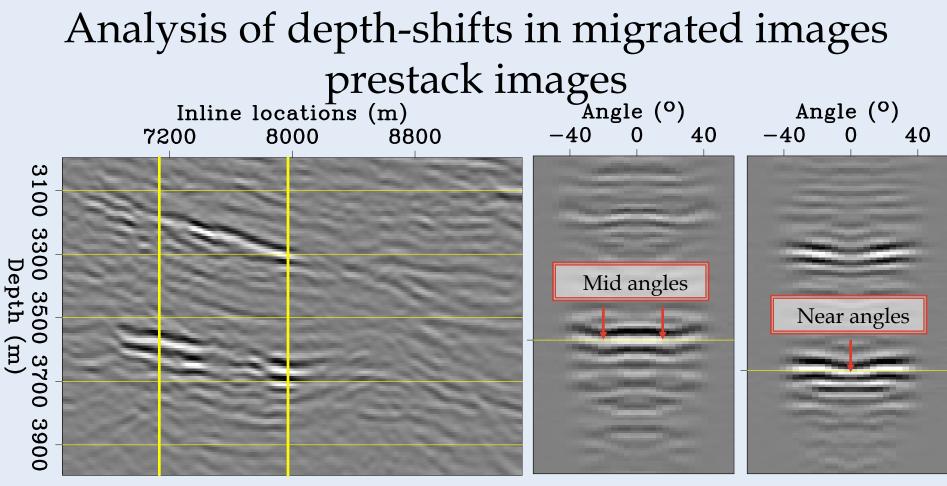
Anisotropic migration of monitor

Angle gathers of monitor



Anisotropic migration of baseline

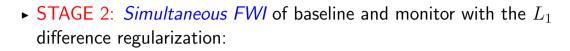
Angle gathers of baseline



Anisotropic migration of monitor

Depth

Angle gathers of monitor



Baseline Misfit + Monitor Misfit + (4)

$$\beta \| |\mathbf{W}_m [\mathbf{m}_m - \mathbf{m}_b] | \|_1.$$
(5)

► The L<sub>1</sub> norm (5) provides a **sparsifying** regularization that promotes model sparsity while still reducing spurious oscillations.

Maharramov and Biondi (SEP)

## Improving resolution: the role of sparsity

► 4D phase-only FWI is to a first order ≈ tomographic 4D inversion (Maharramov and Biondi, 2016):

$$\begin{aligned} |\mathbf{A}\delta\mathbf{s} - \delta\boldsymbol{\tau}||_2 &< \sigma, \\ \|\delta\mathbf{s}\|_0 &= k, \end{aligned} \tag{6}$$

where  $\delta \tau$  = observed time shifts,  $\delta s$  is the unknown slowness change, A is the travel-time modeling operator,  $\sigma$  is the 2-norm of measurement errors.

• Any minimizer  $\delta s$  of (6) satisfies the estimate:

$$\|\delta \mathbf{s} - \delta \mathbf{s}_0\|_2 \leq \frac{2}{c_{2k}}\sigma,\tag{7}$$

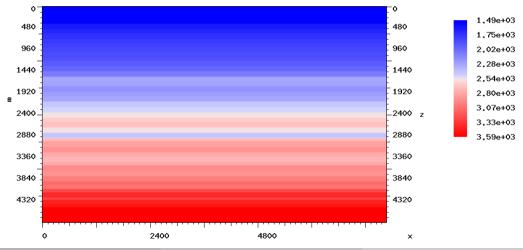
where the lower restricted isometry constant  $c_{2k} = \min_{J:|J|=2k} \lambda_{\min}(\mathbf{A}_J)$ .

- $L_1$ -regularized inversion (4,5) approximates  $L_0$  regularized inversion (Elad, 2010).
- Continuous observations boost qualitative resolution (the "peaks" of  $\delta s$  will stand out).

Maharramov and Biondi (SEP)



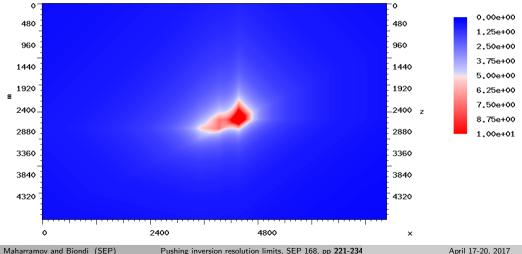




Maharramov and Biondi (SEP)

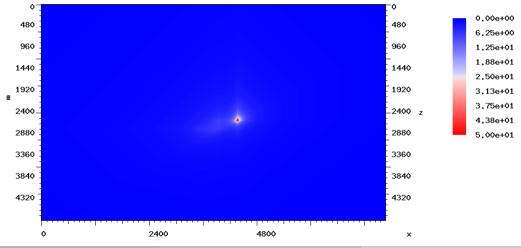
#### True monitor-baseline model difference at 10 m/s scale





#### True monitor-baseline difference at 50 m/s scale

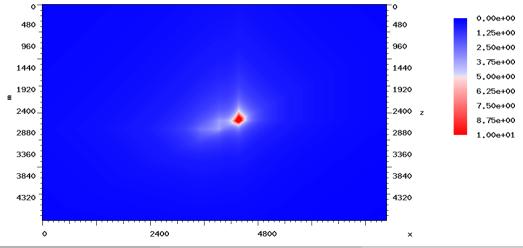




Maharramov and Biondi (SEP)

### True second-first monitor model difference at 10 m/s scale

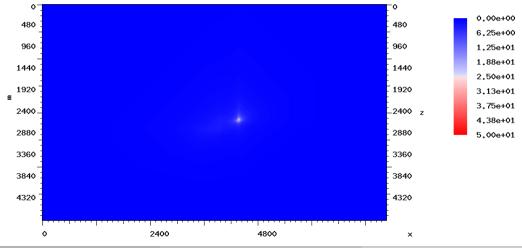




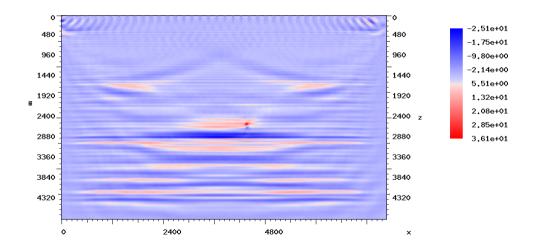
Maharramov and Biondi (SEP)

#### True second-first monitor model difference at 50 m/s scale

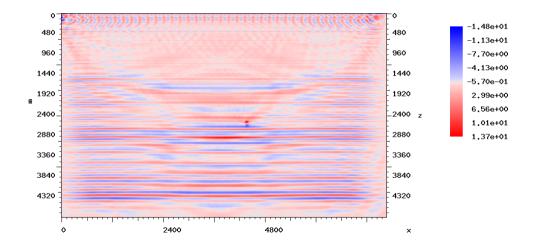




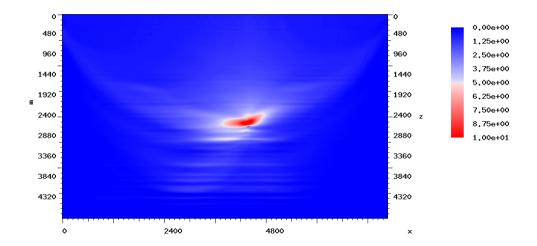
Maharramov and Biondi (SEP)



## Inverted second-first monitor difference; clean synthetics, PD FWI

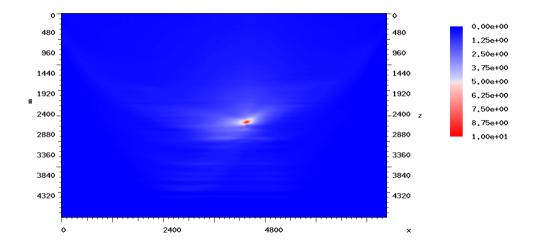






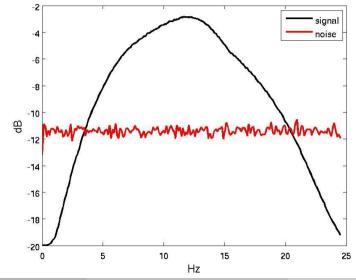
## Second-first monitor; clean synthetics, TV FWI, 10 m/s scale



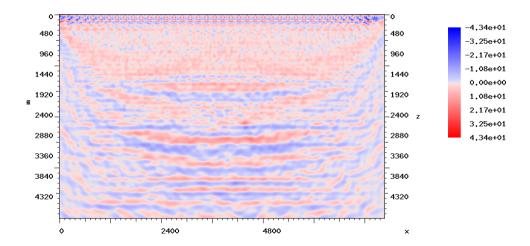


#### Adding white Gaussian noise

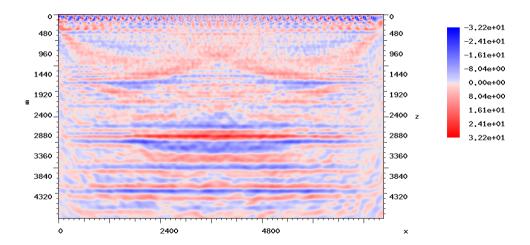




### Inverted monitor-baseline difference; noisy synthetics, PD FWI

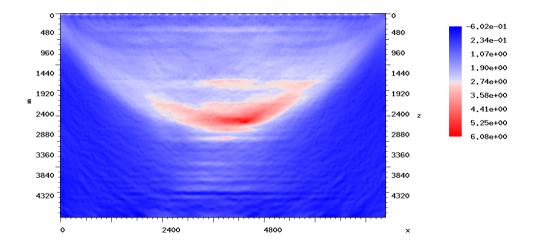


## Inverted second-first monitor difference; noisy synthetics, PD FWI



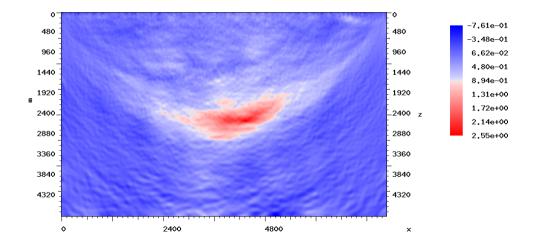
### Monitor-baseline; noisy synthetics, TV FWI



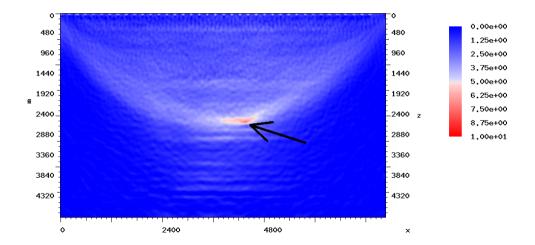


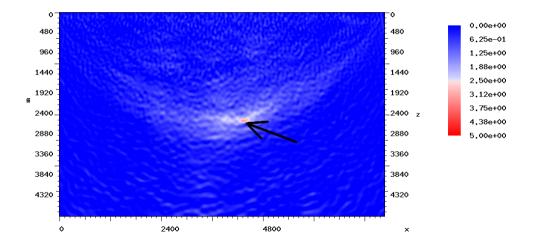
#### Second-first monitor; noisy synthetics, TV FWI





## Monitor-baseline; noisy synthetics, cascaded $TV - L_1$ FWI

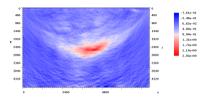


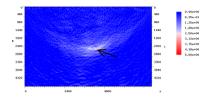




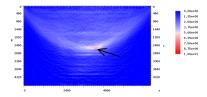
- Cascaded simultaneous regularized FWI can resolve subtle subsurface velocity changes associated with subsurface stressing in the presence of strong noise.
- Inversion can detect relative magnitudes of velocity changes.
- Potential applications in reservoir and earthquake monitoring, engineering geophysics.
- Future work: feasibility for continuous weak and passive sources.











Maharramov and Biondi (SEP)