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DAS is being used to lower costs in oil & gas

fiber optic cable

source of seismic 
vibrations

reflected 
energy

interrogator 
      unit

reservoir

Microseismic monitoring 
with full well coverage 

Webster et al. 2013 SEG Extended Abstracts

Repeatable 4D seismic 
offshore and onshore with 

fiber covering full well 
Mateeva et al. 2013 The Leading Edge

Reflection 
seismology with 

helical fibers 
Hornman et al. 2013 EAGE 

Conference Abstracts
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Challenges:
-Difficult to get precise location information for fiber 
-Little friction between conduit wall and fiber 
-Straight fibers may be less sensitive to certain waves 
-Coherent noises in urban/infrastructure environments 
-Difficult to quickly decide on ambient noise pre-processing 
-Only single component of strain is available

Goals:
Using fiber in telecommunications conduits for: 
  -Active seismic surveys 
  -Near-surface imaging with ambient noise
  -Earthquake detection
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Fundamental tool: cross-correlation !
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Ĉ(!) = d̂(xr,!)d̂
⇤(xvs,!)

C(⌧) =

Z 1

�1
d(xr, t)d(xvs, t+ ⌧)dt

or	a	frequency-wise	mul*plica*on	a:er	Fourier	transform	

peak in C 
distance/velocity !

cross-correlation C = 

How cross-correlation works
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with white, uncorrelated spatially homogeneous noise sources on all sides



Ambient noise with 3C geophones

figures from Lin et al. 2008, GJI

Rayleigh

Rayleigh

Love

converted energy

converted energy



Collinear Channel Cross-Correlations

	

C(⌧) =

Z
m(xr, t)m(xvs, t+ ⌧)dt

=

Z
d(xr + g, t)d(xvs + g, t+ ⌧)dt�

Z
d(xr + g, t)d(xvs, t+ ⌧)dt

�
Z

d(xr, t)d(xvs + g, t+ ⌧)dt+�
Z

d(xr, t)d(xvs, t+ ⌧)dt

cross-correlation strains measured

point displacements

xvs xvs+g xr xr+g

= Cr+g,vs+g(⌧)� Cr+g,vs(⌧)� Cr,vs+g(⌧) + Cr,vs(⌧)

m(x, t) = d(x+ g, t)� d(x, t) measurement difference of 
in-line point sensor data
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Parallel Fibers are Simple Case

θsr

(xs,ys)

(xr,yr)

(xs+g,ys)

(xr+g,yr)

θs,r+g θs+g,r+g = θsr 
θs+g,r

collinear channels yield 
Rayleigh waves

directly across channels yield 
Love waves as d grows

d



Orthogonal In-Line Fibers are Another Simple Case

converted Rayleigh/Love 
waves as d grows

d



More generally, DAS cross-correlations are linear combinations 
of cross-correlations of improperly rotated geophones.
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Traffic, Localized Noise Sources

along Via Puebloalong Campus Dr.



Traffic, Localized Noise Sources

along Via Puebloalong Campus Dr.



Virtual Source Channel 60
320 m/s

640 m/s

1 to 24 Hz



Virtual Source Channel 75

reflection off 
parking 

structure?



Virtual Source Channel 90

320 m/s



Cross-Correlation or Coherence?
cross-correlation cross-coherence
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1-bit cross-correlation, 1 day

E. Martin and B. Biondi, “Ambient noise interferometry across two-dimensional DAS arrays,” submitted to SEG annual meeting.
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Summary: 
We can extract virtual source responses throughout 2D DAS arrays, greatly 

increasing the usable ray path coverage of passive DAS arrays.  

The extracted responses show some features predicted by theory. 

We are working towards a more automated, unified workflow. 

Open questions: 
How do we reliably select Rayleigh and Love waves from mixed outputs?  

Does this work at other sites (Fairbanks, AK or Richmond, CA)? 
How can we use the R-T and T-R components for near surface imaging?
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Summary: 
We can extract virtual source responses throughout 2D DAS arrays, greatly 

increasing the usable ray path coverage of passive DAS arrays.  

The extracted responses show some features predicted by theory. 

We are working towards a more automated, unified workflow. 

Questions?



Extra information

• Benefits/drawbacks of DAS 
• Earthquake recordings and sensitivity 
• More on permafrost thaw tests 
• Infrastructure related artifacts



benefits and drawbacks of DAS
Lower cost per sensor 

High repeatability of sensor locations 
Cover large range (not moving subsets) 

Flexible sensors 
High density that can be changed

Lower sensitivity to broadside waves 
Blind to certain frequencies 

Some laser drift noise

gauge	length	

gauge	length	
channel	length	

interrogator unit
Posey et al. 2000



Limitations of DAS
Blind 

frequencies

Lowered sensitivity to 
waves coming at an angle 

(cos2 vs cos) 
tension compression

relaxed state

fiber	op(c	cable	

θ	

||u||cos2θ	
	

geophone	

θ	
||u||cosθ	
	

||u||sinθ	
	

Dean et al. 2016 Geophysical Prospecting 53



Nearby Earthquakes

time after start of event (s)
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north-south stack 
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heterogeneous response



Piedmont  
M 3.5

P S

150 ft fiber loops 
in manholes



Developing Smart Infrastructure for a 
Changing Arctic Environment Using 

Distributed Fiber-Optic Sensing Methods 
PI: Jonathan Ajo-Franklin, LBNL        Co-PI: Anna Wagner, CRREL 

Jonathan 
Ajo-Franklin, 

LBNL
Tom Daley, 

LBNL
Barry 

Freifeld, 
LBNL

Michelle 
Robertson, 

LBNL
Craig Ulrich, 

LBNL
Nate Lindsey, 
UC Berkeley, 

LBNL

Shan Dou, 
LBNL US Army Corps of Engineers 

Cold Regions Research & 
Engineering Lab

Anna Wagner Kevin Bjella

Goal: low-cost frequent monitoring of the near surface 
Method: passive seismic collected by trenched fiber optics with low-cost per sensor
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Site

patchy permafrost 
wooded area  

1 mi north of Fairbanks 
highway 400 m east 

passive recording  
                iDAS 

1 m channel spacing 
10 m gauge length 

1 kHz recording 
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Cross-correlations

Channel 844 Channel 745
58
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Rough patches

Road joints

Issue: Theory of ambient noise 
assumes uncorrelated noise 

sources.

)



Time records
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Channel 844

Bumps were probably the cause of 
artifacts in cross-correlations
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