Interferometry on 2D DAS Arrays

Richmond Field Station (LBL, Corps of Engineers)

Eileen Martin coauthor: Biondo Biondi

Fairbanks, AK (LBL, Corps of Engineers)

SDASA-1

Ambient noise interferometry can reduce costs

Example from Jason Chang (Stanford), data c/o Nodal Seismic

Ambient noise interferometry can reduce costs

Example from Jason Chang (Stanford), data c/o Nodal Seismic

DAS is being used to lower costs in oil & gas

Microseismic monitoring with full well coverage
Webster et al. 2013 SEG Extended Abstracts

Repeatable 4D seismic offshore and onshore with fiber covering full well Mateeva et al. 2013 The Leading Edge

Reflection seismology with helical fibers

Hornman et al. 2013 EAGE Conference Abstracts

Stanford DAS Array-1 (SDASA-1)

collaboration with Martin Karrenbach and Steve Cole at OptaSense®

Objectives of SDASA-1

ambient noise tomography for near-surface imaging

Goals:

Using fiber in telecommunications conduits for:

- -Active seismic surveys
- -Near-surface imaging with ambient noise
- -Earthquake detection

Challenges:

- -Difficult to get precise location information for fiber
- -Little friction between conduit wall and fiber
- -Straight fibers may be less sensitive to certain waves
- -Coherent noises in urban/infrastructure environments
- -Difficult to quickly decide on ambient noise pre-processing
- -Only single component of strain is available

Outline

Ambient noise interferometry background

2D DAS interferometry theory

Practical challenges

2D Examples

Summary and directions forward

noise at 1/10th speed

Ambient noise interferometry can reduce costs

Example from Jason Chang (Stanford), data c/o Nodal Seismic

for real time series, cross-correlation is a time-lagged dot product

for real time series, cross-correlation is a time-lagged dot product

$$C(\tau) = \int_{-\infty}^{\infty} \underline{d(x_r, t)} \underline{d(x_{vs}, t + \tau)} dt$$

$$\tau = 0$$
 , $C = 0$

cross-correlation C =

for real time series, cross-correlation is a time-lagged dot product

$$C(\tau) = \int_{-\infty}^{\infty} \underline{d(x_r, t)} \underline{d(x_{vs}, t + \tau)} dt$$

$$\tau > 0, C < 0$$

for real time series, cross-correlation is a time-lagged dot product

$$C(\tau) = \int_{-\infty}^{\infty} \underline{d(x_r, t)} \underline{d(x_{vs}, t + \tau)} dt$$

$$C = 0$$

peaks and 0s line up

for real time series, cross-correlation is a time-lagged dot product

$$C(\tau) = \int_{-\infty}^{\infty} \underline{d(x_r, t)} \underline{d(x_{vs}, t + \tau)} dt$$

for real time series, cross-correlation is a time-lagged dot product

$$C(\tau) = \int_{-\infty}^{\infty} \underline{d(x_r, t)} \underline{d(x_{vs}, t + \tau)} dt$$

C >> 0

for real time series, cross-correlation is a time-lagged dot product

$$C(\tau) = \int_{-\infty}^{\infty} \underline{d(x_r, t)} \underline{d(x_{vs}, t + \tau)} dt$$

with white, uncorrelated spatially homogeneous noise sources on all sides

for real time series, cross-correlation is a time-lagged dot product

$$C(\tau) = \int_{-\infty}^{\infty} \underline{d(x_r, t)} \underline{d(x_{vs}, t + \tau)} dt$$

Ambient noise with 3C geophones

Collinear Channel Cross-Correlations

$$m(x,t) = d(x+g,t) - d(x,t)$$

measurement difference of in-line point sensor data

cross-correlation strains measured

$$C(\tau) = \int \frac{m(x_r, t)m(x_{vs}, t + \tau)}{m(x_{vs}, t + \tau)}dt$$
point displacements
$$= \int \frac{d(x_r + g, t)}{d(x_{vs} + g, t + \tau)}dt - \int \frac{d(x_r + g, t)}{d(x_{vs}, t + \tau)}dt$$

$$- \int \frac{d(x_r, t)}{d(x_{vs} + g, t + \tau)}dt + \int \frac{d(x_r, t)}{d(x_{vs}, t + \tau)}dt$$

$$= C_{r+g,vs+g}(\tau) - C_{r+g,vs}(\tau) - C_{r,vs+g}(\tau) + C_{r,vs}(\tau)$$

collinear channels yield Rayleigh waves

directly across channels yield Love waves as d grows

Orthogonal In-Line Fibers are Another Simple Case

converted Rayleigh/Love waves as d grows

Outline

Ambient noise interferometry background

2D DAS interferometry theory

Practical challenges

2D Examples

Summary and directions forward

Traffic, Localized Noise Sources

along Campus Dr.

along Via Pueblo

Traffic, Localized Noise Sources

along Via Pueblo

Virtual Source Channel 60

1 to 24 Hz

Virtual Source Channel 75

Virtual Source Channel 90

Cross-Correlation or Coherence?

Outline

Ambient noise interferometry background

2D DAS interferometry theory

Practical challenges

2D Examples

Summary and directions forward

E. Martin and B. Biondi, "Ambient noise interferometry across two-dimensional DAS arrays," submitted to SEG annual meeting.

E. Martin and B. Biondi, "Ambient noise interferometry across two-dimensional DAS arrays," submitted to SEG annual meeting.

E. Martin and B. Biondi, "Ambient noise interferometry across two-dimensional DAS arrays," submitted to SEG annual meeting.

E. Martin and B. Biondi, "Ambient noise interferometry across two-dimensional DAS arrays," submitted to SEG annual meeting.

400 m/s 1200 m/s

E. Martin and B. Biondi, "Ambient noise interferometry across two-dimensional DAS arrays," submitted to SEG annual meeting.

400 m/s 1200 m/s

E. Martin and B. Biondi, "Ambient noise interferometry across two-dimensional DAS arrays," submitted to SEG annual meeting.

E. Martin and B. Biondi, "Ambient noise interferometry across two-dimensional DAS arrays," submitted to SEG annual meeting.

E. Martin and B. Biondi, "Ambient noise interferometry across two-dimensional DAS arrays," submitted to SEG annual meeting.

Summary:

We can extract virtual source responses throughout 2D DAS arrays, greatly increasing the usable ray path coverage of passive DAS arrays.

The extracted responses show some features predicted by theory.

We are working towards a more automated, unified workflow.

Open questions:

How do we reliably select Rayleigh and Love waves from mixed outputs? Does this work at other sites (Fairbanks, AK or Richmond, CA)? How can we use the R-T and T-R components for near surface imaging?

Acknowledgements

Advice and useful discussions:

Bob Clapp, Jason Chang, George Papanicolaou, Jonathan Ajo-Franklin (LBL), Nate Lindsey (Cal), Shan Dou (LBL)

Financial:

DOE CSGF under grant DE-FG02-97ER25308 (E. Martin) Schlumberger Innovation Fellowship (E. Martin) Stanford Exploration Project Sponsors (E. Martin and SDASA-1 tests) SERDP grant RC-2437 (permafrost thaw tests, LBL and Corps of Engineers)

Calibration field work:

Carson Laing (OptaSense) Martin Karrenbach Stewart Levin Chris Castillo Ethan Williams Shanna Chu Jon Claerbout

Computing, Equipment, and Resources:

Stanford Center for Computational Earth and Environmental Science Stanford IT (fiber team)

Stanford SEEES IT

OptaSense (ODH-3 Interrogator Unit)

Subsea Systems (GPS trigger timing)

Summary:

We can extract virtual source responses throughout 2D DAS arrays, greatly increasing the usable ray path coverage of passive DAS arrays.

The extracted responses show some features predicted by theory.

We are working towards a more automated, unified workflow.

Questions?

Extra information

- Benefits/drawbacks of DAS
- Earthquake recordings and sensitivity
- More on permafrost thaw tests
- Infrastructure related artifacts

benefits and drawbacks of DAS

Lower cost per sensor

High repeatability of sensor locations

Cover large range (not moving subsets)

Flexible sensors

High density that can be changed

Lower sensitivity to broadside waves
Blind to certain frequencies
Some laser drift noise

Limitations of DAS

Blind relaxed state
frequencies tension compression

Lowered sensitivity to waves coming at an angle (cos² vs cos)

Nearby Earthquakes

heterogeneous response

time after start of event (s)

Developing Smart Infrastructure for a Changing Arctic Environment Using Distributed Fiber-Optic Sensing Methods

PI: Jonathan Ajo-Franklin, LBNL Co-PI: Anna Wagner, CRREL

Goal: low-cost frequent monitoring of the near surface

Method: passive seismic collected by trenched fiber optics with low-cost per sensor

Jonathan Ajo-Franklin, LBNL

Tom Daley, LBNL

Barry Freifeld, LBNL

Michelle Robertson, LBNL

Craig Ulrich, LBNL

Nate Lindsey, UC Berkeley, LBNL

Shan Dou, **LBNL**

Anna Wagner

Kevin Bjella

US Army Corps of Engineers Cold Regions Research & Engineering Lab

Site

patchy permafrost wooded area 1 mi north of Fairbanks highway 400 m east

passive recording

iDAS

1 m channel spacing

10 m gauge length

1 kHz recording

Cross-correlations

Issue: Theory of ambient noise assumes uncorrelated noise sources.

Bumps were probably the cause of artifacts in cross-correlations

Channel 844