163

Design of a geophysical programming language

Fonald Ullmann

Introduction

In the middle 1950's, Fortran was introduced as a language for implementing algebraic
formulas on the computer. Fortran can convert mathematical formulas that are understand-
able by the programmer into programs that the computer could execute. However, Fortran
had the disadvantage of operating on one number at a time, and the programmer has to pro-
gram the input and output of each number. In the middle 1960's, APL was introduced as a
new notation for formulas and algorithms. APL was compact and could operate on whole vec-
tors in one equation. However, the input and output features of APL from data files is not
very simple, and APL programs are hard to understand because of APL's compact notation.
There is no programming language around that suits the needs of geophysicists who work on
seismic data. 1 think that geophysicists have four basic requirements for a programming

language:

1. The language should offer many of functions that are commonly used in geophysical
functions. Some of these functions are Fourier transforms, data smoothing operations,
and digital filters. The interpreter of the language should be smart enough so that
when the user calls a function, the interpreter will determine the parameters needed to

execute the function, such as the length of the vector.

2. The language should be able to work on whole traces at a time. The programmer should
have the ability to add, subtract, or Fourier transform whole traces without having to

specify the iterations for each element of the trace.

3. The language should have simple input and output control that uses the trace as the
pasic 1/0 unit. The programmer should have access to traces from different data sets

and have the ability to send any intermediate and final results to different files.

SEP-37

Ullmann 164 Atp

4. The language should be simple for the programmer to use and for others to understand.
Suppose the programmer wants to read a trace, take the Fourier transform, smooth the
spectrum, write the amplitude spectrum of the smoothed spectrum to one file, inverse
Fourier transform the smoothed spectrum, and write the results to another file. The

instructions for this series operation should be both simple and explicit.

| have noticed the lack of such a language recently when | began working on different
deconvolution formulas that operate on whole traces at a time. Usually, these formulas will

differ from each other by a minor change. For example, one formula may be

KY > 12
<Y Y¥> ’

where Y is the Fourier transform of the trace, F~! is the inverse Fourier transform, and the

result = F!

operator < > is a smoothing operator. The new formula could be

— 1/2
1[<<§? >} Aj |

result = F!

In order to try the new formula, | rewrote parts of my program that computed the first for-
mula and then recompiled it. If | wanted to try the first formula on different data, | would
rewrite the program again. Each time | wanted to try a different formula, | had the risk of not
changing the program correctly and thus getting erroneous results. Once, the erroneous
results looked very good, but | could never figure out what | did to duplicate it. One solution
was to save a copy of a program for each formula. Unfortunately, the programs would take
up too much memory. If | just recorded the changes, then | would have a hard time back-
tracking if | wanted to use a previous formula. Therefore, | decided to write a intelligent
program that would read in and interpret the formulas that | supplied. With this smarter pro-
gram, | only had to record the formulas, and | was freed from compiling the program after a
little change in a formula. | also had the extra benefit of spending less time debugging my

program. 1 only had to check the input formula.

In order to write this program, | had to define a language to communicate the formulas
and some rules for how the computer interprets the formulas. | am calling the language Atp.
The purpose of this article is to define the syntax for Atp and the rules of how the formulas
should be interpreted. For the rest of this article, | will refer to traces as vectors, since
they are both arrays of numbers. | will also refver to Atp as both a language and a program

that implements this language.

SEP-37

Ullmann 165 Atp

prog ::= block | < range > block { < range > block }

range ::= subrange { , range }

subrange ::= rangenum { : rangenum |}

rangenum ::= infeger | $ | (rangeezpr)

rangeexpr ::= rangenum { + rangenum | - rangenum }

block ::= equa; § equa; }

equa ::= &outcmd = expr | term = expr

expr ::= mult-term { + mult-term | - mult-term }

mult-term ::= factor { ¥ factor| [/ factor }

Jactor ::= term | constant | [complexznum] | (expr) | func | &incmd

Junc ::= fft (arg) | ift (arg) | sm (arg) | ssm (arg) | ccj (arg) |

sqr (arg) | inv (arg)

arg ::= expr {, expr }

term = A|B]|...|Z

inemd ::= inc | inc [file]| inc [file ; offsetl]

inc ::= cin | iin | rin

outemd ::= outc | oute [file]

outc ::= aout | cout | iout | pout | rout

file :=0]1]...]9

offset ::= integer | = integer

canstant ::= number

camplexznum ::= number, number
TABLE 1. Above is the syntax for Atp. The symbols that are printed in bold-face type are
terminal symbols that make up the program. The italic words are strings of terminal symbois.
The characters "::=", "|", "{", and "{" are symbols that control the construction of the vari-

ous statements. The symbol number refers to any valid floating point number, and the sym-
bol infeger refers to any valid fixed point integer.

Definition and implementation of Atp

Table 1 above shows the complete production rules, or syntax, of Atp in Backus-Naur
form (Naur, 1963). The bold words and characters are terminal symbois, which are the sym-

bols used by the programmer to construct the program. The italic words are non-terminal

symbols and represent sequences of terminal words. The symbol "::="" means "is defined
as'. Any non-terminal symbol on the left side of "::=" can be replaced by the expression on
the right side. The symbol "|" is an alternative operator. This operator separates

SEP-37

Ullmann 166 Atp

alternatives available to the programmer in replacing non-terminal symbols. For example, a
factor can either be a term, a constant, a complex number, an expression, a function, or an
input command. Anything within the braces, "{" and "}", can be repeated any number of
times. For example, a block may contain any number of equations, as long as each equation

ends with a semicolon.

Every valid statement in Atp can be formed using the production rules listed in Table 1.
By starting at the production rule for prog and replacing non-terminal symbols, any Atp pro-
gram can be formed. The production rules are used by a parser to determine whether a Atp
program has a valid syntax. A parser is a program that determines whether a program writ-
ten in some language follows the production rules of the language. If the program violates a
production rule, then the program has a syntax error. If the programming language is an
LL(1) language, which roughly stands for one-symbol-lookahead without backtracking, than a
simple parser can be written. A LL(1) language requires that a parser only look at the next
symbol. The parser should not have to backtrack in order to determine which alternative is
present. Atp almost meets the conditions for a LL(1) language. Atp fails because in order to
determine whether a minus sign in front of a number is the subtraction operator or a negative
operator, the lexical analyzer has examine the symbols before the minus sign. In every
other respect, Atp is a LL(1) language. Horowitz (1983) explains the conditions that a

language must meet for it to be a LL(1) language.

A LL(1) language can be parsed using a top-down parsing algorithm. For example, the

equation
B=fft(A*B+C);

can be formed by using the production rules for the non-terminal symbols equa, expr, mult-
term, factor, func, and term. Figure 1 shows the tree structure formed when this equa-
tion is parsed. Wirth (1976) describes a basic procedure of converting from syntax rules to
a working parser. First, the production rules are converted into flow graphs. An example of
a flow graph is shown in Figure 2, which is the flow graph for the non-terminal symbol ezpr.
The parser starts at the left hand side and travels to the right, choosing its path based on
the next symbol it finds. In this case, the parser looks for a mulfferm right away. The
parser then checks to see if the next symbol is either a "+'" or a "-". If it is, the parser
looks for another mulftierm. The parser will keep looping as long as it detects either a ''+"
or a '"-" after each multierm. If next symbol is something else, than the parser goes on to
the next stage. This flow graph can be translated directly into a Pascal procedure, which is
shown in Figure 3. The parser for a Atp program can be written in any high level language

using this approach. However, the parser is much easier to write and maintain in a Janguage

SEP-37

Ullmaonn 167 Alp

equa
term e,zp'r

mult-term

Jactor

mult-term

fa\c tor

term

\

B = fft (A * B + C)

FIG. 1. Parsing diagram for a simple equation in Atp.

(m,ult-term /+9
.

FIG. 2. A flow graph for the production rule for expr. The program always moves from the
left to the right in tracing the graph.

-

expr — mult-term

that allows recursion, such as Pascal or C. In a recursive language, each non-terminal sym-
bol can represent a call to a procedure. In Figure 3, multterm would be a procedure that

checks the next set of symbols in the input for factors.

A program which implements Atp has three basic parts, which are shown in Figure 4.
The first part is a lexical analyzer. The lexical analyzer reads the equations entered by the
user and converts them to a form that can be handled more easily by the parser. This means
removing tabs and blanks, removing comments, converting numbers to an internal format, and
recognizing the functions, 1/0 commands, and the variables. The analyzer also has the

responsibility of detecting illegal characters and checking that the number of parenthesis

SEP-37

Ullmann 168 Alp

procedure expr,

begin
multterm,
while nextsymbolin [*’, '/] do begin

multterm

end

end;

FIG. 3. The translated Pascal program of the flow graph in Figure 2. The command

muliterm is a call to a procedure that examines the next symbols for a mult-ferm. The
command nexfsymbol is a function that returns the next symbol in the program.

Input traces

|

User's Lexical |Parser/ | Interpreter
———
equations Analyzer | Compiler |
Program

/

Output traces

FIG. 4. This diagram shows how a program that implements Atp goes through three stages.

match. The second part of a program combines the parser, which was described above, with
a compiler. A Atp program is compiled at the same time it is parsed. A list of commands are
formed by the parser and stored in memory. When the parser is done, control is passed to
the last part of the program, which is called the interpretor. The interpretor executes the
commands provided in the command list. The interpretor handies all the input, output, and

operations of the traces.

SEP-37

Ullmann 169 Atp

(1) A=C+ &rin[1]; " This is a comment
(2) B = ift (sm (fft (A)));

(3) &rout[1]=A-B; " &rout[1]=B-A
(4) C=(A+B)/2.,;

FIG. 6. This figure demonstrates a simple Atp program. The four statements above form a
block. For each iteration, the statements in the block are repeated.

Using Atp

Input Format. The input format for a program refers to the position certain items must
have. For example, the labels for a Fortran program are confined to the first six columns of
each line, and any continuation of a line is marked by a non-blank character in the seventh
column of the next line. The input format for a Atp program has no such restrictions. A
statement can start anywhere on the line and can extend over several lines. The only res-
triction is that each statement ends with a semicolon and ranges end with the symbol >.
The programmer can use tabs and spaces in any manner to help make the program more
readable. The lexical analyzer for Atp treats spaces, tabs, and new lines as white space

and removes them from the input.

Blocks and Statements, The basic unit of a Atp program is a block, which consist of a
series of statements. Consider the simple Atp program in Figure 5. Each of the four lines are
statements, and the set of four lines is a block. Note that statements are separated by
semicolons, which means that more than one statement can go on a line. The program that
implements Atp repeats the statements in the block for a fixed number of iterations that is
determined at the start. By default, the number of iterations is equal to the number of
traces there are coming from the input. Later, | will discuss a method for extending the
number of iterations. The program that implements the block above, it will read in the first
trace and then executes the statements in the block, using the first trace as data. After all
of the statements in the block have been executed, the program will go back and execute
the statements again, but this time with the second trace. Atp will execute the contents of
the block for every trace that is read in. Later on, | will discuss how the programmer can use

different blocks on different traces.

Comments, Figure 5 shows the format for comments. Any text that occurs after dou-
ble quotes, ", on a line is a comment and will be ignored by the parser. The extra equation
on line 3 will be ignored by the parser since it occurs after the double quotes. The contents

of line 4 are still included in the program since the comment on line 3 ends at the carriage

SEP-37

Ullmann 170 Atp

return. A well written program in any language includes enough comments so that others can

read understand the purpose of the program.

Variables, Vectors are manipulated in Atp through the use of variable names, which are
the capital letters A-Z, Traces are manipulated the same way single numbers are manipu-
lated by variable names in Fortran. The fourth statement in Figure 5 adds the elements of
the vector represented by A to the elements of vector B, divides the sum by 2, and stores
the results in vector C. During the execution of this statement, the contents of A and B do
not change. If C was also on the right side of the equal sign, then the contents of C would
not change until the right hand side is evaluated. In other words, the right hand side of an
equation is evaluated before the contents are assigned to the left hand side. One the first
iteration of a block, all the elements in all the vectors are set to zero. For example, the first
statement in Figure 5 is adding C to the input. The contents of C are zero, so the addition is
an identity operation. When Atp executes the block for the second trace, then the contents
of C will be left over from what was assigned to it in statement four. In other words, Atp
does not reinitialize the contents of a variable after each iteration. If there was no assign-

ment statement for C in the first iteration, then the values of C will remain zero.

Vector Length. For the purposes of internal calculation, Atp assumes that all of the
vectors used in calculations have the same number of elements or length. Atp takes the
length of the input vector supplied by the user and finds the next highest power of two. For
example, if all the input vectors each have 1000 numbers, than Atp uses vectors that have
a length of 1024. The input vectors are padded with zeros when they are read in and
stored in memory. This conversion is done in order that the fast Fourier transform may be
used. All of the output vectors from Atp have the power of two length. Atp also assumes
that all of the vectors consist of complex numbers. However, Atp can convert real numbers

to complex using input and ocutput commands that will be discussed later.

Operators and Scalar Numbers. The basic binary mathematical operations, addition,
subtraction, muitiplication, and division, are defined for the vectors. The symbols used for
these operations is the same as in Fortran. The hierarchy for these operations is shown in
Table 2. In addition, scalar numbers can also be one of the operands of a hinary operation.

For example,
5+A

adds a 5 to every element of A, while
[0.,1.]*B

multiplies every element of B by V-1 =1. In the fourth statement of Figure 5, all of the

SEP-37

Ullmann 171 Atp

n()H’ rv[]u
Junctions calls
H*H’ II/H

H+H’ rn_t

o 1F
-

ot
.

N DO OA oy ~

"o
2

TABLE 2. This table shows the order of evaluation of the different operators available to
Atp. The operators on line 1 are executed first, then the operators on line 2, and so on.

elements of the sum of A and B are divided by 2 before they are transferred to C. Complex
numbers are written in a Atp program as two numbers enclosed in brackets and separated by
a comma. If the number is not enclosed in brackets, the Atp assumes the number is real.
The format of floating point numbers is the same as Fortran. For example, 0.05¢ —4 becomes
5.x10°8, Any binary operation involving a vector and a scalar number is identical to a binary
operation between the vector and a vector containing the scalar number. The result of a
binary operation between two scalars is a vector containing the result of the operation. For

example, the statement
A=5+T7;

places a 12 in every entry of the vector A.

Name Operation

fft forward Fourier transform

ift inverse Fourier transform

sm smoothing through convolution

ssm super-smoothing through convolution
CCj complex conjugate

sqr square root

inv reciprocal

TABLE 3. This table lists the functions that are currently defined for Atp.

SEP-37

Ullmann 172 Atp

Functions. | have included certain functions in Atp that are commonly used in geophy-
sical processing. The names of these functions and what they do are listed in Table 3. A
function is defined to as an operation that uses one or more arguments to calculate a new
vector. Some examples of of how functions are used in Atp are shown in the second line of
Figure 5. First, the name of the function is given, followed by a list of the arguments
enclosed by a pair of parenthesis. When a function has more than one argument, then argu-
ments are separated in the list by commas. In the current version of Atp, there are no
defined functions that need more than one argument. An argument to a function can be a
expression, a term, a scalar number, or a vector from the input file. Since all functions are
call-by-value, none of the arguments are changed by the function. In other words, functions
only use the values of the arguments without changing the arguments. Other functions will
be added to Atp in the future, such as the Hilbert transform and high pass filters. One of the
properties of Atp is that anyone can define a new function and add it to the language. For
example, if a user needs a bandpass filter with specific cutoffs, the user can write the
appropriate subroutine and plug it into Atp. Since Atp is currently written in C, any one at
the SEP can write their functions in C or Fortran and add them to the current list of func-
tions. The format for new functions has been kept simple to encourage other programmers

to write new functions.

Name Input/Output Operation

aout write the amplitudes of the traces

cout write the complex form of the traces

iout write the imaginary part of the traces

pout write the phase of the traces

rout write the real part of the traces

cin read the traces in complex form

iin read the traces as imaginary numbers and convert it to complex
rin read the traces as real numbers and convert it to complex

TABLE 4. This table lists the Input/Output commands that are currently defined for Atp.

SEP-37

Ullmann 173 Alp

Input and Output. The input and output commands of Atp are listed in Table 4. Since
all vectors in Atp consist of complex numbers, there are a variety of input and output com-
mands to match what the programmer wants to work in. For example, if the programmer
wants to read input data that consists of real numbers, than he would use the command rin.
This command reads the real numbers of a vector into a complex array and assigns zeros to
the imaginary part. If the programmer wanted to write only the imaginary part of the result,
he would use the command iout, which would write only the imaginary part of the vector. All
input and output commands are preceded by a & to distinguish the commands from variables
and function names. This means that the user can use the input and output commands in the
same way that he would use variables. Whenever Atp encounters an input command in a
statement, it reads in the next vector, places the new vector in a temporary variable, and
substitutes the temporary variable for the input command. Likewise, whenever Atp
encounters an output command, it substitutes the output command with a temporary vari-
able. When the temporary variable has been assigned its value, its contents are written.
The output commands can only be placed on the left side of the equal sign because results
are sent to the file. Similarly, input commands can only be placed on the right side of the

equal sign because vectors are coming from it.

Each input and output command is followed by a descriptor of which file is being used.
The descriptor consists of an integer from O to 9 inclosed by brackets, "[]'. Before Atp is
used, the user provides a two lists of files that he will use for input and output. One list will
contain the input files, and the second list will contain the output files. The integer in the

file descriptor specifies the location of the file name in the list. For example, the equation
A = B + &rin[3];

reads real numbers from the input file that is third in the input file list, stores the numbers in
a complex array, adds numbers to the contents of B, and places the results in A, If the

equation were
&aout[1] = fft(&rin[2]);

Atp would read in the real numbers from the second input file, find the Fourier transform, and
write the amplitude spectrum to the first output file. If the user does not specify a file
descriptor, then the default file is zero for both the input and output commands. File zero at
the SEP is reserved for writing and reading data from pipes, since the user cannot specify a
file zero in the input and output file lists. This default allows Atp to communicate with other

processes that are running at the same time.

SEP-37

Ullmann 174 Atp

Each time an output command is called, the vector is appended to the output file file.
This means that all output operations are done sequentially into the files. By default, the
same applies to input commands. The next vector is read sequentially from the input file
each time one of the input commands is used. There is a mechanism for retrieving vectors
out of order, which is done by specifying an offset. The offset is a positive or negative
integer that is placed after a semicolon and the file descriptor within the brackets. When
the offset is not specified, then offset is set to zero. Whenever a trace is read in, an inter-
nal pointer in Atp is moved to the next trace in the input file. The value of the offset integer

indicates which vector to read relative to this internal pointer. For example, the statement
A = &rin[2; -1];

means that the previous vector from file 2 should be read in and assigned to variable A, The
internal input pointer moves to the next trace only when the offset is zero. This means that
the statement above has no effect on the position of the pointer after the input operation
because its offset is not zero. A positive offset of n means that the input vector should
come nth vector after the input pointer. The input commands of the program in Figure 6
show how offsets can be used. Atp will return with an error if the user tries to use an offset
that points to a location where there is not data. For example, if the user tries an offset of
-1 before any trace has been read in, the user will be trying to read vector zero, which does
not exist. A non-zero offset is also not allowed for file O since Atp can not back up to read

previous data on a pipe. All input from a pipe must be done sequentially.

Range. Suppose the programmer wanted use a certain formula on the first few itera-
tions, a different formula on the middle iterations, and another formula on the last few itera-
tions. The programmer can use the range feature of Atp to specify the block should be exe-
cuted for any iteration. The range is an positive integer that serves as a type of label for
matching a block with a specific iteration. All iterations start at one and go up. The best
way to understand how ranges work is to consider the the sample program in Figure 6. The
ranges are enclosed in the "< >" symbols on lines 1, 6, and 11. These lines mark the begin-
ning and ending of three different blocks which the user wants to apply to different itera-
tions. The range in line 1 specifies that the statements on lines 2 through 5 are used only
for the first iteration. The symbol "$" on line 6 is a macro for the number of the last vector
in the data set. If the data set has 50 vectors, then the "$" represents 50. The symbol ;"
in line 6 reads as ''through”. The symbol "-" in line 6 reads as "minus". Therefore, line 6
means that the set of statements on lines 7 through 10 apply for all the iterations from two
to the next to forty-nine. Atp requires that all mathematical operations in a range specifica-

tion take place within parenthesis. Addition and subtraction are currently the only

SEP-37

Ullmann 175 Atp

(1) <1>
(2) A = fft (&rin[1]);
(3) B = A;

(4) C = fft (&rin[1]);
(5) Xrout[1] = (A + B + C)/3.;
(6) <2:($-1)>

(7) A = B;

(8) B =C;

9) C = fft (&rin[1]);

(10) &rout[1]=(A +B + C)/3.;
(11) <$>

(12) A = B;

(13) B=C;

(14) &rout[1]=(A+B + C)/3.;

FIG. 6. This is a sample program that shows how ranges work. The numbers on the left hand
side are not part of the program; they are for identification purposes.

operations allowed in range expressions. The range in line 11 specifies that the last three
statements be used for the 50th iteration of the program. The effect of the program in Fig-
ure 6 is to average the spectrum of each input vectors with the spectrum of immediate

neighbors and write out the resulting spectrum.

If the resuit of any range expression is less than one, than Atp returns with an error.
However, the programmer can have ranges greater than the number of vectors in the input
file. However, the programmer should be careful not to try to read in vectors after reading
the last vector. The last block in Figure 6 does not show any input because the last vector

was read in by the previous trace. If the user had another block whose range was
<($+1)>,

then the user could specify some other operation for that iteration, as long as there is no
attempt at input. Atp will keep the maximum number it calculates for a range and use it as
the number of iterations for the whole program. Blocks can be placed in any order in the pro-
gram and can be applied at any iteration. If one block was applied to even iterations and

another block applied to odd iterations, then the ranges would be

SEP-37

Ullmann 176 Atp

<1,3,5,7,9, 11, ... >
BLOCK
<2,4,6,8,10,12, .. >
BLOCK

Figure 7 shows a program that performs the same operations as the program in Figure 6, but
uses offsets instead. Note that the program in Figure 7 has more function calls, so it would

take longer to run then the program in Figure 6.

(1) <1>
@) A = fft (&rin[1; 0]);
(3) B=A;

(4) C = fft (&rin[1; 1]);

(5) &rout[1] = (A +B + C)/3.;

(6) <2:($-1)>

(7) A = fft (&rin[1; -1]);

(8) B = fft (Xkrin[1; 0]);

(9) C = fft (&rin[1; 1]);

(10) &rout[1]=(A+B + C)/3.;

(11) <$>

(12) A = fft (&rin[1; -1]);

(13) B = fft (&rin[1; 0]);

(14) &rout[1]=(A +B + C)/3.;
FIG. 6. This is a sample program that duplicates what the program in Figure 6 does. Note

that there are more input calls and calls on the function ff{, which means that this program
would take longer to run.

Programming language criteria

There are different criteria for a programming language and different methods of meet-
ing the criteria. The first criteria is that the language should have a well-defined syntactic
and semantic description. A well-defined syntax allows the language compiler to recognize
ill-formed statements. The well-defined semantic description insures that there is no ambi-
guous interpretation of any statement. In other words, every statement means only one

thing; no other interpretation of the statement is possible. Atp meets this criteria because it

SEP-37

Ullmann 177 Atp

is well defined and any statement means only one thing. A second criteria is that the
language can be implemented quickly. In this case, the translation from the programmer's
formulas to the command list is very fast and takes up a very minor part of the total run time.

Most of the computer time is spent in doing the calculations.

A third criteria is that the language is machine independent. None of the features of
the Atp programming language depends on what type system the program runs on. The
actual implementation of the commands, such as the input and output, is machine dependent.
A program that implements Atp can be written in any high level language, such as Pascal or
PL/1. The version that | wrote is in C, which means that any system that has a standard C
compiler can use the program | wrote. | did not use any features of the SEP's C compiler

that should be available on other standard compiters.

The fourth criteria is that the language should produce efficient code. The efficiency
of Atp is limited to the language it is written in and the routines that execute the functions.
If these languages make full use of the computer system, then the resulting Atp program
should be very efficient. Naturally, a custom written program in Fortran for a particular for-
mula will take less time to run and use less memory than a Atp program that does the same
thing. The same principle applies to a program written in assembly language versus one writ-
ten in Fortran. However, most programmers would rather develop a program in Fortran than in
assembly language. Atp is designed primarily as a method of trying many different formulas
on some data quickly without having to make major alterations to a program. Once a formula

has been found that works, then the programmer should write the custom program.

The last criteria that | use is the flexibility of the language. So far, | have only defined
a few functions that | have needed the most. It is possible for others to write subroutines
that can be included in Atp. 1 also have plans to add more abilities to the language, such as
variable length vectors, two dimensional arrays, scalar arithmetic, longer variable names, and

some type of explicit looping and branching within blocks.

REFERENCES

Horowitz, Ellis, 1983, Fundamentals of programming languages: Rockville, Maryland, Computer
Science Press.

Naur, P. ed, 1963, "Revised Report on the Algorithmic Language ALGOL 60", Comm. ACM, vol.
6, pp. 1-17.

Wirth, Niklaus, 1976, Algorithms + data structures = programs: Englewood Cliffs, New Jersey,
Prentice-Hall.

SEP-37

