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Abstract

Conventional deconvolution produces a glut of innovation impulses,
most of which represent high frequency noise. Varimax deconwvolution
decreases the noise. More realistic estimated filters bT and further noise

reduction can be achieved by finding and using the filter which maximizes

) xt2 in xt2 subject to I xtz = 1 where X, is the filter's input and
X, convolved with bT is the observed filter output.
INTRODUCTION

The problem of deconvolution is this: In nature, there is an
unknown sequence of innovations X . Various physical processes have the
effect of filtering the innovations with some unknown filter bt' The output
of the filter may or may not be combined with some additive noise wu, before
the final observations v, are made. Letting % denote convolution, we

have

(1)

where everything on the left of the equal sign is unknown.

In conventional deconvolution, one presumes the existence of a
filter a, which is causal and inverse to bt (this is the minimum phase

assumption). A sketchy description of conventional estimation of a, is to

let u, = 0, a_, = 0; aO = 1, and minimize E(a) where
2 2
E(a) - i (at * Yt) - tz: (Xt) (2)



Such a procedure has a reasonable theoretical foundation when X, is a
sample of an uncorrelated Gaussian random process. The practical problem

is that X, turns out to have an innovation at every time point, and if

the data e is sampled at a denser rate, then the deconvolved data x,

has just that many more innovations. This result is associated with a
Gaussian probability function for X, . Common efforts to make more sense out
of the innovations employ either bandpass filtering or inserting a gap in

the filter, id.e., (al,a ..ak) = 0.

3
Claerbout and Muir (Robust Modeling of Erratic Data, Geophysics
1973) suggested that perhaps, medians or the Ll norm could be used to
suppress this overabundance of insignificant innovations. The application
to deconvolution was more fully defined in 1975 in SEP 5 - page 134. 1In
1976, SEP report 10 contained seven articles on non-Gaussian modeling. In
the spring of 1977, Ken Larner of the Western Geophysical Company presented
a "late paper'" at the European Association of Exploration Geophysics meeting
on the Western Geophysical "MED" process. This process was developed by
Ralph A. Wiggins (now at Del Mar Technical Associates, P.0. Box 1083, Del
Mar, California 92014) who provided us with a preprint entitled "Minimum
Entropy Deconvolution'" to appear in a Dutch Geophysical Journal.” Wiggins

was the first to demonstrate a practical technique for exploiting the non-

Gaussian nature of correctly deconvolved seismograms.

Subsequently, another approach to the problem, 'Deconvolution with
the Rl Norm" was presented at the Fall 1977 SEG Convention by Howard L.
Taylor, S. C. Banks, and J. F. McCoy.

*

Another reference to this material is: Wiggins, R.A., 1977, Minimum Entropy
Deconvolution, Proceedings of the International Symposium on Computer Aided
Seismic Analysis and Discrimination, June 9 & 10, 1977, Falmouth, Mass.

IEEE Computer Society, pp. 7-14.



Theory and Method

Wiggins' method was to apply the varimax technique of factor analysis
g8

to the problem of deconvolution. Specifically, he maximized

4
V(a) = 7;. ZE: i (3)
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Let us define the n-th norm as

1/n
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Wiggins' criterion is similar to minimizing the ratio of the second norm to
that of the fourth norm. Since varimax involves the 4-th power of the data,
it is very sensitive to the largest data values, and very insensitive to
smaller data values. In contrast, the philosophy of much of our work
emphasized the importance of small data values. The purpose of the present
study is to combine the strengths of the two approaches. Consequently, T
set out to minimize

1 1
N = B e S, 5

Early efforts to minimize (5) were rather discouraging. The criterion itself
seemed fine in the sense that its minimum did seem to coincide with

subjectively desirable solutions. The difficulty was that the gradient of (5)
did not seem to provide a good direction for descent. To help understand what

was happening, consider the perturbation of some filter a, by an amount

k
o dak. The numerator of (5) then takes the form

Z: | Ej Ye - 1 (aT + o daT) (6a)
t T

Z i (Xt + a dxt) l (6b)

t

It

Num(a)



A graph of (6b) versus o 1is a piecewise linear function of o. The slope
is almost constant, but it undergoes a jump discontinuity whenever there is
a sign change of the argument of the absolute value function in any term of
the sum. The denominator of (5) is the square root of a parabola, namely

1/2
Den(a) = {:Z (xt + a dxt)z] (7)
t

Figure 1.—Diagramatic sketch of L1, Ly, and the ratio of Ll/LZ
for equations (5) - (7). Corners in L1 are where absolute value functions
have become zero. The ratio has multiple minima but they are easily found.

Figure 1 is a diagramatic sketch of the numerator, denominator, and ratio of
the two. The possibility for many local minima is obvious. These minima
would have to occur where 0 = X, + a dxt so it is easy enough to evaluate
(5) at each value o = -~ xt/dxt and find the global minimum. The practical

problem was that the gradient of (5) with respect to a did not seem to



provide particularly sensible directions daT along which to scan «a.
This whole approach was abandoned before a relevant reference (Mixed él

and 22 Norm Problems) by Luis Canales, SEP 10, p. 114) was noted.

Experimentation discovered that more sensible gradients could be
obtained from
372 1=113/2

N = — — 8
2 B ®

The idea of using the 3/2 power arose with little theoretical justification.
The fact that it seemed to be a practical improvement raised the question,
"what about Ng/A, N;/a, or N%“e where € tends to zero?" The third
possibility was particularly intriguing but it requires some analysis before

it can be put to practical use. The discussion will continue after some algebra.

Let us formally consider

1=l e
s" = 2im s T e (9
n o IIN

For computational purposes, we will want to eliminate the ¢ by analytical
means. Since minimizing a function is equivalent to minimizing its logarithm,

we may minimize

: 1=l
S = Lim n =g (10a)
n L, x|,
= i - 10b
Eliyo n H}d[n_g ln||x||n ( )

If we expand S' in a power series about € = o, we get
n

_ 4 2 11
st = O0+e = 2n||x\|n_€+ 0 () (11)



Clearly, we obtain the

desired limit as € > 0, if we minimize

d
S, % = mllx | (12)

Insert the definition of norm (4) into (12)
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Before differentiating

constant ¢

so taking y =g, ¢ =

4
de
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x|

Now, carry through the

1
% (z lx|“‘€) e | (13)

——  in (zlx[“'s) (14)

n-¢

in (14), recall from fundamentals that for any

du

= ¢ n c Iy

|x| and u = (n-e) we have
_,X,n—e 2n]|x| (15)

differentiation in (14) utilizing (15)

n-¢ n-¢
S - fn Zix n 1 ~ Z]xl n|x

n

Set € =0 and rescale by the constant n

S = fn I |
n

(n—€)2 n-€ le]n_g

2

xln _ 2 Jx]n inx[n

Z|x|"

(16)



Note that since the value of Sn is scale invariant for x, we may introduce

a constraint X |x]n = 1 without affecting (16). The definition of S
in (16) takes a particularly intriguing form when n = 2. Let P = xz.
Then

S2 = ~L pfnop subject to 1 = ZIp (17

Now, we note a formal similarity between (17) and the thermodynamic definition
of entropy. Regretably, I have found it impossible to exploit this apparent

similarity, primarily because p represents power, not probability.

Let us return to the question of whether better deconvolutions

could be had by minimizing N;, N2/4, Ng/z, N;/4, or Ng—e. Computing

experience seemed to indicate that all tended to be minimized for subjective-
ly good deconvolutions. But the minimization procedure itself did not

behave very reliably for any of them. Since N% had many local minima, I
abandoned all but Ng_g and sought other ways to reorganize the descent
procedure. It was soon discovered that convergence could be more quickly
attained with n > 2 in Sn' But the final minimum no longer corresponded
to a subjectively satisfactory deconvolution. For the examples being
studied, quickest convergence was obtained by going first to a minimum with

n = 2.5, then reducing n to 2 for final descent.

The program still behaved erratically with many unpredictable things
happening. Much more comprehensible behavior was observed when the
adjustable parameters were no longer taken to be the inverse filter a, but
the forward filter bt' The forward filter is presumably a physical waveform
which goes to a reasonable limit as data sampling density increases whereas
the inverse filter is not so well behaved. The switch over in parameteri-
zation from the inverse filter a, to the forward filter bt also made it
easy to explicitly enforce a causality constraint on bt‘ The procedure
was to permit only positive lags on bt' The iteration would begin with all

bt equal zero except, say b4 equal one. As the iterative descent proceeded

>

it almost always turned out that the maximum value on the final filter b

turned out to be where the starting pulse was given, say b4.



The Algorithm

The first step in the algorithm is to be able to compute what may be
called the unconstrained gradient, that is, the derivative of (16) with

respect to X, . Thus, a subroutine must be available to compute 8y where

ds n n . dlx ln
e LR I
t %] x| %] x| ' t
n-1
n1x| sgn(x ) 5l [ n
- , t ]x] Rnixl _ inxln (18)
x| x|
For n = 2, we have
gt = Xt (const - 2 inxl) (18a)
Next, we recall the block diagram
x + dx XY b + db y 5

The data is given to be y. Let us use X, B, Y and G to denote fourier

transforms of x, b, y, and g. Clearly

X dB 4+ BdX = 0 (19)

Now, we would like to choose dX to be some distance o in the direction

of negative G. Thus,

X dB = o G B (20)

Multiply both sides through by the conjugate of X

X* X dB = a X* G B (21)



This sort of equation is ammenable to solution in the time domain for db of
bounded duration but better results were obtained by using a sort of a
Widrow descent procedure. What worked best was to replace the positive
function X*X by a constant and absorb the constant into «. Then, the

result could be transformed into the time domain, say
db « dB = o X*¥ G B (22)

Next, db can be tapered or truncated to be causal and of finite duration.
It was found that sometimes db turned out to be very nearly parallel to

b so that even if o was quite large, b + o db would be almost the same as
a scaled up version of b. Rescaling b 1is like rescaling x and that has
no effect at all on S. To avoid such deception, it makes sense to remove

the projection of b on db. Namely

(db, b)

db <« db . )

b (23)

Unlike a s bt represents a physical waveform. If a final result of 1%

accuracy is desired, it seems reasonable to stop the descent procedure when
db is 17 of b. But we have not yet chosen the scale factor o. The
algorithmic technique was this: Decide beforehand to make some fixed large
number (say 30) of iterations. Start initially with o = 207 and

decrease o linearly to 1% or zero.

After each updating of b by
b « b + adb (24)
the new deconvolved data x can be found by
x < X = Y/B (25)
Actually, a more cautious approach is to use

X = Y B¥/(ec + B'B) (26)

where € bears some relation to the step size o dB or to the presumed

ambient noise.



