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Introduction

0.1 THEMES

These four long lectures on Fourier Transforms and waves follow two general themes,

First, instead of drilling down into analytical details of one-dimensional Fourier analy-
sis, these lectures scan the basic definitions and concepts focusing on the concrete, namely,
computation. Then we move on to the basic principles of multidimensional spectra, a field
fundamental to wavefield analysis and practical imaging.

The second theme of these lectures is examples. There are 60 illustrations here, the ma-
jority of them being computed illustrations of the concepts. The theory here is mostly that
required to explain the examples.

All of the illustrations here come from my earlier books

1. Fundamentals of Geophysical Data Processing (FGDP)

2. Earth Soundings Analysis, Processing versus Inversion (PVI)

3. Basic Earth Imaging (BEI)

4. Geophysical Estimation by Example (GEE)

These books are all freely available on the web at http://sepwww.stanford.edu/sep/prof/.

0.2 WHY GEOPHYSICS USES FOURIER ANALYSIS

When earth material properties are constant in any of the cartesian variables (t , x , y, z) then it
is useful to Fourier transform (FT) that variable.

In seismology, the earth does not change with time (the ocean does!) so for the earth, we
can generally gain by Fourier transforming the time axis thereby converting time-dependent
differential equations (hard) to algebraic equations (easier) in frequency (temporal frequency).

In seismology, the earth generally changes rather strongly with depth, so we cannot use-
fully Fourier transform the depth z axis and we are stuck with differential equations in z. On
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the other hand, we can model a layered earth where each layer has material properties that are
constant in z. Then we get analytic solutions in layers and we need to patch them together.

Thirty years ago, computers were so weak that we always Fourier transformed the x and
y coordinates. That meant that their analyses were limited to earth models in which velocity
was horizontally layered. Today we still often Fourier transform t , x , y but not z, so we reduce
the partial differential equations of physics to ordinary differential equations (ODEs). A big
advantage of knowing FT theory is that it enables us to visualize physical behavior without us
needing to use a computer.

The Fourier transform variables are called frequencies. For each axis (t , x , y, z) we have
a corresponding frequency (ω,kx ,ky,kz). The k’s are spatial frequencies, ω is the temporal
frequency.

The frequency is inverse to the wavelength. Question: A seismic wave from the fast earth
goes into the slow ocean. The temporal frequency stays the same. What happens to the spatial
frequency (inverse spatial wavelength)?

In a layered earth, the horizonal spatial frequency is a constant function of depth. We will
find this to be Snell’s law.

In a spherical coordinate system or a cylindrical coordinate system, Fourier transforms are
useless but they are closely related to “spherical harmonic functions” and Bessel transforma-
tions which play a role similar to FT.

After we develop some techniques for 2-D Fourier transform of surface seismic data, we’ll
see how to use wave theory to take these observations made on the earth’s surface and “down-
ward continue” them, to extrapolate them into the earth. This is a central tool in earth imaging.

Then we introduce the concepts of reflection coefficient and layered media. The main
difference between wave theory found in physics books and geophysics books is due to the
near omnipresent gravitational stratification of earth materials.

A succeeding chapter considers two-dimensional spectra of any function, how such func-
tions can be modeled, what it means to deconvolve 2-D functions, and an all-purpose method
of filling in missing data in a 2-D function based on its spectrum.

The final chapter returns us to one dimension for the “uncertainty principle,” for the basic
concepts of resolution and statistical fluctuation.



Chapter 1

Convolution and Spectra

When Fourier transforms are applicable, it means the “earth response” now is the same as
the earth response later. Switching our point of view from time to space, the applicability
of Fourier transformation means that the “impulse response” here is the same as the im-
pulse response there. An impulse is a column vector full of zeros with somewhere a one, say
(0,0,1,0,0, · · ·)′ (where the prime ()′ means transpose the row into a column.) An impulse
response is a column from the matrix

q =
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0 0 0 0 b2 b1
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= Bp (1.1)

The impulse response is the q that comes out when the input p is an impulse. In a typical ap-
plication, the matrix would be about 1000×1000 and not the simple 8×6 example that I show
you above. Notice that each column in the matrix contains the same waveform (b0,b1,b2). This
waveform is called the “impulse response”. The collection of impulse responses in equation
(1.1) defines the the convolution operation.

Not only do the columns of the matrix contain the same impulse response, but each row
likewise contains the same thing, and that thing is the backwards impulse response (b2,b1,b0).
Suppose (b2,b1,b0) were numerically equal to (1,−2,1)/1t 2. Then equation (1.1) would be
like the differential equation d2

dt2 p = q. Equation (1.1) would be a finite-difference representa-
tion of a differential equation. Two important ideas are equivalent; either they are both true or
they are both false:

1. The columns of the matrix all hold the same impulse response.

2. The differential equation has constant coefficients.

1



2 CHAPTER 1. CONVOLUTION AND SPECTRA

Let us take a quick peek ahead. The relationship of equation (1.1) with Fourier transforms
is that the k-th row in (1.1) is the k-th power of Z in a polynomial multiplication Q(Z ) =
B(Z )P(Z ). The relationship of any polynomial such as Q(Z ) to Fourier Transforms results
from the relation Z = eiω1t , as we will see.

1.1 SAMPLED DATA AND Z-TRANSFORMS

Time and space are ordinarily thought of as continuous, but for the purposes of computer anal-
ysis we must discretize these axes. This is also called “sampling” or “digitizing.” You might
worry that discretization is a practical evil that muddies all later theoretical analysis. Actually,
physical concepts have representations that are exact in the world of discrete mathematics.

Consider the idealized and simplified signal in Figure 1.1. To analyze such an observed

Figure 1.1: A continuous signal
sampled at uniform time intervals.
cs-triv1 [ER]

signal in a computer, it is necessary to approximate it in some way by a list of numbers. The
usual way to do this is to evaluate or observe b(t) at a uniform spacing of points in time, call
this discretized signal bt . For Figure 1.1, such a discrete approximation to the continuous
function could be denoted by the vector

bt = (. . . 0, 0, 1, 2, 0,−1,−1, 0, 0, . . .) (1.2)

Naturally, if time points were closer together, the approximation would be more accurate.
What we have done, then, is represent a signal by an abstract n-dimensional vector.

Another way to represent a signal is as a polynomial, where the coefficients of the polyno-
mial represent the value of bt at successive times. For example,

B(Z ) = 1+2Z +0Z 2− Z3− Z4 (1.3)

This polynomial is called a “Z -transform.” What is the meaning of Z here? Z should not take
on some numerical value; it is instead the unit-delay operator. For example, the coefficients
of Z B(Z )= Z+2Z 2−Z4−Z5 are plotted in Figure 1.2. Figure 1.2 shows the same waveform

Figure 1.2: The coefficients of
Z B(Z ) are the shifted version of the
coefficients of B(Z ). cs-triv2 [ER]

as Figure 1.1, but now the waveform has been delayed. So the signal bt is delayed n time units
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by multiplying B(Z ) by Z n. The delay operator Z is important in analyzing waves simply
because waves take a certain amount of time to move from place to place.

Another value of the delay operator is that it may be used to build up more complicated
signals from simpler ones. Suppose bt represents the acoustic pressure function or the seis-
mogram observed after a distant explosion. Then bt is called the “impulse response.” If
another explosion occurred at t = 10 time units after the first, we would expect the pressure
function y(t) depicted in Figure 1.3. In terms of Z -transforms, this pressure function would
be expressed as Y (Z )= B(Z )+ Z 10B(Z ).

Figure 1.3: Response to two explo-
sions. cs-triv3 [ER]

1.1.1 Linear superposition

If the first explosion were followed by an implosion of half-strength, we would have B(Z )−
1
2 Z10B(Z ). If pulses overlapped one another in time (as would be the case if B(Z ) had de-
gree greater than 10), the waveforms would simply add together in the region of overlap. The
supposition that they would just add together without any interaction is called the “linearity”
property. In seismology we find that—although the earth is a heterogeneous conglomeration
of rocks of different shapes and types—when seismic waves travel through the earth, they do
not interfere with one another. They satisfy linear superposition. The plague of nonlinearity
arises from large amplitude disturbances. Nonlinearity is a dominating feature in hydrody-
namics, where flow velocities are a noticeable fraction of the wave velocity. Nonlinearity is
absent from reflection seismology except within a few meters from the source. Nonlinearity
does not arise from geometrical complications in the propagation path. An example of two
plane waves superposing is shown in Figure 1.4.

Figure 1.4: Crossing plane waves su-
perposing viewed on the left as “wig-
gle traces” and on the right as “raster.”
cs-super [ER]
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1.1.2 Convolution with Z-transform

Now suppose there was an explosion at t = 0, a half-strength implosion at t = 1, and another,
quarter-strength explosion at t = 3. This sequence of events determines a “source” time series,
xt = (1,−1

2 , 0, 1
4 ). The Z -transform of the source is X (Z ) = 1− 1

2 Z + 1
4 Z3. The observed yt

for this sequence of explosions and implosions through the seismometer has a Z -transform
Y (Z ), given by

Y (Z ) = B(Z )−
Z

2
B(Z )+

Z3

4
B(Z )

=
(

1−
Z

2
+

Z3

4

)

B(Z )

= X (Z ) B(Z ) (1.4)

The last equation shows polynomial multiplication as the underlying basis of time-invariant
linear-system theory, namely that the output Y (Z ) can be expressed as the input X (Z ) times
the impulse-response filter B(Z ). When signal values are insignificant except in a “small”
region on the time axis, the signals are called “wavelets.”

1.1.3 Convolution equation and program

What do we actually do in a computer when we multiply two Z -transforms together? The filter
2+ Z would be represented in a computer by the storage in memory of the coefficients (2,1).
Likewise, for 1− Z , the numbers (1,−1) would be stored. The polynomial multiplication
program should take these inputs and produce the sequence (2,−1,−1). Let us see how the
computation proceeds in a general case, say

X (Z ) B(Z ) = Y (Z ) (1.5)

(x0+ x1 Z + x2 Z2+·· ·) (b0+b1 Z +b2 Z2) = y0+ y1Z + y2 Z2+·· · (1.6)

Identifying coefficients of successive powers of Z , we get

y0 = x0b0

y1 = x1b0+ x0b1

y2 = x2b0+ x1b1+ x0b2 (1.7)

y3 = x3b0+ x2b1+ x1b2

y4 = x4b0+ x3b1+ x2b2

= ·· · · · · · · · · · · · · · · · ·
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In matrix form this looks like
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=













x0 0 0
x1 x0 0
x2 x1 x0

x3 x2 x1

x4 x3 x2

0 x4 x3

0 0 x4

















b0

b1

b2



 (1.8)

The following equation, called the “convolution equation,” carries the spirit of the group shown
in (1.7):

yk =
Nb∑

i=0

xk−i bi (1.9)

To be correct in detail when we associate equation (1.9) with the group (1.7), we should also
assert that either the input xk vanishes before k = 0 or Nb must be adjusted so that the sum
does not extend before x0. These end conditions are expressed more conveniently by defining
j = k− i in equation (1.9) and eliminating k getting

yj+i =
Nb∑

i=0

xj bi (1.10)

A convolution program based on equation (1.10) including end effects on both ends, is con-

volve().

# convolution: Y(Z) = X(Z) * B(Z)

#

subroutine convolve( nb, bb, nx, xx, yy )

integer nb # number of coefficients in filter

integer nx # number of coefficients in input

# number of coefficients in output will be nx+nb-1

real bb(nb) # filter coefficients

real xx(nx) # input trace

real yy(1) # output trace

integer ib, ix, iy, ny

ny = nx + nb -1

call null( yy, ny)

do ib= 1, nb

do ix= 1, nx

yy( ix+ib-1) = yy( ix+ib-1) + xx(ix) * bb(ib)

return; end

This program is written in a language called Ratfor, a “rational” dialect of Fortran. It is similar
to the Matlab language. You are not responsible for anything in this program, but, if you are
interested, more details in the last chapter of PVI1, the book that I condensed this from.

1http://sepwww.stanford.edu/sep/prof/
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1.1.4 Negative time

Notice that X (Z ) and Y (Z ) need not strictly be polynomials; they may contain both positive
and negative powers of Z , such as

X (Z ) = ·· ·+
x−2

Z2
+

x−1

Z
+ x0+ x1 Z +·· · (1.11)

Y (Z ) = ·· ·+
y−2

Z2
+

y−1

Z
+ y0+ y1 Z +·· · (1.12)

The negative powers of Z in X (Z ) and Y (Z ) show that the data is defined before t = 0. The
effect of using negative powers of Z in the filter is different. Inspection of (1.9) shows that the
output yk that occurs at time k is a linear combination of current and previous inputs; that is,
(xi , i ≤ k). If the filter B(Z ) had included a term like b−1/Z , then the output yk at time k would
be a linear combination of current and previous inputs and xk+1, an input that really has not
arrived at time k. Such a filter is called a “nonrealizable” filter, because it could not operate
in the real world where nothing can respond now to an excitation that has not yet occurred.
However, nonrealizable filters are occasionally useful in computer simulations where all the
data is prerecorded.

1.2 FOURIER SUMS

The world is filled with sines and cosines. The coordinates of a point on a spinning wheel
are (x , y)= (cos(ωt +φ), sin(ωt +φ)), where ω is the angular frequency of revolution and φ

is the phase angle. The purest tones and the purest colors are sinusoidal. The movement of
a pendulum is nearly sinusoidal, the approximation going to perfection in the limit of small
amplitude motions. The sum of all the tones in any signal is its “spectrum.”

Small amplitude signals are widespread in nature, from the vibrations of atoms to the
sound vibrations we create and observe in the earth. Sound typically compresses air by a
volume fraction of 10−3 to 10−6. In water or solid, the compression is typically 10−6 to
10−9. A mathematical reason why sinusoids are so common in nature is that laws of nature
are typically expressible as partial differential equations. Whenever the coefficients of the
differentials (which are functions of material properties) are constant in time and space, the
equations have exponential and sinusoidal solutions that correspond to waves propagating in
all directions.

1.2.1 Superposition of sinusoids

Fourier analysis is built from the complex exponential

e−iωt = cosωt− i sinωt (1.13)

A Fourier component of a time signal is a complex number, a sum of real and imaginary parts,
say

B = Re B+ i Im B (1.14)
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which is attached to some frequency. Let j be an integer and ωj be a set of frequencies. A
signal b(t) can be manufactured by adding a collection of complex exponential signals, each
complex exponential being scaled by a complex coefficient Bj , namely,

b(t) =
∑

j

Bj e−iωj t (1.15)

This manufactures a complex-valued signal. How do we arrange for b(t) to be real? We can
throw away the imaginary part, which is like adding b(t) to its complex conjugate b(t), and
then dividing by two:

Re b(t) =
1

2

∑

j

(Bj e−iωj t + B̄j eiωj t ) (1.16)

In other words, for each positive ωj with amplitude Bj , we add a negative−ωj with amplitude
B̄j (likewise, for every negative ωj ...). The Bj are called the “frequency function,” or the
“Fourier transform.” Loosely, the Bj are called the “spectrum,” though in formal mathematics,
the word “spectrum” is reserved for the product B̄j Bj . The words “amplitude spectrum”

universally mean
√

B̄j Bj .

In practice, the collection of frequencies is almost always evenly spaced. Let j be an
integer ω = j 1ω so that

b(t) =
∑

j

Bj e−i( j 1ω)t (1.17)

Representing a signal by a sum of sinusoids is technically known as “inverse Fourier transfor-
mation.” An example of this is shown in Figure 1.5.

1.2.2 Sampled time and Nyquist frequency

In the world of computers, time is generally mapped into integers too, say t = n1t . This is
called “discretizing” or “sampling.” The highest possible frequency expressible on a mesh is
(· · · , 1,−1,+1,−1,+1,−1, · · ·), which is the same as eiπn . Setting eiωmaxt = eiπn, we see that
the maximum frequency is

ωmax =
π

1t
(1.18)

Time is commonly given in either seconds or sample units, which are the same when 1t = 1.
In applications, frequency is usually expressed in cycles per second, which is the same as
Hertz, abbreviated Hz. In computer work, frequency is usually specified in cycles per sample.
In theoretical work, frequency is usually expressed in radians where the relation between
radians and cycles is ω = 2π f . We use radians because, otherwise, equations are filled with
2π ’s. When time is given in sample units, the maximum frequency has a name: it is the
“Nyquist frequency,” which is π radians or 1/2 cycle per sample.
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Figure 1.5: Superposition of two sinusoids. cs-cosines [NR]

1.2.3 Fourier sum

In the previous section we superposed uniformly spaced frequencies. Now we will super-
pose delayed impulses. The frequency function of a delayed impulse at time delay t0 is eiωt0 .
Adding some pulses yields the “Fourier sum”:

B(ω) =
∑

n

bn eiωtn =
∑

n

bn eiωn1t (1.19)

The Fourier sum transforms the signal bt to the frequency function B(ω). Time will often be
denoted by t , even though its units are sample units instead of physical units. Thus we often
see bt in equations like (1.19) instead of bn, resulting in an implied 1t = 1.

1.3 FOURIER AND Z-TRANSFORM

The frequency function of a pulse at time tn = n1t is eiωn1t = (eiω1t )n. The factor eiω1t

occurs so often in applied work that it has a name:

Z = eiω1t (1.20)

With this Z , the pulse at time tn is compactly represented as Z n. The variable Z makes
Fourier transforms look like polynomials, the subject of a literature called “Z -transforms.”
The Z -transform is a variant form of the Fourier transform that is particularly useful for time-
discretized (sampled) functions.
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From the definition (1.20), we have Z 2 = eiω21t , Z3 = eiω31t , etc. Using these equivalen-
cies, equation (1.19) becomes

B(ω) = B(ω(Z )) =
∑

n

bn Zn (1.21)

1.3.1 Unit circle

In this chapter, ω is a real variable, so Z = eiω1t = cosω1t+ i sinω1t is a complex variable.
It has unit magnitude because sin2+cos2 = 1. As ω ranges on the real axis, Z ranges on the
unit circle |Z | = 1.

1.3.2 Differentiator

Calculus defines the differential of a time function like this
d

dt
f (t) = lim

1t→0

f (t) − f (t−1t)

1t

Computationally, we think of a differential as a finite difference, namely, a function is delayed
a bit and then subtracted from its original self. Expressed as a Z -transform, the finite difference
operator is (1− Z ) with an implicit 1t = 1. In the language of filters, the time derivative is
the filter (+1,−1).

The filter (1− Z ) is often simply called a “differentiator.” It is displayed in Figure 1.6.
Notice its amplitude spectrum increases with frequency. Theoretically, the amplitude spectrum

Figure 1.6: A discrete representation of the first-derivative operator. The filter (1,−1) is plotted
on the left, and on the right is an amplitude response, i.e., |1− Z | versus ω. cs-ddt [NR]

of a time derivative operator increases linearly with frequency. Here is why. Begin from
Fourier representation of a time function (1.15).

b(t) =
∑

j

Bj e−iωj t (1.22)

d

dt
b(t) =

∑

j

−iωj Bj e−iωj t (1.23)
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and notice that where the original function has Fourier coefficients Bj , the time derivative has
Fourier coefficients −iωBj .

In Figure 1.6 we notice the spectrum begins looking like a linear function of ω, but at
higher frequencies, it curves. This is because at high frequencies, a finite difference is different
from a differential.

1.3.3 Gaussian examples

The filter (1+ Z )/2 is a running average of two adjacent time points. Applying this filter N
times yields the filter (1+ Z )N/2N . The coefficients of the filter (1+ Z )N are generally known
as Pascal’s triangle. For large N the coefficients tend to a mathematical limit known as a
Gaussian function, exp(−α(t− t0)2), where α and t0 are constants that we will not determine
here. We will not prove it here, but this Gaussian-shaped signal has a Fourier transform that
also has a Gaussian shape, exp(−βω2). The Gaussian shape is often called a “bell shape.”
Figure 1.7 shows an example for N ≈ 15. Note that, except for the rounded ends, the bell
shape seems a good fit to a triangle function. Curiously, the filter (.75+ .25Z )N also tends

Figure 1.7: A Gaussian approximated by many powers of (1+ Z ). cs-gauss [NR]

to the same Gaussian but with a different t0. A mathematical theorem says that almost any
polynomial raised to the N -th power yields a Gaussian.

In seismology we generally fail to observe the zero frequency. Thus the idealized seismic
pulse cannot be a Gaussian. An analytic waveform of longstanding popularity in seismology
is the second derivative of a Gaussian, also known as a “Ricker wavelet.” Starting from
the Gaussian and multiplying by (1− Z )2 = 1−2Z + Z 2 produces this old, favorite wavelet,
shown in Figure 1.8.

1.4 FT AS AN INVERTIBLE MATRIX

Happily, Fourier sums are exactly invertible: given the output, the input can be quickly found.
Because signals can be transformed to the frequency domain, manipulated there, and then
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Figure 1.8: Ricker wavelet. cs-ricker [NR]

returned to the time domain, convolution and correlation can be done faster. Time derivatives
can also be computed with more accuracy in the frequency domain than in the time domain.
Signals can be shifted a fraction of the time sample, and they can be shifted back again exactly.
In this chapter we will see how many operations we associate with the time domain can often
be done better in the frequency domain. We will also examine some two-dimensional Fourier
transforms.

A Fourier sum may be written

B(ω) =
∑

t

bt eiωt =
∑

t

bt Z t (1.24)

where the complex value Z is related to the real frequency ω by Z = eiω. This Fourier sum is a
way of building a continuous function of ω from discrete signal values bt in the time domain.
Here we specify both time and frequency domains by a set of points. Begin with an example
of a signal that is nonzero at four successive instants, (b0,b1,b2,b3). The transform is

B(ω) = b0+b1 Z +b2 Z2+b3 Z3 (1.25)

The evaluation of this polynomial can be organized as a matrix times a vector, such as







B0

B1

B2

B3






=







1 1 1 1
1 W W 2 W 3

1 W 2 W 4 W 6

1 W 3 W 6 W 9













b0

b1

b2

b3







(1.26)

Observe that the top row of the matrix evaluates the polynomial at Z = 1, a point where also
ω = 0. The second row evaluates B1 = B(Z = W = eiω0), where ω0 is some base frequency.
The third row evaluates the Fourier transform for 2ω0, and the bottom row for 3ω0. The matrix
could have more than four rows for more frequencies and more columns for more time points.
I have made the matrix square in order to show you next how we can find the inverse matrix.
The size of the matrix in (1.26) is N = 4. If we choose the base frequency ω0 and hence W
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correctly, the inverse matrix will be







b0

b1

b2

b3






= 1/N







1 1 1 1
1 1/W 1/W 2 1/W 3

1 1/W 2 1/W 4 1/W 6

1 1/W 3 1/W 6 1/W 9













B0

B1

B2

B3







(1.27)

Multiplying the matrix of (1.27) with that of (1.26), we first see that the diagonals are +1 as
desired. To have the off diagonals vanish, we need various sums, such as 1+W +W 2+W 3

and 1+W 2+W 4+W 6, to vanish. Every element (W 6, for example, or 1/W 9) is a unit vector
in the complex plane. In order for the sums of the unit vectors to vanish, we must ensure
that the vectors pull symmetrically away from the origin. A uniform distribution of directions
meets this requirement. In other words, W should be the N -th root of unity, i.e.,

W = N
√

1 = e2π i/N (1.28)

The lowest frequency is zero, corresponding to the top row of (1.26). The next-to-the-
lowest frequency we find by setting W in (1.28) to Z = eiω0 . So ω0 = 2π/N ; and for (1.27) to
be inverse to (1.26), the frequencies required are

ωk =
(0,1,2, . . . , N −1)2π

N
(1.29)

1.4.1 The Nyquist frequency

The highest frequency in equation (1.29), ω = 2π (N −1)/N , is almost 2π . This frequency is
twice as high as the Nyquist frequency ω= π . The Nyquist frequency is normally thought of
as the “highest possible” frequency, because eiπ t , for integer t , plots as (· · · , 1,−1,1,−1,1,−1, · · ·).
The double Nyquist frequency function, ei2π t , for integer t , plots as (· · · , 1,1,1,1,1, · · ·). So
this frequency above the highest frequency is really zero frequency! We need to recall that
B(ω)= B(ω−2π ). Thus, all the frequencies near the upper end of the range equation (1.29)
are really small negative frequencies. Negative frequencies on the interval (−π , 0) were moved
to interval (π , 2π ) by the matrix form of Fourier summation.

A picture of the Fourier transform matrix of equation (1.26) is shown in Figure 1.9. Notice
the Nyquist frequency is the center row and center column of each matrix.

1.4.2 Convolution in one domain...

Z -transforms taught us that a multiplication of polynomials is a convolution of their coeffi-
cients. Interpreting Z = eiω as having numerical values for real numerical values of ω, we
have the idea that

Convolution in the time domain is multiplication in the frequency domain.
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Figure 1.9: Two different graphical means of showing the real and imaginary parts of the
Fourier transform matrix of size 32×32. cs-matrix [ER]
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Expressing Fourier transformation as a matrix, we see that except for a choice of sign,
Fourier transform is essentially the same process as as inverse fourier transform. This creates
an underlying symmetry between the time domain and the frequency domain. We therefore
deduce the symmetrical principle that

Convolution in the frequency domain is multiplication in the time domain.

1.4.3 Inverse Z-transform

Fourier analysis is widely used in mathematics, physics, and engineering as a Fourier integral
transformation pair:

B(ω) =
∫ +∞

−∞
b(t)eiωt dt (1.30)

b̄(t) =
∫ +∞

−∞
B(ω)e−iωt dω (1.31)

These integrals correspond to the sums we are working with here except for some minor
details. Books in electrical engineering redefine eiωt as e−iωt . That is like switching ω to −ω.
Instead, we have chosen the sign convention of physics, which is better for wave-propagation
studies (as explained in IEI). The infinite limits on the integrals result from expressing the
Nyquist frequency in radians/second as π/1t . Thus, as 1t tends to zero, the Fourier sum
tends to the integral. It can be shown that if a scaling divisor of 2π is introduced into either
(1.30) or (1.31), then b(t) will equal b̄(t).

EXERCISES:

1 Let B(Z ) = 1+ Z + Z 2+ Z3+ Z4. Graph the coefficients of B(Z ) as a function of the
powers of Z . Graph the coefficients of [B(Z )]2.

2 As ω moves from zero to positive frequencies, where is Z and which way does it rotate
around the unit circle, clockwise or counterclockwise?

3 Identify locations on the unit circle of the following frequencies: (1) the zero frequency,
(2) the Nyquist frequency, (3) negative frequencies, and (4) a frequency sampled at 10
points per wavelength.

4 Sketch the amplitude spectrum of Figure 1.8 from 0 to 4π .
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1.5 SYMMETRIES

Next we examine odd/even symmetries to see how they are affected in Fourier transform. The
even part et of a signal bt is defined as

et =
bt +b−t

2
(1.32)

The odd part is

ot =
bt −b−t

2
(1.33)

By adding (1.32) and (1.33), we see that a function is the sum of its even and odd parts:

bt = et +ot (1.34)

Consider a simple, real, even signal such as (b−1,b0,b1) = (1,0,1). Its transform Z +
1/Z = eiω+ e−iω = 2cosω is an even function of ω, since cosω = cos(−ω).

Consider the real, odd signal (b−1,b0,b1)= (−1,0,1). Its transform Z −1/Z = 2i sinω is
imaginary and odd, since sinω =−sin(−ω).

Likewise, the transform of the imaginary even function (i , 0, i ) is the imaginary even func-
tion i2cosω. Finally, the transform of the imaginary odd function (−i , 0, i ) is real and odd.

Let r and i refer to real and imaginary, e and o to even and odd, and lower-case and
upper-case letters to time and frequency functions. A summary of the symmetries of Fourier
transform is shown in Figure 1.10.

Figure 1.10: Odd functions swap real
and imaginary. Even functions do not
get mixed up with complex numbers.
cs-reRE [NR]

More elaborate signals can be made by adding together the three-point functions we have
considered. Since sums of even functions are even, and so on, the diagram in Figure 1.10
applies to all signals. An arbitrary signal is made from these four parts only, i.e., the function
has the form bt = (re+ ro)t + i (ie+ io)t . On transformation of bt , each of the four individual
parts transforms according to the table.

Most “industry standard” methods of Fourier transform set the zero frequency as the first
element in the vector array holding the transformed signal, as implied by equation (1.26).
This is a little inconvenient, as we saw a few pages back. The Nyquist frequency is then the
first point past the middle of the even-length array, and the negative frequencies lie beyond.
Figure 1.11 shows an example of an even function as it is customarily stored.
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Figure 1.11: Even functions as customarily stored by “industry standard” FT programs.
cs-even [NR]

EXERCISES:

1 You can learn about Fourier transformation by studying math equations in a book. You
can also learn by experimenting with a program where you can “draw” a function in the
time domain (or frequency domain) and instantly see the result in the other domain. The
best way to learn about FT is to combine the above two methods. Spend at least an hour
at the web site:

http://sepwww.stanford.edu/oldsep/hale/FftLab.html

which contains the interactive Java FT laboratory written by Dave Hale. This program
applies equations (1.26) and (1.27).

1.5.1 Laying out a mesh

In theoretical work and in programs, the definition Z = eiω1t is often simplified to 1t = 1,
leaving us with Z = eiω. How do we know whether ω is given in radians per second or radians
per sample? We may not invoke a cosine or an exponential unless the argument has no physical
dimensions. So where we see ω without 1t , we know it is in units of radians per sample.

In practical work, frequency is typically given in cycles or Hertz, f , rather than radians,
ω (where ω = 2π f ). Here we will now switch to f . We will design a computer mesh on
a physical object (such as a waveform or a function of space). We often take the mesh to
begin at t = 0, and continue till the end tmax of the object, so the time range trange = tmax.
Then we decide how many points we want to use. This will be the N used in the discrete
Fourier-transform program. Dividing the range by the number gives a mesh interval 1t .

Now let us see what this choice implies in the frequency domain. We customarily take the
maximum frequency to be the Nyquist, either fmax = .5/1t Hz or ωmax = π/1t radians/sec.
The frequency range frange goes from −.5/1t to .5/1t . In summary:
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• 1t = trange/N is time resolution.

• frange = 1/1t = N/trange is frequency range.

• 1 f = frange/N = 1/trange is frequency resolution.

In principle, we can always increase N to refine the calculation. For an experiment of a fixed
size trange, notice that increasing N sharpens the time resolution (makes 1t smaller) but does
not sharpen the frequency resolution 1 f , which remains fixed. Increasing N increases the
frequency range, but not the frequency resolution.

What if we want to increase the frequency resolution? Then we need to choose trange larger
than required to cover our object of interest. Thus we either record data over a larger range, or
we assert that such measurements would be zero. Three equations summarize the facts:

1t frange = 1 (1.35)

1 f trange = 1 (1.36)

1 f 1t =
1

N
(1.37)

Increasing range in the time domain increases resolution in the frequency domain and
vice versa. Increasing resolution in one domain does not increase resolution in the other.

1.6 CORRELATION AND SPECTRA

The spectrum of a signal is a positive function of frequency that says how much of each
tone is present. The Fourier transform of a spectrum yields an interesting function called an
“autocorrelation,” which measures the similarity of a signal to itself shifted.

1.6.1 Spectra in terms of Z-transforms

Let us look at spectra in terms of Z -transforms. Let a spectrum be denoted S(ω), where

S(ω) = |B(ω)|2 = B(ω)B(ω) (1.38)

Expressing this in terms of a three-point Z -transform, we have

S(ω) = (b̄0+ b̄1e−iω+ b̄2e−i2ω)(b0+b1eiω+b2ei2ω) (1.39)

S(Z ) =
(

b̄0+
b̄1

Z
+

b̄2

Z2

)

(b0+b1 Z +b2 Z2) (1.40)

S(Z ) = B

(
1

Z

)

B(Z ) (1.41)
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It is interesting to multiply out the polynomial B̄(1/Z ) with B(Z ) in order to examine the
coefficients of S(Z ):

S(Z ) =
b̄2b0

Z2
+

(b̄1b0+ b̄2b1)

Z
+ (b̄0b0+ b̄1b1+ b̄2b2)+ (b̄0b1+ b̄1b2)Z + b̄0b2 Z2

S(Z ) =
s−2

Z2
+

s−1

Z
+ s0+ s1 Z + s2 Z2 (1.42)

The coefficient sk of Z k is given by

sk =
∑

i

b̄i bi+k (1.43)

Equation (1.43) is the autocorrelation formula. The autocorrelation value sk at lag 10 is s10.
It is a measure of the similarity of bi with itself shifted 10 units in time. In the most fre-
quently occurring case, bi is real; then, by inspection of (1.43), we see that the autocorrelation
coefficients are real, and sk = s−k .

Specializing to a real time series gives

S(Z ) = s0+ s1

(

Z +
1

Z

)

+ s2

(

Z2+
1

Z2

)

(1.44)

S(Z (ω)) = s0+ s1(eiω+ e−iω)+ s2(ei2ω+ e−i2ω) (1.45)

S(ω) = s0+2s1 cosω+2s2 cos2ω (1.46)

S(ω) =
∑

k

sk coskω (1.47)

S(ω) = cosine transform of sk (1.48)

This proves a classic theorem that for real-valued signals can be simply stated as follows:

For any real signal, the cosine transform of the autocorrelation equals the magnitude
squared of the Fourier transform.

1.6.2 Two ways to compute a spectrum

There are two computationally distinct methods by which we can compute a spectrum: (1)
compute all the sk coefficients from (1.43) and then form the cosine sum (1.47) for each ω;
and alternately, (2) evaluate B(Z ) for some value of Z on the unit circle, and multiply the
resulting number by its complex conjugate. Repeat for many values of Z on the unit circle.
When there are more than about twenty lags, method (2) is cheaper, because the fast Fourier
transform discussed in chapter 2 can be used.

1.6.3 The comb function

Consider a constant function of time. In the frequency domain, it is an impulse at zero fre-
quency. The comb function is defined to be zero at alternate time points. Multiply this constant
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function by the comb function. The resulting signal contains equal amounts of two frequen-
cies; half is zero frequency, and half is Nyquist frequency. We see this in the second row in
Figure 1.12, where the Nyquist energy is in the middle of the frequency axis. In the third
row, 3 out of 4 points are zeroed by another comb. We now see something like a new Nyquist
frequency at half the Nyquist frequency visible on the second row.

Figure 1.12: A zero-frequency func-
tion and its cosine transform. Succes-
sive rows show increasingly sparse
sampling of the zero-frequency func-
tion. cs-comb [NR]

1.6.4 Undersampled field data

Figure 1.13 shows a recording of an airgun along with its spectrum. The original data is

Figure 1.13: Raw data is shown on the top left, of about a half-second duration. Right shows
amplitude spectra (magnitude of FT). In successive rows the data is sampled less densely.
cs-undersample [ER]

sampled at an interval of 4 milliseconds, which is 250 times per second. Thus, the Nyquist
frequency 1/(21t) is 125 Hz. Negative frequencies are not shown, since the amplitude spec-
trum at negative frequency is identical with that at positive frequency. Think of extending the
top row of spectra in Figure 1.13 to range from minus 125 Hz to plus 125 Hz. Imagine the
even function of frequency centered at zero frequency—we will soon see it. In the second row
of the plot, I decimated the data to 8 ms. This drops the Nyquist frequency to 62.5 Hz. Energy
that was at −10 Hz appears at 125− 10 Hz in the second row spectrum. The appearance of
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what were formerly small negative frequencies near the Nyquist frequency is called “folding”
of the spectrum. In the next row the data is sampled at 16 ms intervals, and in the last row at
32 ms intervals. The 8 ms sampling seems OK, whereas the 32 ms sampling looks poor. Study
how the spectrum changes from one row to the next.

The spectrum suffers no visible harm in the drop from 4 ms to 8 ms. The 8 ms data could be
used to construct the original 4 ms data by transforming the 8 ms data to the frequency domain,
replacing values at frequencies above 125/2 Hz by zero, and then inverse transforming to the
time domain.

(Airguns usually have a higher frequency content than we see here. Some high-frequency
energy was removed by the recording geometry, and I also removed some when preparing the
data.)

1.6.5 Common signals

Figure 1.14 shows some common signals and their autocorrelations. Figure 1.15 shows the
cosine transforms of the autocorrelations. Cosine transform takes us from time to frequency
and it also takes us from frequency to time. Thus, transform pairs in Figure 1.15 are sometimes
more comprehensible if you interchange time and frequency. The various signals are given
names in the figures, and a description of each follows:

Figure 1.14: Common signals and one side of their autocorrelations. cs-autocor [ER]

cos The theoretical spectrum of a sinusoid is an impulse, but the sinusoid was truncated (mul-
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Figure 1.15: Autocorrelations and their cosine transforms, i.e., the (energy) spectra of the
common signals. cs-spectra [ER]

tiplied by a rectangle function). The autocorrelation is a sinusoid under a triangle, and
its spectrum is a broadened impulse (which can be shown to be a narrow sinc-squared
function).

sinc The sinc function is sin(ω0t)/(ω0t). Its autocorrelation is another sinc function, and its
spectrum is a rectangle function. Here the rectangle is corrupted slightly by “Gibbs
sidelobes,” which result from the time truncation of the original sinc.

wide box A wide rectangle function has a wide triangle function for an autocorrelation and
a narrow sinc-squared spectrum.

narrow box A narrow rectangle has a wide sinc-squared spectrum.

twin Two pulses.

2 boxes Two separated narrow boxes have the spectrum of one of them, but this spectrum
is modulated (multiplied) by a sinusoidal function of frequency, where the modulation
frequency measures the time separation of the narrow boxes. (An oscillation seen in the
frequency domain is sometimes called a “quefrency.”)

comb Fine-toothed-comb functions are like rectangle functions with a lower Nyquist fre-
quency. Coarse-toothed-comb functions have a spectrum which is a fine-toothed comb.
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exponential The autocorrelation of a transient exponential function is a double-sided expo-
nential function. The spectrum (energy) is a Cauchy function, 1/(ω2+ω2

0). The curious
thing about the Cauchy function is that the amplitude spectrum diminishes inversely
with frequency to the first power; hence, over an infinite frequency axis, the function
has infinite integral. The sharp edge at the onset of the transient exponential has much
high-frequency energy.

Gauss The autocorrelation of a Gaussian function is another Gaussian, and the spectrum is
also a Gaussian.

random Random numbers have an autocorrelation that is an impulse surrounded by some
short grass. The spectrum is positive random numbers.

smoothed random Smoothed random numbers are much the same as random numbers, but
their spectral bandwidth is limited.

1.6.6 Spectral transfer function

Filters are often used to change the spectra of given data. With input X (Z ), filters B(Z ), and
output Y (Z ), we have Y (Z )= B(Z )X (Z ) and the Fourier conjugate Y (1/Z )= B(1/Z )X (1/Z ).
Multiplying these two relations together, we get

Y Y = (B B)(X X ) (1.49)

which says that the spectrum of the input times the spectrum of the filter equals the spectrum
of the output. Filters are often characterized by the shape of their spectra; this shape is the
same as the spectral ratio of the output over the input:

B B =
Y Y

X X
(1.50)

EXERCISES:

1 Suppose a wavelet is made up of complex numbers. Is the autocorrelation relation sk = s−k

true? Is sk real or complex? Is S(ω) real or complex?



Chapter 2

Two-dimensional Fourier transform

2.1 SLOW PROGRAM FOR INVERTIBLE FT

Typically, signals are real valued. But the programs in this chapter are for complex-valued
signals. In order to use these programs, copy the real-valued signal into a complex array,
where the signal goes into the real part of the complex numbers; the imaginary parts are then
automatically set to zero.

2.1.1 The slow FT code

The slowft() routine exhibits features found in many physics and engineering programs. For
example, the time-domain signal (which I call “tt()"), has nt values subscripted, from tt(1)

to tt(nt). The first value of this signal tt(1) is located in real physical time at t0. The time
interval between values is dt. The value of tt(it) is at time t0+(it-1)*dt. I do not use “if”
as a pointer on the frequency axis because if is a keyword in most programming languages.
Instead, I count along the frequency axis with a variable named ie.

subroutine slowft( adj, add, t0,dt,tt,nt, f0,df, ff,nf)

integer it,ie, adj, add, nt, nf

complex cexp, cmplx, tt(nt), ff(nf)

real pi2, freq, time, scale, t0,dt, f0,df

call adjnull( adj, add, tt,2*nt, ff,2*nf)

pi2 = 2. * 3.14159265;

scale = 1./sqrt( 1.*nt)

df = (1./dt) / nf

f0 = - .5/dt

do ie = 1, nf { freq= f0 + df*(ie-1)

do it = 1, nt { time= t0 + dt*(it-1)

if( adj == 0 )

ff(ie)= ff(ie) + tt(it) * cexp(cmplx(0., pi2*freq*time)) * scale

else

23
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tt(it)= tt(it) + ff(ie) * cexp(cmplx(0.,-pi2*freq*time)) * scale

}}

return; end

The total frequency band is 2π radians per sample unit or 1/1t Hz. Dividing the total interval
by the number of points nf gives 1 f . We could choose the frequencies to run from 0 to 2π

radians/sample. That would work well for many applications, but it would be a nuisance for
applications such as differentiation in the frequency domain, which require multiplication by
−iω including the negative frequencies as well as the positive. So it seems more natural to
begin at the most negative frequency and step forward to the most positive frequency.

2.2 TWO-DIMENSIONAL FT

Let us review some basic facts about two-dimensional Fourier transform. A two-dimensional
function is represented in a computer as numerical values in a matrix, whereas a one-dimensional
Fourier transform in a computer is an operation on a vector. A 2-D Fourier transform can be
computed by a sequence of 1-D Fourier transforms. We can first transform each column vector
of the matrix and then each row vector of the matrix. Alternately, we can first do the rows and
later do the columns. This is diagrammed as follows:

p(t , x) ←→ P(t , kx )
x

y

x

y

P(ω, x) ←→ P(ω, kx )

The diagram has the notational problem that we cannot maintain the usual convention
of using a lower-case letter for the domain of physical space and an upper-case letter for
the Fourier domain, because that convention cannot include the mixed objects P(t ,kx) and
P(ω, x). Rather than invent some new notation, it seems best to let the reader rely on the
context: the arguments of the function must help name the function.

An example of two-dimensional Fourier transforms on typical deep-ocean data is shown
in Figure 2.1. In the deep ocean, sediments are fine-grained and deposit slowly in flat, regular,
horizontal beds. The lack of permeable rocks such as sandstone severely reduces the potential
for petroleum production from the deep ocean. The fine-grained shales overlay irregular,
igneous, basement rocks. In the plot of P(t ,kx), the lateral continuity of the sediments is
shown by the strong spectrum at low kx . The igneous rocks show a kx spectrum extending to
such large kx that the deep data may be somewhat spatially aliased (sampled too coarsely).
The plot of P(ω, x) shows that the data contains no low-frequency energy. The dip of the sea
floor shows up in (ω,kx )-space as the energy crossing the origin at an angle.

Altogether, the two-dimensional Fourier transform of a collection of seismograms in-
volves only twice as much computation as the one-dimensional Fourier transform of each
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Figure 2.1: A deep-marine dataset p(t , x) from Alaska (U.S. Geological Survey) and the real
part of various Fourier transforms of it. Because of the long traveltime through the water, the
time axis does not begin at t = 0. dft-plane4 [ER]



26 CHAPTER 2. TWO-DIMENSIONAL FOURIER TRANSFORM

seismogram. This is lucky. Let us write some equations to establish that the asserted proce-
dure does indeed do a 2-D Fourier transform. Say first that any function of x and t may be
expressed as a superposition of sinusoidal functions:

p(t , x) =
∫ ∫

e−iωt+ikx x P(ω,kx ) dω dkx (2.1)

The double integration can be nested to show that the temporal transforms are done first (in-
side):

p(t , x) =
∫

ei kx x

[∫

e−iωt P(ω,kx ) dω

]

dkx

=
∫

ei kx x P(t ,kx) dkx

The quantity in brackets is a Fourier transform over ω done for each and every kx . Alternately,
the nesting could be done with the kx -integral on the inside. That would imply rows first
instead of columns (or vice versa). It is the separability of exp(−iωt + i kx x) into a product
of exponentials that makes the computation this easy and cheap.

2.2.1 Signs in Fourier transforms

In Fourier transforming t-, x-, and z-coordinates, we must choose a sign convention for each
coordinate. Of the two alternative sign conventions, electrical engineers have chosen one and
physicists another. While both have good reasons for their choices, our circumstances more
closely resemble those of physicists, so we will use their convention. For the inverse Fourier
transform, our choice is

p(t , x , z) =
∫ ∫ ∫

e−iωt+ ikx x+ ikz z P(ω,kx ,kz) dωdkx dkz (2.2)

For the forward Fourier transform, the space variables carry a negative sign, and time carries
a positive sign.

Let us see the reasons why electrical engineers have made the opposite choice, and why we
go with the physicists. Essentially, engineers transform only the time axis, whereas physicists
transform both time and space axes. Both are simplifying their lives by their choice of sign
convention, but physicists complicate their time axis in order to simplify their many space
axes. The engineering choice minimizes the number of minus signs associated with the time
axis, because for engineers, d/dt is associated with iω instead of, as is the case for us and for
physicists, with −iω. We confirm this with equation (2.2). Physicists and geophysicists deal
with many more independent variables than time. Besides the obvious three space axes are
their mutual combinations, such as midpoint and offset.

You might ask, why not make all the signs positive in equation (2.2)? The reason is that
in that case waves would not move in a positive direction along the space axes. This would
be especially unnatural when the space axis was a radius. Atoms, like geophysical sources,
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always radiate from a point to infinity, not the other way around. Thus, in equation (2.2) the
sign of the spatial frequencies must be opposite that of the temporal frequency.

The only good reason I know to choose the engineering convention is that we might com-
pute with an array processor built and microcoded by engineers. Conflict of sign convention
is not a problem for the programs that transform complex-valued time functions to complex-
valued frequency functions, because there the sign convention is under the user’s control. But
sign conflict does make a difference when we use any program that converts real-time func-
tions to complex frequency functions. The way to live in both worlds is to imagine that the
frequencies produced by such a program do not range from 0 to +π as the program descrip-
tion says, but from 0 to −π . Alternately, we could always take the complex conjugate of the
transform, which would swap the sign of the ω-axis.

2.2.2 Examples of 2-D FT

An example of a two-dimensional Fourier transform of a pulse is shown in Figure 2.2.

Figure 2.2: A broadened pulse (left) and the real part of its FT (right). dft-ft2dofpulse [ER]

Notice the location of the pulse. It is closer to the time axis than the frequency axis. This will
affect the real part of the FT in a certain way (see exercises). Notice the broadening of the
pulse. It was an impulse smoothed over time (vertically) by convolution with (1,1) and over
space (horizontally) with (1,4,6,4,1). This will affect the real part of the FT in another way.

Another example of a two-dimensional Fourier transform is given in Figure 2.3. This
example simulates an impulsive air wave originating at a point on the x-axis. We see a wave
propagating in each direction from the location of the source of the wave. In Fourier space
there are also two lines, one for each wave. Notice that there are other lines which do not
go through the origin; these lines are called “spatial aliases.” Each actually goes through the
origin of another square plane that is not shown, but which we can imagine alongside the one
shown. These other planes are periodic replicas of the one shown.
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Figure 2.3: A simulated air wave (left) and the amplitude of its FT (right). dft-airwave [ER]

EXERCISES:

1 Most time functions are real. Their imaginary part is zero. Show that this means that
F(ω,k) can be determined from F(−ω,−k).

2 What would change in Figure 2.2 if the pulse were moved (a) earlier on the t-axis, and
(b) further on the x-axis? What would change in Figure 2.2 if instead the time axis were
smoothed with (1,4,6,4,1) and the space axis with (1,1)?

3 What would Figure 2.3 look like on an earth with half the earth velocity?

4 Numerically (or theoretically) compute the two-dimensional spectrum of a plane wave
[δ(t − px)], where the plane wave has a randomly fluctuating amplitude: say, rand(x)
is a random number between ±1, and the randomly modulated plane wave is [(1 +
.2 rand(x))δ(t− px)].

5 Explain the horizontal “layering” in Figure 2.1 in the plot of P(ω, x). What determines
the “layer” separation? What determines the “layer” slope?



Chapter 3

Kirchhoff migration

Migration is the basic image making process in reflection seismology. A simplified conceptual
basis is (1) the superposition principle, (2) Pythagoras theorem, and (3) a subtle and amazing
analogy called the exploding reflector concept. After we see this analogy we’ll look at the
most basic migration method, the Kirchhoff method.

3.1 THE EXPLODING REFLECTOR CONCEPT

Figure 3.1 shows two wave-propagation situations. The first is realistic field sounding. A shot
s and a receiving geophone g attached together go to all places on the earth surface and record
for us the echo function of t . The second is a thought experiment in which the reflectors in
the earth suddenly explode. Waves from the hypothetical explosion propagate up to the earth’s
surface where they are observed by a hypothetical string of geophones.

  

Exploding Reflectors

g gs
g

Zero-offset Section

Figure 3.1: Echoes collected with a source-receiver pair moved to all points on the earth’s
surface (left) and the “exploding-reflectors” conceptual model (right). krch-expref [NR]

Notice in the figure that the ray paths in the field-recording case seem to be the same as

29
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those in the exploding-reflector case. It is a great conceptual advantage to imagine that the
two wavefields, the observed and the hypothetical, are indeed the same. If they are the same,
the many thousands of experiments that have really been done can be ignored, and attention
can be focused on the one hypothetical experiment. One obvious difference between the two
cases is that in the field geometry waves must first go down and then return upward along
the same path, whereas in the hypothetical experiment they just go up. Travel time in field
experiments could be divided by two. In practice, the data of the field experiments (two-way
time) is analyzed assuming the sound velocity to be half its true value.

3.2 THE KIRCHHOFF IMAGING METHOD

There are two basic tasks to be done: (1) make data from a model, and (2) make models from
data. The latter is often called imaging.

Imagine the earth had just one point reflector at (x0, z0). This reflector explodes at t = 0.
The data at z = 0 is a function of location x and travel time t would be an impulsive signal
along the hyperbolic trajectory t2 = ((x − x0)2+ z2

0)/v2. Imagine the earth had more point
reflectors in it. The data would then be a superposition of more hyperbolic arrivals. A dipping
bed could be represented as points along a line in (x , z). The data from that dipping bed must
be a superposition of many hyperbolic arrivals.

Now let us take the opposite point of view: we have data and we want to compute a model.
This is called “migration”. Conceptually, the simplest approach to migration is also based on
the idea of an impulse response. Suppose we recorded data that was zero everywhere except
at one point (x0, t0). Then the earth model should be a spherical mirror centered at (x0, z0)
because this model produces the required data, namely, no received signal except when the
sender-receiver pair are in the center of the semicircle.

This observation plus the superposition principle suggests an algorithm for making earth
images: For each location (x , t) on the data mesh d(x , t) add in a semicircular mirror of strength
d into the model m(x , z). You need to add in a semicircle for every value of (t , x). Notice again
we use the same equation t2 = (x2+ z2)/v2. This equation is the “conic section”. A slice at
constant t is a circle in (x , z). A slice at constant z is a hyperbola in (x , t).

Examples are shown in Figure 3.2. Points making up a line reflector diffract to a line
reflection, and how points making up a line reflection migrate to a line reflector.

Besides the semicircle superposition migration method, there is another migration method
that produces a similar result conceptually, but it has more desirable results numerically. This
is the “adjoint modeling” idea. In it, we sum the data over a hyperbolic trajectory to find a
value in model space that is located at the apex of the hyperbola. This is also called the “pull”
method of migration.
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Figure 3.2: Left is a superposition of many hyperbolas. The top of each hyperbola lies along a
straight line. That line is like a reflector, but instead of using a continuous line, it is a sequence
of points. Constructive interference gives an apparent reflection off to the side. Right shows
a superposition of semicircles. The bottom of each semicircle lies along a line that could be
the line of an observed plane wave. Instead the plane wave is broken into point arrivals, each
being interpreted as coming from a semicircular mirror. Adding the mirrors yields a more
steeply dipping reflector. krch-dip [NR]
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3.2.1 Tutorial Kirchhoff code

Subroutine kirchslow() below is the best tutorial Kirchhoff migration-modeling program I
could devise. Think of data as a function of traveltime t and the horizontal axis x . Think of
model (or image) as a function of traveltime t and the horizontal axis x . The program copies
information from data space data(it,iy) to model space modl(iz,ix) or vice versa.

Data space and model space each have two axes. Of the four axes, three are indepen-
dent (stated by loops) and the fourth is derived by the circle-hyperbola relation t 2 = τ 2+
x2/v2. Subroutine kirchslow() for adj=0 copies information from model space to data space,
i.e. from the hyperbola top to its flanks. For adj=1, data summed over the hyperbola flanks is
put at the hyperbola top.

# Kirchhoff migration and diffraction. (tutorial, slow)

#

subroutine kirchslow( adj, add, velhalf, t0,dt,dx, modl,nt,nx, data)

integer ix,iy,it,iz,nz, adj, add, nt,nx

real x0,y0,dy,z0,dz,t,x,y,z,hs, velhalf, t0,dt,dx, modl(nt,nx), data(nt,nx)

call adjnull( adj, add, modl,nt*nx, data,nt*nx)

x0=0.; y0=0; dy=dx; z0=t0; dz=dt; nz=nt

do ix= 1, nx { x = x0 + dx * (ix-1)

do iy= 1, nx { y = y0 + dy * (iy-1)

do iz= 1, nz { z = z0 + dz * (iz-1) # z = travel-time depth

hs= (x-y) / velhalf

t = sqrt( z * z + hs * hs )

it = 1.5 + (t-t0) / dt

if( it <= nt )

if( adj == 0 )

data(it,iy) = data(it,iy) + modl(iz,ix)

else

modl(iz,ix) = modl(iz,ix) + data(it,iy)

}}}

return; end

Figure 3.3 shows an example. The model includes dipping beds, syncline, anticline, fault,
unconformity, and buried focus. The result is as expected with a “bow tie” at the buried focus.
On a video screen, I can see hyperbolic events originating from the unconformity and the fault.
At the right edge are a few faint edge artifacts. We could have reduced or eliminated these
edge artifacts if we had extended the model to the sides with some empty space.

3.2.2 Kirchhoff artifacts

Given one of our pair of Kirchoff operations, we can manufacture data from models. With
the other, we try to reconstruct the original model. This is called imaging. It does not work
perfectly. Observed departures from perfection are called “artifacts”.

Reconstructing the earth model with the adjoint option yields the result in Figure 3.4. The
reconstruction generally succeeds but is imperfect in a number of interesting ways. Near the
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Figure 3.3: Left is the model. Right is diffraction to synthetic data. We notice the “syncline”
(depression) turns into a “bow tie” whereas the anticline (bulge up) broadens. krch-kfgood
[NR]

Figure 3.4: Left is the original model. Right is the reconstruction. krch-skmig [NR]
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bottom and right side, the reconstruction fades away, especially where the dips are steeper.
Bottom fading results because in modeling the data we abandoned arrivals after a certain max-
imum time. Thus energy needed to reconstruct dipping beds near the bottom was abandoned.
Likewise along the side we abandoned rays shooting off the frame.

Unlike the example shown here, real data is notorious for producing semicircular arti-
facts. The simplest explanation is that real data has impulsive noises that are unrelated to
primary reflections. Here we have controlled everything fairly well so no such semicircles are
obvious, but on a video screen I can see some semicircles.

3.3 SAMPLING AND ALIASING

Spatial aliasing is a vexing issue of numerical analysis. The Kirchhoff codes shown here do
not work as expected unless the space mesh size is suitably more refined than the time mesh.

Spatial aliasing means insufficient sampling of the data along the space axis. This diffi-
culty is so universal, that all migration methods must consider it.

Data should be sampled at more than two points per wavelength. Otherwise the wave
arrival direction becomes ambiguous. Figure 3.5 shows synthetic data that is sampled with
insufficient density along the x-axis. You can see that the problem becomes more acute at

Figure 3.5: Insufficient spatial sam-
pling of synthetic data. To better per-
ceive the ambiguity of arrival angle,
view the figures at a grazing angle
from the side. krch-alias [NR]

high frequencies and steep dips.

There is no generally-accepted, automatic method for migrating spatially aliased data. In
such cases, human beings may do better than machines, because of their skill in recognizing
true slopes. When the data is adequately sampled however, computer migrations give better
results than manual methods.



Chapter 4

Downward continuation of waves

4.1 DIPPING WAVES

We begin with equations to describe a dipping plane wave in a medium of constant veloc-
ity. Figure 4.1 shows a ray moving down into the earth at an angle θ from the vertical.
Perpendicular to the ray is a wavefront. By elementary geometry the angle between the

Figure 4.1: Downgoing ray and
wavefront. dwnc-front [NR]

z

x
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wavefront and the earth’s surface is also θ . The ray increases its length at a speed v. The
speed that is observable on the earth’s surface is the intercept of the wavefront with the earth’s
surface. This speed, namely v/sinθ , is faster than v. Likewise, the speed of the intercept of
the wavefront and the vertical axis is v/cosθ . A mathematical expression for a straight line
like that shown to be the wavefront in Figure 4.1 is

z = z0 − x tan θ (4.1)

In this expression z0 is the intercept between the wavefront and the vertical axis. To make
the intercept move downward, replace it by the appropriate velocity times time:

z =
v t

cos θ
− x tan θ (4.2)
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Solving for time gives

t(x , z) =
z

v
cos θ +

x

v
sin θ (4.3)

Equation (4.3) tells the time that the wavefront will pass any particular location (x , z). The
expression for a shifted waveform of arbitrary shape is f (t − t0). Using (4.3) to define the
time shift t0 gives an expression for a wavefield that is some waveform moving on a ray.

moving wavefield = f
(

t −
x

v
sin θ −

z

v
cos θ

)

(4.4)

4.1.1 Snell waves

In reflection seismic surveys the velocity contrast between shallowest and deepest reflectors
ordinarily exceeds a factor of two. Thus depth variation of velocity is almost always included
in the analysis of field data. Seismological theory needs to consider waves that are just like
plane waves except that they bend to accommodate the velocity stratification v(z). Figure 4.2
shows this in an idealized geometry: waves radiated from the horizontal flight of a supersonic
airplane. The airplane passes location x at time t0(x) flying horizontally at a constant speed.

speed at depth  z
2

speed at depth  z
1

Figure 4.2: Fast airplane radiating a sound wave into the earth. From the figure you can deduce
that the horizontal speed of the wavefront is the same at depth z1 as it is at depth z2. This leads
(in isotropic media) to Snell’s law. dwnc-airplane [NR]

Imagine an earth of horizontal plane layers. In this model there is nothing to distinguish
any point on the x-axis from any other point on the x-axis. But the seismic velocity varies
from layer to layer. There may be reflections, head waves, shear waves, converted waves,
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anisotropy, and multiple reflections. Whatever the picture is, it moves along with the airplane.
A picture of the wavefronts near the airplane moves along with the airplane. The top of
the picture and the bottom of the picture both move laterally at the same speed even if the
earth velocity increases with depth. If the top and bottom didn’t go at the same speed, the
picture would become distorted, contradicting the presumed symmetry of translation. This
horizontal speed, or rather its inverse ∂t0/∂x , has several names. In practical work it is called
the stepout. In theoretical work it is called the ray parameter. It is very important to note that
∂t0/∂x does not change with depth, even though the seismic velocity does change with depth.
In a constant-velocity medium, the angle of a wave does not change with depth. In a stratified
medium, ∂t0/∂x does not change with depth.

Figure 4.3 illustrates the differential geometry of the wave. The diagram shows that

Figure 4.3: Downgoing fronts and rays in stratified medium v(z). The wavefronts are horizon-
tal translations of one another. dwnc-frontz [NR]

∂t0
∂x

=
sin θ

v
(4.5)

∂t0
∂z

=
cos θ

v
(4.6)

These two equations define two (inverse) speeds. The first is a horizontal speed, measured
along the earth’s surface, called the horizontal phase velocity. The second is a vertical speed,
measurable in a borehole, called the vertical phase velocity. Notice that both these speeds
exceed the velocity v of wave propagation in the medium. Projection of wave fronts onto
coordinate axes gives speeds larger than v, whereas projection of rays onto coordinate axes
gives speeds smaller than v. The inverse of the phase velocities is called the stepout or the
slowness.

Snell’s law relates the angle of a wave in one layer with the angle in another. The con-
stancy of equation (4.5) in depth is really just the statement of Snell’s law. Indeed, we have
just derived Snell’s law. All waves in seismology propagate in a velocity-stratified medium.
So they cannot be called plane waves. But we need a name for waves that are near to plane
waves. A Snell wave will be defined to be the generalization of a plane wave to a stratified
medium v(z). A plane wave that happens to enter a medium of depth-variable velocity v(z)
gets changed into a Snell wave. While a plane wave has an angle of propagation, a Snell wave
has instead a Snell parameter p = ∂t0/∂x .



38 CHAPTER 4. DOWNWARD CONTINUATION OF WAVES

It is noteworthy that Snell’s parameter p = ∂t0/∂x is directly observable at the surface,
whereas neither v nor θ is directly observable. Since p = ∂t0/∂x is not only observable, but
constant in depth, it is customary to use it to eliminate θ from equations (4.5) and (4.6):

∂t0
∂x

=
sin θ

v
= p (4.7)

∂t0
∂z

=
cos θ

v
=

√

1

v(z)2
− p2 (4.8)

4.1.2 Evanescent waves

Suppose the velocity increases to infinity at infinite depth. Then equation (4.8) tells us that
something strange happens when we reach the depth for which p2 equals 1/v(z)2. That is
the depth at which the ray turns horizontal. Below this critical depth the seismic wavefield
damps exponentially with increasing depth. Such waves are called evanescent. For a physical
example of an evanescent wave, forget the airplane and think about a moving bicycle. For a
bicyclist, the slowness p is so large that it dominates 1/v(z)2 for all earth materials. The bicy-
clist does not radiate a wave, but produces a ground deformation that decreases exponentially
into the earth. To radiate a wave, a source must move faster than the material velocity.

4.2 DOWNWARD CONTINUATION

Given a vertically upcoming plane wave at the earth’s surface, say u(t , x , z= 0)= u(t)const(x),
and an assumption that the earth’s velocity is vertically stratified, i.e. v= v(z), we can presume
that the upcoming wave down in the earth is simply time-shifted from what we see on the
surface. (This assumes no multiple reflections.) Time shifting can be represented as a linear
operator in the time domain by representing it as convolution with an impulse function. In
the frequency domain, time shifting is simply multiplying by a complex exponential. This is
expressed as

u(t , z) = u(t , z = 0)∗ δ(t + z/v) (4.9)

U (ω, z) = U (ω, z = 0) e−iωz/v (4.10)

4.2.1 Continuation of a dipping plane wave.

Next consider a plane wave dipping at some angle θ . It is natural to imagine continuing such
a wave back along a ray. Instead, we will continue the wave straight down. This requires the
assumption that the plane wave is a perfect one, namely that the same waveform is observed
at all x . Imagine two sensors in a vertical well bore. They should record the same signal
except for a time shift that depends on the angle of the wave. Notice that the arrival time
difference between sensors at two different depths is greatest for vertically propagating waves,
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and the time difference drops to zero for horizontally propagating waves. So the time shift
1t is v−1 cosθ 1z where θ is the angle between the wavefront and the earth’s surface (or the
angle between the well bore and the ray). Thus an equation to downward continue the wave
is

U (ω,θ , z+1z) = U (ω,θ , z) exp(−iω1t) (4.11)

U (ω,θ , z+1z) = U (ω,θ , z) exp

(

−iω
1z cosθ

v

)

(4.12)

Equation (4.12) is a downward continuation formula for any angle θ . We can generalize the
method to media where the velocity is a function of depth. Evidently we can apply equa-
tion (4.12) for each layer of thickness 1z, and allow the velocity vary with z. This is a well
known approximation that handles the timing correctly but keeps the amplitude constant (since
|eiφ| = 1) when in real life, the amplitude should vary because of reflection and transmission
coefficients. Suffice it to say that in practical earth imaging, this approximation is almost
universally satisfactory.

In a stratified earth, it is customary to eliminate the angle θ which is depth variable, and
change it to the Snell’s parameter p which is constant for all depths. Thus the downward
continuation equation for any Snell’s parameter is

U (ω, p, z+1z) = U (ω, p, z) exp

(

−
iω1z

v(z)

√

1− p2v(z)2

)

(4.13)

It is natural to wonder where in real life we would encounter a Snell wave that we could
downward continue with equation (4.13). The answer is that any wave from real life can
be regarded as a sum of waves propagating in all angles. Thus a field data set should first be
decomposed into Snell waves of all values of p, and then equation (4.13) can be used to down-
ward continue each p, and finally the components for each p could be added. This process
akin to Fourier analysis. We now turn to Fourier analysis as a method of downward continu-
ation which is the same idea but the task of decomposing data into Snell waves becomes the
task of decomposing data into sinusoids along the x-axis.

4.2.2 Downward continuation with Fourier transform

One of the main ideas in Fourier analysis is that an impulse function (a delta function) can be
constructed by the superposition of sinusoids (or complex exponentials). In the study of time
series this construction is used for the impulse response of a filter. In the study of functions of
space, it is used to make a physical point source that can manufacture the downgoing waves
that initialize the reflection seismic experiment. Likewise observed upcoming waves can be
Fourier transformed over t and x .

Recall that a plane wave carrying an arbitrary waveform is given by equation (4.4). Spe-
cializing the arbitrary function to be the real part of the function exp[−iω(t− t0)] gives

moving cosine wave = cos
[

ω

( x

v
sin θ +

z

v
cos θ − t

) ]

(4.14)
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Using Fourier integrals on time functions we encounter the Fourier kernel exp(−iωt). To
use Fourier integrals on the space-axis x the spatial angular frequency must be defined. Since
we will ultimately encounter many space axes (three for shot, three for geophone, also the
midpoint and offset), the convention will be to use a subscript on the letter k to denote the axis
being Fourier transformed. So kx is the angular spatial frequency on the x-axis and exp(ikx x)
is its Fourier kernel. For each axis and Fourier kernel there is the question of the sign before
the i . The sign convention used here is the one used in most physics books, namely, the one
that agrees with equation (4.14). With this convention, a wave moves in the positive direction
along the space axes. Thus the Fourier kernel for (x , z, t)-space will be taken to be

Fourier kernel = ei kx x ei kz z e− iωt = exp[i (kx x + kzz − ωt)] (4.15)

Now for the whistles, bells, and trumpets. Equating (4.14) to the real part of (4.15), phys-
ical angles and velocity are related to Fourier components. The Fourier kernel has the form of
a plane wave. These relations should be memorized!

Angles and Fourier Components

sinθ =
v kx

ω
cosθ =

v kz

ω
(4.16)

A point in (ω,kx ,kz)-space is a plane wave. The one-dimensional Fourier kernel extracts
frequencies. The multi-dimensional Fourier kernel extracts (monochromatic) plane waves.

Equally important is what comes next. Insert the angle definitions into the familiar relation
sin2 θ + cos2 θ = 1. This gives a most important relationship:

k2
x + k2

z =
ω2

v2
(4.17)

The importance of (4.17) is that it enables us to make the distinction between an arbitrary
function and a chaotic function that actually is a wavefield. Imagine any function u(t , x , z).
Fourier transform it to U (ω,kx ,kz). Look in the (ω,kx ,kz)-volume for any nonvanishing values
of U . You will have a wavefield if and only if all nonvanishing U have coordinates that satisfy
(4.17). Even better, in practice the (t , x)-dependence at z = 0 is usually known, but the z-
dependence is not. Then the z-dependence is found by assuming U is a wavefield, so the
z-dependence is inferred from (4.17).

Equation (4.17) also achieves fame as the “dispersion relation of the scalar wave equa-
tion,” a topic developed more fully in IEI.

4.2.3 Linking Snell waves to Fourier transforms

To link Snell waves to Fourier transforms we merge equations (4.5) and (4.6) with equa-
tions (4.16). To do this, move with the wave by setting the phase to be constant, say zero, so
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0= i (kx x+ kzz−ωt) and form the derivative of t by x and by z.

kx

ω
=

∂t0
∂x

=
sin θ

v
= p (4.18)

kz

ω
=

∂t0
∂z

=
cos θ

v
=

√

1− p2v2

v
(4.19)

The basic downward continuation equation for upcoming waves in Fourier space follows
from equation (4.13) by eliminating p by using equation (4.18). For analysis of real seis-
mic data we introduce a minus sign because equation (4.19) refers to downgoing waves and
observed data is made from up-coming waves.

U (ω,kx , z+1z) = U (ω,kx , z) exp



−
iω1z

v

√

1−
v2k2

x

ω2



 (4.20)

In Fourier space we delay signals by multiplying by eiω1t , analogously, equation (4.20) says
we downward continue signals into the earth by multiplying by eikz1z . Multiplication in the
Fourier domain means convolution in time which can be depicted by the engineering diagram
in Figure 4.4.

Figure 4.4: Downward continuation of a downgoing wavefield. dwnc-inout [NR]

Downward continuation is a product relationship in both the ω-domain and the kx -domain.
Thus it is a convolution in both time and x . What does the filter look like in the time and space
domain? It turns out like a cone, that is, it is roughly an impulse function of x 2+ z2− v2t2.
More precisely, it is the Huygens secondary wave source that was exemplified by ocean waves
entering a gap through a storm barrier. Adding up the response of multiple gaps in the barrier
would be convolution over x .

Migration is more than downward continuation of wave fields. You start with a surface
data set d(t , x) and downward continue it to all depth z getting d(t , x , z). Then you have the
earth image by selecting the wavefield at time t = 0 by the exploding reflector concept.

In practice, the downward continuation is done in the frequency domain. Recall to find the
zero frequency component F(ω = 0) we sum over all time t . Interchanging time domain and
frequency domain, we realize that to find the exploding reflector signal at zero time f (t = 0)
we can simply sum over all frequencies ω.

A nuisance of using Fourier transforms in migration and modeling is that spaces become
periodic. This is demonstrated in Figure 4.5. Anywhere an event exits the frame at a side,
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top, or bottom boundary, the event immediately emerges on the opposite side. In practice, the
unwelcome effect of periodicity is generally ameliorated by padding zeros around the data
and the model.

Figure 4.5: A reflectivity model on the left and synthetic data using a Fourier method on the
right. dwnc-diag [ER]

4.3 DOWNWARD CONTINUATION AND IMAGING

By now you are probably wondering what good are downward-continued seismic waves. The
answer is that once we know the wavefields inside the earth we can do many seismic data
analysis tasks. The obvious one is migration. We can do it better than Kirchhoff. Given the
upcoming wave at the earth surface Wave(t , x , z= 0), pushing it down to all z in the earth gives
us Wave(t , x , z). The exploding reflector idea is that the source is on the reflectors at t = 0.
Thus we construct images with

Image (x , z) = Wave (t = 0, x , z) (4.21)

There is a curious symmetry between the input and output of the imaging process:

observations model

z = 0

all t

migration
−→
←−

diffraction

t = 0

all z

Diffraction is sometimes regarded as the natural process that creates and enlarges hyper-
boloids. Migration is the computer process that does the reverse.
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Compared to the Kirchhoff method, downward continuation methods offer several ad-
vantages: (1) we handle v(z) media exactly without calculating any ray paths; (2) we get the
correct amplitude versus angle; (3) we automatically include various phase shifts and wave
phenomena; (4) interpolation and aliasing artifacts are much reduced.
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Chapter 5

Waves in layered media

The gravitational stratification of the earth arouses our interest in layered media. There are
many kinds of waves that can exist. Here we study waves without assuming knowledge of
physics and differential equations. We use only assumptions about the general principles
of delay, continuity, and energy conservation. The results are directly applicable to sound
waves, water waves, light in thin films, normal incident elastic waves of both pressure and
shear type, electromagnetic waves, transmission lines, and electrical ladder networks. This
chapter seems to concern itself only with vertically incident waves. Actually, with certain
precautions, the theory here applies to the set of all waves with a fixed Snell parameter
p = sinθ/v.

A lengthier version of this chapter appears in chapter 8 in my book Fundamental of
Geophysical Data Processing (FGDP) (available on the web). The lengthier web version
also presents the solution to the more practical problem, to deduce the reflection coefficients
given the observed waves.

5.1 REFLECTION AND TRANSMISSION COEFFICIENTS

Consider two halfspaces (deep ocean on top of earth, for example). If a wave of unit amplitude
is incident onto the boundary, there is a transmitted wave of amplitude t and a reflected
wave of amplitude c as depicted in Figure 5.1. A very simple relationship exists between t
and c. The wave amplitudes have a physical meaning of something like pressure, material
displacement, traction, or tangential electric or magnetic fields. These physical variables must
be the same value on either side of the boundary. This means the transmitted wave must equal
the sum of the incident plus reflected waves.

t = 1+ c (5.1)

t ′ = 1+ c′ (5.2)

The reflection coefficient c may be positive or negative so the transmission coefficient t may
be greater than unity. It may seem surprising that t can be greater than unity. This does not
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Figure 5.1: Waves incident, reflected
c, and transmitted t at an interface.
fgdp8-8-1 [NR]

violate any physical laws. At the seashore we see waves approaching the shore and they get
larger as they arrive. Energy is not determined by wave height alone. Energy is equal to the
squared wave amplitude multiplied by a proportionality factor Y depending upon the medium
in which the wave is measured. If we denote the factor of the top medium by Y1 and the bottom
by Y2, then the statement that the energy before incidence equals the energy after incidence is

Y212 = Y2c2+Y1t2 (5.3)

solving for c leads us to

0 = −Y2+Y2c2+Y1(1+ c)2

0 = Y2(c−1)+Y1(1+ c)

0 = (Y2+Y1)c+ (Y1−Y2)

c =
Y2−Y1

Y2+Y1
(5.4)

In acoustics the up- and downgoing wave variables may be normalized to either pressure or
velocity. When they measure velocity, the scale factor multiplying velocity squared is called
the impedance I . When they measure pressure, the scale factor is called the admittance Y .

The wave c′ which reflects when energy is incident from the other side is obtained from
(5.4) if Y1 and Y2 are interchanged. Thus

c′ = −c (5.5)

A perfectly reflecting interface is one which does not allow energy through. This comes
about not only when t = 0 or c=−1, but also when t = 2 or c =+1. To see this, note that on
the left in Figure 5.1

Energy transmitted

Energy incident
=

Y1t2

Y212
=

Y1

Y2

(

1+
Y2−Y1

Y1+Y2

)2

=
Y1

Y2

(
2 Y2

Y1+Y2

)2

=
4 Y1 Y2

(Y1+Y2)2
(5.6)
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Equation (5.6) says that 100 percent of the incident energy is transmitted when Y1 = Y2, but
the percentage of transmission is very small when Y1 and Y2 are very different.

Ordinarily there are two kinds of variables used to describe waves, and both of these can be
continuous at a material discontinuity. One is a scalar like pressure, tension, voltage, potential,
stress, or temperature. The other is a vector which we use the vertical component. Examples
of the latter are velocity, stretch, electric current, dislacement, and heat flow. Occasionally a
wave variable is a tensor. When a boundary condition is the vanishing of one of the motion
components, then the boundary is often said to be rigid. When it is the pressure or potential
which vanishes, then the boundary is often said to be free. Rigid and free boundaries reflect
waves with unit magnitude reflection coefficients.

A goal here is to establish fundamental mathematical properties of waves in layers while
minimizing specialization to any particular physical type of waves. Each physical problem has
its own differential equations. These equations are Fourier transformed over x and y leading to
coupled ordinary differential equations in depth z. This analytical process is explained in more
detail in FGDP. The next step is an eigenvector analysis that relates the physical variables to
our abstract up- and down-going waves U and D. In order to better understand boundary
conditions we will examine one concrete example, acoustic waves.

In acoustics we have pressure P and vertical component of parcel velocity W (not to
be confused with wave velocity v). The acoustic pressure P is the sum of U and D. Vertical
velocity W obviously changes sign when the z axis changes sign (interchange of up and down)
and that accounts for the minus sign in the definition of W . (The eigenvector analysis provides
us with the scaling factor Y .)

P = D+U (5.7)

W = (D−U )Y (5.8)

These definitions are easily inverted.

D =
P+W/Y

2
(5.9)

U =
P−W/Y

2
(5.10)

For sound waves in the ocean, the sea surface is nearly a perfect reflector because of the
great contrast between air and water. If this interface is idealized to a perfect reflector, then it is
a free surface. Since the pressure vanishes on a free surface, we have D = −U at the surface
so the reflection coefficient is −1 as shown in Figure 5.2. In principle we should measure
velocity W at the water surface. In practice, we generally measure pressure P a few meters
below the free surface.

The pressure normally vanishes at the sea surface, but if we wish to initiate an impulsive
disturbance, the pressure may momentarily take on some other value, say 1. This 1 denotes
a constant function of frequency which is an impulsive function of time at t = 0. Ensuing
waves are depicted in Figure 5.3 where the upcoming wave −R(Z ) is a consequence of both
the downgoing 1 and the downgoing+R(Z ). The vertical component of velocity W of the sea
surface due to the source and to the resulting acoustic wave is D−U = 1+2R(Z ).
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Figure 5.2: A waveform R(Z ) reflect-
ing at the surface of the sea. Pressure
equal to U + D vanishes at the sur-
face. The vertical velocity of the sur-
face is proportional to D−U . Theo-
retically, waves are observed by mea-
suring W at the surface. fgdp8-8-2
[NR]

Figure 5.3: An initial downgoing dis-
turbance 1 results in a later upgoing
reflected wave −R(Z ) which reflects
back down as R(Z ). The pressure at
the surface is D+U = 1+R−R = 1.
fgdp8-8-3 [NR]

EXERCISES:

1 In a certain application continuity is expressed by saying that D−U is the same on either
side of the interface. This implies that t = 1− c. Derive an equation like (5.4) for the
reflection coefficient in terms of the admittance Y .

2 What are reflection and transmission coefficients in terms of the impedance I? (Clear
fractions from your result.)

3 From the principle of energy conservation we showed that c′=−c. It may also be deduced
from time reversal. To do this, copy Figure 5.1 with arrows reversed. Scale and linearly
superpose various figures in an attempt to create a situation where a figure like the right-
hand side of Figure 5.1 has −c′ for the reflected wave. (HINT: Draw arrows at normal
incidence.)

5.2 THE LAYER MATRIX

Consider a layer with waves reverberating in it as shown in Figure 5.4. Let the delay operator
Z refer to the time delay of a travel path across the layer and back again. The wave seen
above the layer is an infinite sequence that is expressible as a simple denominator (because
1+ X + X2+ X3+·· · = 1/(1− X )).

t2t1[1+ c1c
′
2 Z + (c1c

′
2)2 Z2+·· ·] =

t2t1
1− c1c

′
2 Z

It is no accident that the infinite series may be summed. We will soon see that for n layers
the waves, which are of infinite duration, may be expressed as simple polynomials of degree
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Figure 5.4: Some rays corresponding
to resonance in a layer. fgdp8-8-4
[NR]

n. We consider many layers and the general problem of determining waves given reflection
coefficients.

Equation (5.11) relates to Figure 5.5 and shows how from the waves U and D ′ we extrap-
olate into the future to get U ′ and D.

Figure 5.5: Waves incident and re-
flected from an interface. fgdp8-8-5
[NR]

U ′ = tU + c′D′

D = cU + t ′D′ (5.11)

Let us rearrange (5.11) to get U ′ and D′ on the right and U and D on the left to get an equation
which extrapolates from the primed medium to the unprimed medium. We get

−tU = −U ′+ c′D′

−cU +D = t ′D′

Arrange to matrix form

[

−t 0
−c 1

] [

U
D

]

=
[

−1 c′

0 t ′

] [

U
D

]′

Premultiply by the inverse of the left-hand matrix

[

U
D

]

=
1

−t

[

1 0
c −t

] [

−1 c′

0 t ′

] [

U
D

]′

=
1

−t

[

−1 c′

−c cc′− t t ′

] [

U
D

]′
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getting a result we want, an equation to extrapolate the infinitesimal distance from the bottom
of one layer to the top of the next.

[

U
D

]

=
1

t

[

1 c
c 1

] [

U
D

]′
(5.12)

Now we consider a layered medium where each layer has the same travel-time thickness
[Goupillaud medium]. Presumably, any continuously variable medium can be approximated
this way. Examine the definitions in the layered medium in Figure 5.6. For this arrangement

Figure 5.6: Goupillaud-type layered
medium (layers have equal travel
time). fgdp8-8-6 [NR]

of layers, (5.12) may be written

[

U
D

]

k+1

=
1

tk

[

1 ck

ck 1

] [

U
D

]′

k

Let Z = eiωT where T , the two-way travel time, equals the data sampling interval. Clearly,
multiplication by

√
Z is equivalent to delaying a function by T/2, the travel time across a

layer. This gives in the kth layer a relation between primed and unprimed waves.

[

U
D

]′

k

=
[

1/
√

Z 0
0

√
Z

] [

U
D

]

k

(5.13)

Inserting (5.13) into (5.12) we get a layer matrix that takes us from the top of one layer to the
top of the next deeper one.

[

U
D

]

k+1

=
1

tk

[

1 ck

ck 1

] [

1/
√

Z 0
0

√
Z

] [

U
D

]

k

=
1

tk

[

1/
√

Z ck
√

Z
ck/
√

Z
√

Z

] [

U
D

]

k
[

U
D

]

k+1

=
1
√

Ztk

[

1 ck Z
ck Z

] [

U
D

]

k

(5.14)
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5.3 ENERGY FLUX

If there is energy flowing through a stack of layers, there should be the same energy flow
through the kth layer as through the (k+1)st layer. Otherwise, there would be an energy sink
or source at the layer boundary. Let us guess that the net upward flow of energy (energy flux)
at any frequency ω in the (k+1)st layer is given by

flux(ω) = Yk

[

U (Z )Ū

(
1

Z

)

−D(Z )D̄

(
1

Z

)]

k+1
(5.15)

Inserting equation (5.14) into equation (5.15) (and using a few simplifications all spelled out
in FGDP) we deduce the principle that the energy flux across any layer matches that across
the neighboring layer.

Yk+1

[

U

(
1

Z

)

U (Z )−D

(
1

Z

)

D(Z )

]

k+1
= Yk

[

U

(
1

Z

)

U (Z )−D

(
1

Z

)

D(Z )

]

k
(5.16)

Since the flux is the same in any two adjacent layers, it must be the same in all the layers. This
energy flux theorem leads quickly to some sweeping statements about the waveforms scattered
from layered structures.

Figure 5.7: The reflection seismol-
ogy geometry. The person sends an
impulse down. The earth sends back
−R(Z ). Since the surface is perfectly
reflective, it sends R(Z ) back down.
Escaping from the bottom is a wave
E(Z ) heading to infinity. fgdp8-8-7
[NR]

Figure 5.7 shows the basic geometry of reflection seismology. Applying the energy flux
theorem to this geometry we may say that the energy flux in the top layer equals that in the
lower halfspace so

Y1

{

R

(
1

Z

)

R(Z )−
[

1+ R

(
1

Z

)]

[1+ R(Z )]

}

= −Yk E

(
1

Z

)

E(Z )

or

1+ R

(
1

Z

)

+ R(Z ) =
Yk

Y1
E

(
1

Z

)

E(Z ) (5.17)

This result is amazing. Nothing in life led me to suspect it before I found it. It says, if we were
to observe the escaping wave E(Z ), we could by autocorrelation construct the waveform
seen at the surface. This result has no practical use, but a slightly different arrangement does.
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Figure 5.8: Earthquake seismology
geometry. An impulse 1 is incident
from below. The waveform X (Z )
is incident upon the free surface and
is reflected back down. The wave-
form P(Z ) scatters back into earth.
fgdp8-E8-3-5 [NR]

The escaping wave E(Z ) turns out to be the same as the earthquake wave X (Z ) in Fig-
ure 5.8. This can be shown algebraically (see exercises) or deduced as a consequence of the
reciprocity principle (the idea that interchanging source and receiver location yields the same
response). Notice that the incident earthquake “1” need not be an impulsive wave; it only
need have the autocorrelation of an impulsive wave. This conclusion leads to the remarkable
hypothesis that the autocorrelation of natural noises (microseism) gives reflection seismo-
grams. This concept has proven useful in solar seismology, but a variety of practical factors
(principally spatial distribution of stations) has limited its utility on the earth so far.

A more obvious result applies to the earthquake seismology geometry in Figure 5.8. Ap-
plying the energy flux theorem to this geometry we obtain

Y1

[

X

(
1

Z

)

X (Z )− X

(
1

Z

)

X (Z )

]

= Yk

[

1− P(Z )P

(
1

Z

)]

or

1 = P(Z )P

(
1

Z

)

(5.18)

The interpretation of the result is that the backscattered waveform P(Z ) has the form of an
all-pass filter. (An all-pass filter has a constant energy spectrum and an arbitrary phase spec-
trum.) This result may have been anticipated on physical grounds since all the energy which
is incident is ultimately reflected without attenuation; thus the only thing which can happen is
that there will be frequency-dependent delay.

5.4 GETTING THE WAVES FROM THE REFLECTION COEFFICIENTS

An important result of the last section was the development of a “layer matrix" (5.14) that is,
a matrix which can be used to extrapolate waves observed in one layer to the waves observed
in the next layer. This process may be continued indefinitely. To see how to extrapolate from
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layer 1 to layer 3 substitute (5.14) with k = 1 into (5.14) with k = 2, obtaining
[

U
D

]

3

=
1
√

Zt2

[

1 Zc2

c2 Z

]
1
√

Zt1

[

1 Zc1

c1 Z

] [

U
D

]

1

=
1

√
Z

2
t1t2

[

1+ Zc1c2 Zc1+ Z2c2

c2+ Zc1 Zc1c2+ Z2

] [

U
D

]

1

(5.19)

Inspection of this product suggests the general form for a product of k layer matrices. We’ll
call it a multilayer matrix.

[

U
D

]

k+1

=
1

√
Z

k ∏k
j=1 tj

[

F(Z ) Z kG
( 1

Z

)

G(Z ) Z k F
(

1
Z

)

]
[

U
D

]

1

(5.20)

Starting from computer programs that add and multiply polynomials by manipulating their
coefficients, it is easy enough to write a computer code to recursively build up the F(Z ) and
G(Z ) polynomials by adding a layer at a time starting from F(Z )= 1 and G(Z )= c1.

5.4.1 Layers between two halfspaces

Let a stack of layers be sandwiched in between two halfspaces Figure 5.9. An impulse is

Figure 5.9: Waves incident, reflected, and transmitted from a stack of layers between two
half-spaces. fgdp8-8-9 [NR]

incident from below. The backscattered wave is called C(Z ) and the transmitted wave is
called T (Z ). We take these waves and load them into the multilayer equation (5.20).

[

1
C(Z )

]

=
1

√
Z

k
5t

[

F(Z ) Z kG
(

1
Z

)

G(Z ) Z k F
(

1
Z

)

]
[

T (Z )
0

]

(5.21)

We may solve the first of (5.21) for the transmitted wave T (Z )

T (Z ) =
√

Z
k
5t

F(Z )
(5.22)
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and introduce the result back into the second of (5.21) to obtain the backscattered wave

C(Z ) =
G(Z )T (Z )
√

Z
k
5t

=
G(Z )

F(Z )
(5.23)

Let us be clear we understand the meaning of the solutions T (Z ) and C(Z ). They can be
regarded two ways, either as functions of frequency Z = eiω, or the polynomial coefficients
(after dividing out the denominator F(Z )) as waveforms, as functions of time. Physical inter-
pretations of F(Z ) and G(Z ) are on the right side of Figure 5.9.

5.4.2 Reflection seismology geometry

Identify the up and downgoing waves in the reflection seismology geometry in Figure 5.7 and
load these waves into the multilayer matrix boundaries, equation (5.20).

[

0
E(Z )

]

=
1

√
Z

k
5t

[

F(Z ) Z kG
( 1

Z

)

G(Z ) Z k F
( 1

Z

)

]
[

−R
1+ R

]

(5.24)

From the first equation we may solve for R(Z )

R(Z ) = +
Z kG(1/Z )

F(Z )− Z k G(1/Z )
(5.25)

Given R(Z ), the second equation in the set (5.24) gives us E(Z ). Calculation of the wave
fields on the earthquake geometry of Figure 5.8 is reserved for an exercise.

5.4.3 Getting reflection coefficients from the waves

The remainder of chapter 8 in FGDP shows how the algebraic techniques developed here can
be solved in reverse. Given various waves such as the reflection data R(Z ) or the earthquake
data X (Z ) we may deduce the reflection sequence (c1,c2,c3, · · ·). This appears to be the solu-
tion to the practical problem. It turns out however, for various complicated reasons, that this
does not seem to be a methodology in widespread use in the seismic exploration business.

EXERCISES:

1 In Figure 5.9 let c1 = 1
2 , c2 = −1

2 , and c3 = 1
3 . What are the polynomial ratios T (Z ) and

C(Z )?

2 For a simple interface, we had the simple relations t = 1+ c, t ′ = 1+ c′, and c = −c′.
What sort of analogous relations can you find for the generalized interface of Figure 5.9?
[For example, show 1−T (Z )T ′(1/Z )=C(Z )C(1/Z ) which is analogous to 1− t t ′= c2.]

3 Show that T (Z ) and T ′(Z ) are the same waveforms within a scale factor. Deduce that
many different stacks of layers may have the same T (Z ).
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4 Consider the earth to be modeled by layers over a halfspace. Let an impulse be incident
from below (Figure 5.8). Given F(Z ) and G(Z ), elements of the product of the layer
matrices, solve for X and for P . Check your answer by showing that P(Z ) P̄(1/Z ) = 1.
How is X related to E? This relation illustrates the principle of reciprocity which says
source and receiver may be interchanged.

5 Show that 1+ R(1/Z )+ R(Z ) = (scale factor)X (Z )X (1/Z ), which shows that one may
autocorrelate the transmission seismogram to get the reflection seismogram.

6 Refer to Figure 5.10. Calculate R′ from R.

Figure 5.10: Stripping off the surface
layer. fgdp8-E8-3-7 [NR]
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Chapter 6

Multidimensional deconvolution examples

Deconvolution is a well-known process with deep and complex theoretical underpinnings.
Here we’ll begin with a superficial view of the theory and then jump to some examples in
two-dimensional space.

One definition of science that distinguishes it from other views of the human condition is
that science is those studies that offer demonstrable predictive power. That direction brings us
too far afield. Never-the-less, science can be formalized as the construction of predicted data
that can be compared with observed data. This requires a theory. Oft times, we really don’t
have a theory that we have much confidence in. Fortunately, there is an “all-purpose” theory
of statistical signal processing that often allows us some predictability. Basically, it goes like
this.

We have some data. From this data we can estimate a spectrum. By assuming the spectrum
remains constant in time or space (stationary assumption), we have a certain predictive power.
How much power this amounts to in practice depends on lots of things we won’t examine in
this brief introduction beyond saying that it depends a lot on both the observed data and the
validity of the stationary assumption.

It often happens that the item of interest is not the prediction, but the error in the prediction.
For example, we might be given the history of the stock market upon which to estimate the
spectrum. Then we might be asked to predict (for each moment in time), the market price
tomorrow based on today’s price and all previous prices. The display that is often of interest
is the error in prediction, did we overshoot or undershoot? Theoretically, it turns out that the
prediction error is spectally white. If it had any other spectrum, that would imply suboptimum
prediction. This leads to the simplest definition of prediction error, the definition we will
adopt here. (The examples here come from one of my other books (GEE). These examples are
based not on spectra, but on actual prediction error, but we will not examine the distinction, a
distinction that is small compared to the essential ideas discussed here.)

57
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6.1 2-D MODELING AND DECON

This chapter shows many examples to give some feeling for multidimensional spectra, decon-
volution, and modeling. In each of Figures 6.2-6.7 we see three panels. The left panel is a
two-dimensional data set which is an image of something that might be familiar. Let this data
d(x , y) have Fourier Transform D(kx ,ky).

Define noise n(x , y) to be a plane of random numbers. In Fourier space, these numbers

are N (kx ,ky). Now compute an amplitude spectrum by smoothing A =
√

N (kx ,ky)N (kx ,ky).
Using this noise we compute the synthetic data in the center frame. It has the 2-D spectrum
N × A which is the same 2-D amplitude spectrum of the given data but a different phase
spectrum.

For each illustration, notice the similarities and differences between the real data and the
synthetic data.

The rightmost frame has Fourier Transform D/A, the original data with its spectrum di-
vided out. What we see is called “deconvolved data”. It is also called “prediction error”.
Theoretically, its output is “white”. Actually its spectrum is only approximately white be-
cause the spectrum is smoothed before it is divided out. (The name prediction error derives
from a simple model that can be applied to all data. This simple model is that all data can be
modeled as white noise into a filter where the filter has a spectrum that is a smoothed version
of that of the data.)

Figure 6.1: Synthetic granite matches the training image quite well. The prediction error is
large at crystal grain boundaries and almost seems to outline the grains. mda-granite [NR]

6.2 DATA RESTORATION

Figures 6.8-6.11 demonstrate the success and lack of success of a process to replace missing
data by data of the correct spectrum. Although real data is always better than synthetic data,
especially synthetic data produced with a primitive theory involving only spectra, the fact is
that synthetic data is often better than zero data.
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Figure 6.2: Synthetic wood grain has too little white. This is because of the nonsymmetric
brightness histogram of natural wood. Again, the deconvolution looks random as expected.
mda-wood [NR]

Figure 6.3: A banker’s suit (left). A student’s suit (center). My suit (right). The deconvolution
is large where the weave changes direction (herring bone spine). mda-herr [NR]

Figure 6.4: Basket weave. The synthetic data fails to segregate the two dips into a checker-
board pattern. The deconvolution looks structured. mda-basket [NR]
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Figure 6.5: Brick. Synthetic brick edges are everywhere and do not enclose blocks containing
a fixed color. PEF output highlights the mortar. mda-brick [NR]

Figure 6.6: Ridges. A spectacular failure of the stationarity assumption. All dips are present
but in different locations. The ridges have been sharpened by the deconvolution. mda-ridges
[NR]
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Figure 6.7: Gulf of Mexico seismic section, modeled, and deconvolved. Do you see any
drilling prospects in the synthetic data? The deconvolution suppresses the strong horizontal
layering giving a better view of the hyperbolas. mda-WGstack [NR]

In geophysical parameter fitting (inversion) you would not want to fit parameters to syn-
thetic data, but in imaging processes like migration, synthetic data is better than zero data.
This would be true for Figure 6.11.
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Figure 6.8: The herringbone texture is a patchwork of two textures. We notice that data
missing from the hole tends to fill with the texture at the edge of the hole. The spine of the
herring fish, however, is not modeled at all. mda-herr-hole-fill [NR,M]

Figure 6.9: The brick texture has a mortar part (both vertical and horizontal joins) and a
brick surface part. These three parts enter the empty area but do not end where they should.
mda-brick-hole-fill [NR,M]

Figure 6.10: The theoretical model is a poor fit to the ridge data since the prediction must
try to match ridges of all possible orientations. This data requires a broader theory which
incorporates the possibility of nonstationarity (space variable slope). mda-ridges-hole-fill
[NR,M]
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Figure 6.11: Filling the missing seismic data. The imaging process known as “migration”
would suffer diffraction artifacts in the gapped data that it would not suffer on the restored
data. mda-WGstack-hole-fill [NR,M]
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Chapter 7

Resolution and random signals

1The accuracy of measurements on observed signals is limited not only by practical realities,
but also by certain fundamental principles. The most famous example included in this chap-
ter is the time-bandwidth product in Fourier-transformation theory, called the “uncertainty
principle.”

Observed signals often look random and are often modeled by filtered random numbers.
In this chapter we will see many examples of signals built from random numbers and discover
how the nomenclature of statistics applies to them. Fundamentally, this chapter characterizes
“resolution,” resolution of frequency and arrival time, and the statistical resolution of signal
amplitude and power as functions of time and frequency.

We will see
√

n popping up everywhere. This
√

n enters our discussion when we look
at spectra of signals built from random numbers. Also, signals that are theoretically uncorre-
lated generally appear to be weakly correlated at a level of 1/

√
n, where n is the number of

independent points in the signal.

Measures of resolution (which are variously called variances, tolerances, uncertainties,
bandwidths, durations, spreads, rise times, spans, etc.) often interact with one another, so
that experimental change to reduce one must necessarily increase another or some combination
of the others. In this chapter we examine basic cases where such conflicting interactions occur.

To avoid confusion I introduce the unusual notation 3 where 1 is commonly used. Notice
that the letter 3 resembles the letter 1, and 3 connotes length without being confused with
wavelength. Lengths on the time and frequency axes are defined as follows:

dt , d f mesh intervals in time and frequency
1t , 1 f mesh intervals in time and frequency
1T 1F extent of time and frequency axis
3T , 3F time duration and spectral bandwidth of a signal

1A more detailed and analytic version of this chapter is on the web at http://sep.stanford.edu/sep/prof/ in
my book, Earth Soundings Analysis: Processing versus Inversion.
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There is no mathematically tractable and universally acceptable definition for time span
3T and spectral bandwidth 3F . A variety of defining equations are easy to write, and many
are in general use. The main idea is that the time span 3T or the frequency span 3F should
be able to include most of the energy but need not contain it all. The time duration of a damped
exponential function is infinite if by duration we mean the span of nonzero function values.
However, for practical purposes the time span is generally defined as the time required for
the amplitude to decay to e−1 of its original value. For many functions the span is defined
by the span between points on the time or frequency axis where the curve (or its envelope)
drops to half of the maximum value. Strange as it may sound, there are certain concepts about
the behavior of 3T and 3F that seem appropriate for “all” mathematical choices of their
definitions, yet these concepts can be proven only for special choices.

7.1 TIME-FREQUENCY RESOLUTION

A consequence of Fourier transforms being built from eiωt is that narrowing a function in
one domain widens it in the other domain. Scaling ω implies inverse scaling of t to keep the
product ωt constant. A pure sinusoidal wave has a clearly defined frequency, but it is spread
over the infinitely long time axis. At the other extreme is an impulse function (often called a
delta function), which is nicely compressed to a point on the time axis but contains a mixture
of all frequencies. In this section we examine how the width of a function in one domain
relates to that in the other. By the end of the section, we will formalize this into an inequality:

For any signal, the time duration 3T and the spectral bandwidth 3F are related by

3F 3T ≥ 1 (7.1)

This inequality is the uncertainty principle.

Since we are unable to find a precise and convenient analysis for the definitions of 3F and
3T , the inequality (7.1) is not strictly true. What is important is that rough equality in (7.1) is
observed for many simple functions, but for others the inequality can be extremely slack (far
from equal). Strong inequality arises from all-pass filters. A phase shifting (all-pass) filter
leaves the spectrum unchanged, and hence 3F unchanged, but it can spread out the signal
arbitrarily, increasing 3T arbitrarily. Some people say that the Gaussian function has the
minimum product in (7.1), but that really depends on a particular method of measuring 3F
and 3T .

7.1.1 A misinterpretation of the uncertainty principle

It is easy to misunderstand the uncertainty principle. An oversimplification of it is to say
that it is “impossible to know the frequency at any particular time.” This oversimplification
leads us to think about a truncated sinusoid, such as in Figure 7.1. We know the frequency
exactly, so 3F seems zero, whereas 3T is finite, and this seems to violate (7.1). But what the
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figure shows is that the truncation of the sinusoid has broadened the frequency band. More
particularly, the impulse function in the frequency domain has been convolved by the sinc
function that is the Fourier transform of the truncating rectangle function.

Figure 7.1: Windowed sinusoid and its Fourier transform. rnd-windcos [NR]

7.1.2 Measuring the time-bandwidth product

Now examine Figure 7.2, which contains sampled Gaussian functions and their Fourier trans-
forms. The Fourier transform of a Gaussian is well known to be another Gaussian function,
as the plot confirms. I adjusted the width of each Gaussian so that the widths would be about
equal in both domains. The Gaussians were sampled at various values of n, increasing in steps
by a factor of 4. You can measure the width dropping by a factor of 2 at each step. For those
of you who have already learned about the uncertainty principle, it may seem paradoxical that
the function’s width is dropping in both time and frequency domains.

Figure 7.2: Sampled Gaussian func-
tions and their Fourier transforms for
vectors of length n = 16, 64, and 256.
rnd-uncertain [NR]

The resolution of the paradox is that the physical length of the time axis or the frequency
axis is varying as we change n (even though the plot length is scaled to a constant on the page).
We need to associate a physical mesh with the computational mesh. In real physical space as
well as in Fourier transform space, the object remains a constant size as the mesh is refined.

Let us read from Figure 7.2 values for the widths 3F and 3T . On the top row, where
N = 16, I pick a width of about 4 points, and this seems to include about 90% of the area
under the function. For this signal (with the widths roughly equal in both domains) it seems
that 3T =

√
Ndt and 3F =

√
Nd f . Using the relation between dt and d f found in equation

(1.37), which says that dt d f = 1/N , the product becomes 3T3F = 1.

We could also confirm the inequality (7.1) by considering simple functions for which we
know the analytic transforms—for example, an impulse function in time. Then 3T = dt ,
and the Fourier transform occupies the entire frequency band from minus to plus the Nyquist
frequency ±.5/dt Hz, i.e., 3F = 1/dt . Thus again, the product is 3T3F = 1.
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7.1.3 The uncertainty principle in physics

The inequality (7.1) derives the name “uncertainty principle” from its interpretation in quan-
tum mechanics. Observations of subatomic particles show they behave like waves with spatial
frequency proportional to particle momentum. The classical laws of mechanics enable predic-
tion of the future of a mechanical system by extrapolation from the currently known position
and momentum. But because of the wave nature of matter, with momentum proportional to
spatial frequency, such prediction requires simultaneous knowledge of both the location and
the spatial frequency of the wave. This is impossible, as we see from (7.1); hence the word
“uncertainty.”

7.1.4 Gabor’s proof of the uncertainty principle

Although it is easy to verify the uncertainty principle in many special cases, it is not easy to
deduce it. The difficulty begins from finding a definition of the width of a function that leads
to a tractable analysis. One possible definition uses a second moment; that is, 3T is defined
by

(3T )2 =
∫

t2 b(t)2 dt
∫

b(t)2 dt
(7.2)

The spectral bandwidth 3F is defined likewise. With these definitions, Dennis Gabor pre-
pared a widely reproduced proof. I will omit his proof here; it is not an easy proof; it is widely
available; and the definition (7.2) seems inappropriate for a function we often use, the sinc
function, i.e., the FT of a step function. Since the sinc function drops off as t−1, its width 3T
defined with (7.2) is infinity, which is unlike the more human measure of width, the distance
to the first axis crossing.

7.1.5 My rise-time form of the uncertainty principle

A similar and possibly more basic concept than the product of time and frequency spreads is
the relationship between spectral bandwidth and the “rise time” of a system-response func-
tion. The rise time 3T of a system response is defined as follows: when we kick a physical
system with an impulse function, it usually responds rapidly, rising to some maximum level,
and then dropping off more slowly toward zero. The quantitative value of the rise time is gen-
erally, and somewhat arbitrarily, taken to be the span between the time of excitation and the
time at which the system response is more than halfway up to its maximum.

“Tightness" (nearness to equality) in the inequality (7.1) is associated with minimum
phase. “Slackness" (remoteness from equality) in the (7.1) would occur if a filter with an
additional all-pass component were used. Slackness could also be caused by a decay time that
is more rapid than the rise time, or by other combinations of rises and falls, such as random
combinations. Physical systems generally respond rapidly compared to the rate at which they
later decay. Focusing our attention on such systems, we can now seek to derive the inequality
(7.1) applied to rise time and bandwidth.
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The first step is to choose a definition for rise time. I have found a tractable definition of
rise time to be

1

3T
=

∫∞
0

1
t b(t)2 dt

∫∞
0 b(t)2 dt

(7.3)

where b(t) is the response function under consideration. Equation (7.3) defines 3T by the first
negative moment. Since this is unfamiliar, consider two examples. Taking b(t) to be a step
function, recognize that the numerator integral diverges, giving the desired 3T = 0 rise time.
As a further example, take b(t)2 to grow linearly from zero to t0 and then vanish. Then the rise
time 3T is t0/2, again reasonable. It is curious that b(t) could grow as

√
t , which rises with

infinite slope at t = 0, and not cause 3T to be pushed to zero.

Proof

We omit the details of the proof of the rise time form of the uncertainty principle which are
found in PVI and mention instead a few insights found along with the proof. The “slack” in
the uncertainty principle relates to comparing the duration of a signal 3T to the duration of
its autocorrelation 3Tauto. Generally speaking, it is easy to find a long signal that has short
autocorrelation. Just take an arbitrary short signal and convolve it using a lengthy all-pass
filter. Conversely, we cannot get a long autocorrelation function from a short signal. A good
example is the autocorrelation of a rectangle function, which is a triangle. The triangle appears
to be twice as long, but considering that the triangle tapers down, it is reasonable to assert that
the 3T ’s are the same. Thus, we conclude that

3Tauto ≤ 3T (7.4)

From this inequality may be proven the inequality in the uncertainty relation

3T 3F ≥ 1 (7.5)

7.2 FT OF RANDOM NUMBERS

Many real signals are complicated and barely comprehensible. In experimental work, we
commonly transform such data. To better understand what this means, it will be worthwhile
to examine signals made from random numbers.

Figure 7.3 shows discrete Fourier transforms of random numbers. The basic conclusion
to be drawn from this figure is that transforms of random numbers look like more random
numbers. A random series containing all frequencies is called a “white-noise" series, because
the color white is made from roughly equal amounts of all colors. Any series made by in-
dependently chosen random numbers is said to be an “independent" series. An independent
series must be white, but a white series need not be independent. Figure 7.4 shows Fourier
transforms of random numbers surrounded by zeros (or zero padded). Since all the vectors of
random numbers are the same length (each has 1024 points, including both sides of the even



70 CHAPTER 7. RESOLUTION AND RANDOM SIGNALS

Figure 7.3: Fourier cosine transforms of vectors containing random numbers. N is the number
of components in the vector. rnd-nrand [NR]

Figure 7.4: Zero-padded random numbers and their FTs. rnd-pad [NR]
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function with the even part (513 points) shown), the transforms are also the same length. The
top signal has less randomness than the second trace (16 random numbers versus 64). Thus
the top FT is smoother than the lower ones. Although I introduced this figure as if the left
panel were the time domain and the right panel were frequency, you are free to think of it the
opposite way. This is more clear. With the left-hand signal being a frequency function, where
higher frequencies are present, the right-hand signal oscillates faster.

7.2.1 Bandlimited noise

Figure 7.5 shows bursts of 25 random numbers at various shifts, and their Fourier transforms.
You can think of either side of the figure as the time domain and the other side as the frequency
domain. I like to think of the left side as the Fourier domain and the right side as the signals.
Then the signals seem to be sinusoids of a constant frequency (called the “center" frequency)
and of an amplitude that is modulated at a slower rate (called the “beat” frequency). Observe
that the center frequency is related to the location of the random bursts, and that the beat
frequency is related to the bandwidth of the noise burst.

Figure 7.5: Shifted, zero-padded random numbers in bursts of 25 numbers. Left and right
related by cosine transform. rnd-shift [NR]

You can also think of Figure 7.5 as having one-sided frequency functions on the left, and
the right side as being the real part of the signal. The real parts are cosinelike, whereas the
imaginary parts (not shown) are sinelike and have the same envelope function as the cosinelike
part.

You might have noticed that the bottom plot in Figure 7.5, which has Nyquist-frequency
modulated beats, seems to have about twice as many beats as the two plots above it. This can
be explained as an end effect. The noise burst near the Nyquist frequency is really twice as
wide as shown, because it is mirrored about the Nyquist frequency into negative frequencies.
Likewise, the top figure is not modulated at all, but the signal itself has a frequency that
matches the beats on the bottom figure.
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7.3 TIME-STATISTICAL RESOLUTION

If we flipped a fair coin 1000 times, it is unlikely that we would get exactly 500 heads and
500 tails. More likely the number of heads would lie somewhere between 400 and 600. Or
would it lie in another range? The theoretical value, called the “mean" or the “expectation,"
is 500. The value from our experiment in actually flipping a fair coin is called the “sample
mean.” How much difference 3m should we expect between the sample mean m̂ and the true
mean m? Both the coin flips x and our sample mean m̂ are random variables. Our 1000-flip
experiment could be repeated many times and would typically give a different m̂ each time.
This concept will be formalized in section 11.3.5. as the “variance of the sample mean,”
which is the expected squared difference between the true mean and the mean of our sample.

The problem of estimating the statistical parameters of a time series, such as its mean,
also appears in seismic processing. Effectively, we deal with seismic traces of finite duration,
extracted from infinite sequences whose parameters can only be estimated from the finite set
of values available in these seismic traces. Since the knowledge of these parameters, such as
signal-to-noise ratio, can play an important role during the processing, it can be useful not
only to estimate them, but also to have an idea of the error made in this estimation.

7.3.1 Ensemble

The “true value” of the mean could be defined as the mean that results when the coin is flipped
n times, when n is conceived of as going to infinity. A more convenient definition of true value
is that the experiment is imagined as having been done separately under identical conditions by
an infinite number of people (an “ensemble”). The ensemble may seem a strange construction;
nonetheless, much literature in statistics and the natural sciences uses the ensemble idea. Let
us say that the ensemble is defined by a probability as a function of time. Then the ensemble
idea enables us to define a time-variable mean (the sum of the values found by the ensemble
weighted by the probabilities) for, for example, coins that change with time.

7.3.2 Expectation and variance

A conceptual average over the ensemble, or expectation, is denoted by the symbol E. The
index for summation over the ensemble is never shown explicitly; every random variable is
presumed to have one. Thus, the true mean at time t is defined as mx (t) = E(xt ). The mean
can vary with time:

mx (t) = E[x(t)] (7.6)

The “variance” σ 2 is defined to be the power after the mean is removed, i.e.,

σx (t)2 = E[(x(t)−mx (t))2] (7.7)

(Conventionally, σ 2 is referred to as the variance, and σ is called the “standard deviation.”)
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For notational convenience, it is customary to write m(t), σ (t), and x(t) simply as m, σ ,
and xt , using the verbal context to specify whether m and σ are time-variable or constant. For
example, the standard deviation of the seismic amplitudes on a seismic trace before correc-
tion of spherical divergence decreases with time, since these amplitudes are expected to be
“globally” smaller as time goes on.

When manipulating algebraic expressions, remember that the symbol E behaves like a
summation sign, namely,

E ≡ (lim N →∞)
1

N

N
∑

1

(7.8)

Note that the summation index is not given, since the sum is over the ensemble, not time. To
get some practice with the expectation symbol E, we can reduce equation (7.7):

σ 2
x = E[(xt −mx )2] = E(x2

t ) − 2mxE(xt )+m2
x = E(x2

t ) − m2
x (7.9)

Equation (7.9) says that the energy is the variance plus the squared mean.

7.3.3 Probability and independence

A random variable x can be described by a probability p(x) that the amplitude x will be
drawn. In real life we almost never know the probability function, but theoretically, if we do
know it, we can compute the mean value using

m = E(x) =
∫

x p(x)dx (7.10)

“Statistical independence” is a property of two or more random numbers. It means the
samples are drawn independently, so they are unrelated to each other. In terms of probability
functions, the independence of random variables x and y is expressed by

p(x , y) = p(x) p(y) (7.11)

From these, it is easy to show that

E(xy) = E(x)E(y) (7.12)

7.3.4 Sample mean

Now let xt be a time series made up of identically distributed random numbers: m x and σx

do not depend on time. Let us also suppose that they are independently chosen; this means in
particular that for any different times t and s (t 6= s):

E(xt xs) = E(xt )E(xs) (7.13)
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Suppose we have a sample of n points of xt and are trying to determine the value of mx . We
could make an estimate m̂x of the mean mx with the formula

m̂x =
1

n

n
∑

t=1

xt (7.14)

A somewhat more elaborate method of estimating the mean would be to take a weighted
average. Let wt define a set of weights normalized so that

∑

wt = 1 (7.15)

With these weights, the more elaborate estimate m̂ of the mean is

m̂x =
∑

wt xt (7.16)

Actually (7.14) is just a special case of (7.16); in (7.14) the weights are wt = 1/n.

Further, the weights could be convolved on the random time series, to compute local aver-
ages of this time series, thus smoothing it. The weights are simply a filter response where the
filter coefficients happen to be positive and cluster together. Figure 7.6 shows an example: a
random walk function with itself smoothed locally.

Figure 7.6: Random walk and itself smoothed (and shifted downward). rnd-walk [NR]

7.3.5 Variance of the sample mean

Ordinarily I like to squeeze all the equations out of my books, but I include them here because
they show why random fluctions so often involve the square root of the number of variables.
When you hear, for example, that a survey of the voters has a 3% accuracy, you can deduce
that the surveyors spoke with about 1000= 1/.032 voters.

Formally now, we calculate how far the estimated mean m̂ is likely to be from the true
mean m for a sample of length n. This difference is the variance of the sample mean and is
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given by (3m)2 = σ 2
m̂ , where

σ 2
m̂ = E[(m̂−m)2] (7.17)

= E
{

[(
∑

wt xt )−m]2
}

(7.18)

Now use the fact that m = m
∑

wt =
∑

wt m:

σ 2
m̂ = E







[

∑

t

wt (xt −m)

]2





(7.19)

= E

{[

∑

t

wt (xt −m)

] [

∑

s

ws(xs −m)

]}

(7.20)

= E

[

∑

t

∑

s

wtws(xt −m)(xs −m)

]

(7.21)

The step from (7.20) to (7.21) follows because

(a1+a2+a3) (a1+a2+a3) = sum of





a1a1 a1a2 a1a3

a2a1 a2a2 a2a3

a3a1 a3a2 a3a3



 (7.22)

The expectation symbol E can be regarded as another summation, which can be done after, as
well as before, the sums on t and s, so

σ 2
m̂ =

∑

t

∑

s

wt ws E [(xt −m)(xs −m)] (7.23)

If t 6= s, since xt and xs are independent of each other, the expectation E[(xt−m)(xs−m)] will
vanish. If s = t , then the expectation is the variance defined by (7.7). Expressing the result in
terms of the Kronecker delta, δts (which equals unity if t = s, and vanishes otherwise) gives

σ 2
m̂ =

∑

t

∑

s

wt ws σ 2
x δts (7.24)

σ 2
m̂ =

∑

t

w2
t σ 2

x (7.25)

σm̂ = σx

√
∑

t

w2
t (7.26)

For n weights, each of size 1/n, the standard deviation of the sample mean is

3mx = σm̂x = σx

√
√
√
√

n
∑

t=1

(
1

n

)2

=
σx√

n
(7.27)

This is the most important property of random numbers that is not intuitively obvious. In-
formally, the result (7.27) says this: given a sum y of terms with random polarity, whose
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theoretical mean is zero, then
y = ±1±1±1 · · ·

︸ ︷︷ ︸

n terms

(7.28)

The sum y is a random variable whose standard deviation is σy =
√

n =3y. An experimenter
who does not know the mean is zero will report that the mean of y is E(y)= ŷ±3y, where ŷ
is the experimental value.

If we are trying to estimate the mean of a random series that has a time-variable mean,
then we face a basic dilemma. Including many numbers in the sum in order to make 3m small
conflicts with the possibility of seeing m t change during the measurement.

The “variance of the sample variance” arises in many contexts. Suppose we want to
measure the storminess of the ocean. We measure water level as a function of time and subtract
the mean. The storminess is the variance about the mean. We measure the storminess in one
minute and call it a sample storminess. We compare it to other minutes and other locations
and we find that they are not all the same. To characterize these differences, we need the
variance of the sample variance σ 2

σ̂ 2 . Some of these quantities can be computed theoretically,
but the computations become very cluttered and dependent on assumptions that may not be
valid in practice, such as that the random variables are independently drawn and that they
have a Gaussian probability function. Since we have such powerful computers, we might be
better off ignoring the theory and remembering the basic principle that a function of random
numbers is also a random number. We can use simulation to estimate the function’s mean
and variance. Basically we are always faced with the same dilemma: if we want to have
an accurate estimation of the variance, we need a large number of samples, which limits the
possibility of measuring a time-varying variance.

EXERCISES:

1 Suppose the mean of a sample of random numbers is estimated by a triangle weighting
function, i.e.,

m̂ = s
n

∑

i=0

(n− i ) xi

Find the scale factor s so that E(m̂)= m. Calculate 3m. Define a reasonable 3T . Exam-
ine the uncertainty relation.

2 A random series xt with a possibly time-variable mean may have the mean estimated by
the feedback equation

m̂t = (1− ε)m̂t−1+bxt

a. Express m̂t as a function of xt , xt−1, . . . , and not m̂t−1.

b. What is 3T , the effective averaging time?

c. Find the scale factor b so that if m t = m, then E(m̂t )= m.

d. Compute the random error 3m=
√

E(m̂−m)2. (HINT: 3m goes to σ
√

ε/2 as ε→ 0.)

e. What is (3m)23T in this case?
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7.4 SPECTRAL FLUCTUATIONS

Recall the basic model of time-series analysis, namely, random numbers passing through a
filter. A sample of input, filter, and output amplitude spectra is shown in Figure 7.7. From the

Figure 7.7: Random numbers into a
filter. Top is a spectrum of random
numbers. Middle is the spectrum of a
filter. Bottom is the spectrum of filter
output. rnd-filter [NR]

spectrum of the output we can guess the spectrum of the filter, but the figure shows there are
some limitations in our ability to do so. Let us analyze this formally.

Observations of sea level over a long period of time can be summarized in terms of a few
statistical averages, such as the mean height m and the variance σ 2. Another important kind of
statistical average for use on geophysical time series is the “power spectrum." Many mathe-
matical models explain only statistical averages of data and not the data itself. To recognize
certain pitfalls and understand certain fundamental limitations on work with power spectra,
we first consider the idealized example of random numbers.

Figure 7.8: Autocorrelation and spectra of random numbers. rnd-auto [NR]

Figure 7.8 shows a signal that is a burst of noise; its Fourier transform, and the transform
squared; and its inverse transform, the autocorrelation. Here the FT squared is the same as the
more usual FT times its complex conjugate—because the noise-burst signal is even, its FT is
real.
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Notice that the autocorrelation has a big spike at zero lag. This spike represents the
correlation of the random numbers with themselves. The other lags are much smaller. They
represent the correlation of the noise burst with itself shifted. Theoretically, the noise burst is
not correlated with itself shifted: these small fluctuations result from the finite extent of the
noise sample.

Imagine many copies of Figure 7.8. Ensemble averaging would amount to adding these
other autocorrelations or, equivalently, adding these other spectra. The fluctuations aside the
central lobe of the autocorrelation would be destroyed by ensemble averaging, and the fluctua-
tions in the spectrum would be smoothed out. The expectation of the autocorrelation is that
it is an impulse at zero lag. The expectation of the spectrum is that it is a constant, namely,

E[Ŝ(Z )] = S(Z ) = const (7.29)

7.4.1 Paradox: large n vs. the ensemble average

Now for the paradox. Imagine n→∞ in Figure 7.8. Will we see the same limit as results
from the ensemble average? Here are two contradictory points of view:

• For increasing n, the fluctuations on the nonzero autocorrelation lags get smaller, so the
autocorrelation should tend to an impulse function. Its Fourier transform, the spectrum,
should tend to a constant.

• On the other hand, for increasing n, as in Figure 7.3, the spectrum does not get any
smoother, because the FTs should still look like random noise.

We will see that the first idea contains a false assumption. The autocorrelation does tend to
an impulse, but the fuzz around the sides cannot be ignored—although the fuzz tends to zero
amplitude, it also tends to infinite extent, and the product of zero with infinity here tends to
have the same energy as the central impulse.

To examine this issue further, let us discover how these autocorrelations decrease to zero
with n (the number of samples). Figure 7.9 shows the autocorrelation samples as a function of
n in steps of n increasing by factors of four. Thus

√
n increases by factors of two. Each auto-

correlation in the figure was normalized at zero lag. We see the sample variance for nonzero
lags of the autocorrelation dropping off as

√
n. We also observe that the ratios between the

values for the first nonzero lags and the value at lag zero roughly fit 1/
√

n. Notice also that
the fluctuations drop off with lag. The drop-off goes to zero at a lag equal to the sample
length, because the number of terms in the autocorrelation diminishes to zero at that lag. A
first impression is that the autocorrelation fits a triangular envelope. More careful inspection,
however, shows that the triangle bulges upward at wide offsets, or large values of k (this is
slightly clearer in Figure 7.8). Each of these observations has an analytic explanation found in
PVI.
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Figure 7.9: Autocorrelation as a function of number of data points. The random-noise-series
(even) lengths are 60, 240, 960. rnd-fluct [NR]

7.4.2 An example of the bandwidth/reliability tradeoff

Letting n go to infinity does not take us to the expectation Ŝ = σ 2. The problem is, as we
increase n, we increase the frequency resolution but not the statistical resolution (i.e., the
fluctuation around Ŝ). To increase the statistical resolution, we need to simulate ensemble
averaging. There are two ways to do this:

1. Take the sample of n points and break it into k equal-length segments of n/k points
each. Compute an S(ω) for each segment and then average all k of the S(ω) together.
The variance of the average spectrum is equal to the variance of each spectrum (σ 2

x )
divided by the number of segments, and so the fluctuation is substantially reduced.

2. Form S(ω) from the n-point sample. Replace each of the n/2 independent amplitudes
by an average over its k nearest neighbors. This could also be done by tapering the
autocorrelation.

The second method is illustrated in Figure 7.10. This figure shows a noise burst of 240 points.
Since the signal is even, the burst is effectively 480 points wide, so the autocorrelation is 480
points from center to end: the number of samples will be the same for all cases. The spectrum
is very rough. Multiplying the autocorrelation by a triangle function effectively smooths the
spectrum by a sinc-squared function, thus reducing the spectral resolution (1/3F). Notice
that 3F is equal here to the width of the sinc-squared function, which is inversely proportional
to the length of the triangle (3Tauto).

However, the first taper takes the autocorrelation width from 480 lags to 120 lags. Thus
the spectral fluctuations 3S should drop by a factor of 2, since the count of terms sk in S(ω) is
reduced to 120 lags. The width of the next weighted autocorrelation width is dropped from 480
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Figure 7.10: Spectral smoothing by tapering the autocorrelation. 3T is constant and specified
on the top row. Successive rows show 3F increasing while 3S decreases. The width of a
superimposed box roughly gives 3F , and its height roughly gives 3S. rnd-taper [NR]

to 30 lags. Spectral roughness should consequently drop by another factor of 2. In all cases,
the average spectrum is unchanged, since the first lag of the autocorrelations is unchanged.
This implies a reduction in the relative spectral fluctuation proportional to the square root of
the length of the triangle (

√
3Tauto).

Our conclusion follows:

The trade-off among resolutions of time, frequency, and spectral amplitude is

3F 3T

(
3S

S

)2

> 1 (7.30)

7.4.3 Spectral estimation

In Figure 7.10 we did not care about spectral resolution, since we knew theoretically that the
spectrum was white. But in practice we do not have such foreknowledge. Indeed, the random
factors we deal with in nature rarely are white. A widely used model for naturally occurring
random functions, such as microseism, or sometimes reflection seismograms, is white noise
put into a filter. The spectra for an example of this type are shown in Figure 7.7. We can
see that smoothing the envelope of the power spectrum of the output gives an estimate of the
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spectrum of the filter. But we also see that the estimate may need even more smoothing.

7.5 CROSSCORRELATION AND COHERENCY

With two time series we can see how crosscorrelation and coherency are related.

7.5.1 Correlation

“Correlation" is a concept similar to cosine. A cosine measures the angle between two vec-
tors. It is given by the dot product of the two vectors divided by their magnitudes:

c =
(x ·y)

√
(x ·x)(y ·y)

(7.31)

This is the sample normalized correlation.

Formally, the normalized correlation is defined using x and y as zero-mean, scalar, ran-
dom variables instead of sample vectors. The summation is thus an expectation instead of a
dot product:

c =
E(xy)

√

E(x2)E(y2)
(7.32)

A practical difficulty arises when the ensemble averaging is simulated over a sample. The
problem occurs with small samples and is most dramatically illustrated when we deal with a
sample of only one element. Then the sample correlation is

ĉ =
xy

|x| |y|
= ±1 (7.33)

regardless of what value the random number x or the random number y should take. For any
n, the sample correlation ĉ scatters away from zero. Such scatter is called “bias." The topic of
bias and variance of coherency estimates is a complicated one, but a rule of thumb seems to be
to expect bias and variance of ĉ of about 1/

√
n for samples of size n. Bias, no doubt, accounts

for many false “discoveries,” since cause-and-effect is often inferred from correlation.

7.5.2 Coherency

The concept of “coherency” in time-series analysis is analogous to correlation. Taking xt and
yt to be time series, we find that they may have a mutual relationship which could depend on
time delay, scaling, or even filtering. For example, perhaps Y (Z )= F(Z )X (Z )+N (Z ), where
F(Z ) is a filter and nt is unrelated noise. The generalization of the correlation concept is to
define coherency by

C =
E

[

X
( 1

Z

)

Y (Z )
]

√

E(X X )E(Y Y )
(7.34)
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Correlation is a real scalar. Coherency is a complex function of frequency; it expresses
the frequency dependence of correlation. In forming an estimate of coherency, it is always
essential to simulate ensemble averaging. Note that if the ensemble averaging were to be
omitted, the coherency (squared) calculation would give

|C|2 = CC =
(XY )(XY )

(X X )(Y Y )
= 1 (7.35)

which states that the coherency squared is unity, independent of the data. Because correlation
scatters away from zero, we find that coherency squared is biased away from zero.
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stepout, 37
subroutine
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wave equation, 40
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