Final Exam: Sample Questions

Math 128A Spring 2002
Sergey Fomel

May 14, 2002

Your Name: __

- Time: 180 minutes.
- Answer ALL questions.
- Please read carefully every question before answering it.
- If you need extra space, use the other side of the page.
1. (X points) Consider the iteration
\[c_{k+1} = c_k + \alpha f(c_k) , \]
where \(\alpha \) is a constant that does not change with \(k \), and \(f(x) \in C^\infty \).

 a. What is the condition on \(\alpha \) for this iteration to converge to a solution of \(f(x) = 0 \)?

 b. What is the convergence rate?

 c. What value of \(\alpha \) is required for the quadratic convergence rate?
2. (X points) Neville’s interpolation algorithm

\begin{verbatim}
NEVILLE(x, x_1, x_2, \ldots, x_n, f_1, f_2, \ldots, f_n)
 1 for i ← 1, 2, \ldots, n
 2 do
 3 N_{i,1} ← f_i
 4 d_i ← x - x_i
 5 for k ← 2, 3, \ldots, n
 6 do
 7 for i ← k, k + 1, \ldots, n
 8 do
 9 N_{i,k} ← N_{i,k-1} + d_i (N_{i,k-1} - N_{i-1,k-1}) / (x_i - x_{i-k+1})
10 return N_{n,n}
\end{verbatim}

assumes that the data points \{x_1, f_1\}, \{x_2, f_2\}, \ldots, \{x_n, f_n\} are known in advance. Modify the algorithm so that it processes the input data point by point.

Hint: loop by rows in the outer loop.
3. (X points) A two-dimensional function $f(x, y)$ is defined on a triangulated mesh.

a. Find an approximation of the form

$$f(x, y) \approx f(A) \phi_A(x, y) + f(B) \phi_B(x, y) + f(C) \phi_C(x, y),$$

where A, B, C are the corners of a triangle, the point $\{x, y\}$ is inside the triangle, and the functions $\phi_A(x, y), \phi_B(x, y),$ and $\phi_C(x, y)$ are linear in x and y.

Hint: The area of triangle ABC is equal to

$$S_{ABC} = \frac{1}{2} (x_A y_B + x_B y_C + x_C y_A - x_B y_A - x_C y_B - x_A y_C).$$
b. Find an approximation of the first partial derivatives of the form

\[
\frac{\partial f}{\partial x} \approx \alpha_A f(A) + \alpha_B f(B) + \alpha_C f(C) .
\]

\[
\frac{\partial f}{\partial y} \approx \beta_A f(A) + \beta_B f(B) + \beta_C f(C) .
\]
4. (X points) Find the first three polynomials orthogonal on the interval [0, 1] with respect to the inner product

\[
\langle f, g \rangle = \int_{0}^{1} \frac{f(x) g(x)}{\sqrt{4 - (x + 1)^2}} \, dx .
\]
5. (X points)

a. Derive a quadrature rule of the form

\[\int_{a}^{b} f(x) \, dx = \alpha f\left(\frac{2a + b}{3}\right) + \beta f\left(\frac{a + 2b}{3}\right). \]
b. Determine its error assuming $f(x) \in C^2$.
6. (X points) What is the result of approximating the integral

\[\int_0^1 x^2 \, dx \]

with the composite trapezoidal rule defined on \(n \) equal subintervals? Your answer should be in closed form and should not include the sum symbol.
8. (X points) Consider the initial-value problem

\[
\begin{align*}
y''(x) &= -[y'(x)]^2 x \\
y(-1) &= 0 \\
y'(-1) &= 1
\end{align*}
\]

Using the step-size \(h = 1 \), find the output of one step of the midpoint method followed by one step of the second-order Adams-Bashforth method.
9. (X points)

a. How many floating-point operations are required to multiply $n \times n$ matrices A and B?

b. How many floating-point operations are required to compute the matrix $C = uu^T$, where u is a column vector of length n?

c. How many floating-point operations are required to compute the product AC, where A is $n \times n$ matrix, and C is the matrix defined above?
10. (X points) Find the inverse of the matrix

\[A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & -2 \\ -2 & 1 & 1 \end{bmatrix} \]

using Gaussian elimination. Show all steps of the computation.