
Stanford Exploration Project, Report 100, April 20, 1999, pages 293–314

Robust and stable velocity analysis using the Huber
function

Antoine Guitton and William W. Symes1

keywords: inversion, velocity, noise, nonlinear

ABSTRACT

The Huber function is one of several robust error measures which interpolates between
smooth (l2) treatment of small residuals and robust (l1) treatment of large residuals.
Since the Huber function is differentiable, it may be minimized reliably with a standard
gradient-based optimizer. Tests with a linear inverse problem for velocity analysis,
using both synthetic and field data, suggest that (1) the Huber function gives far more
robust model estimates than does least squares, (2) its minimization using a standard
quasi-Newton method is comparable in computational cost to least squares estimation
using conjugate gradient iteration, and (3) the result of Huber data fitting is stable over
a wide range of choices for l2 l1 threshold and total number of quasi-Newton steps.

INTRODUCTION

Robust error measures such as the l1 norm have found a number of uses in geophysics. As
measures of data misfit, they show considerably less sensitivity to large measurement errors
than does the mean square (l2) measure. Since geophysical inverse problems are generally
ill-posed, relatively noise insensitive misfit measures can yield far more stable estimates of
Earth parameters than does the mean square measure (Claerbout and Muir , 1973; Taylor
et al. , 1979; Chapman and Barrodale, 1983; Scales and Gersztenkorn, 1988; Scales et al. ,
1988). This insensitivity to large noise has a statistical interpretation: robust measures are
related to long-tailed density functions in the same way that the mean square is related to
the (short-tailed) Gaussian (Tarantola, 1987).

A simple choice of robust measure is the l1 norm: denoting the residual (misfit) com-
ponents by ri i 1 N , l1 norm of the residual vector is N

i 1 ri . This function is
not smooth: it is singular where any residual component vanishes. As a result, numerical
minimization is difficult. Various approaches based for example on a linear programming
viewpoint (Barrodale and Roberts, 1980) or iterative smoothing (Scales et al. , 1988), have
been used with success but require considerable tuning. Moreover, the singularity implies

1email: antoine@sep.stanford.edu, symes@caam.rice.edu

293

294 Guitton & Symes SEP–100

that small residuals are “taken as seriously” as large residuals, which may not be appropriate
in all circumstances.

These drawbacks of the l1 norm have led to various proposals which combine robust
treatment of large residuals with Gaussian treatment of small residuals. In the work reported
here, we use a hybrid l1-l2 error measure proposed by Huber (Huber, 1973):

M r
r2

2 0 r
r 2 r

We will call N
i 1 M ri the Huber misfit function , or Huber function for short (Figure 1).

Note that the Huber function is smooth near zero residual, and weights small residuals by
mean square. It is reasonable to suppose that the Huber function is easier to minimize than
l1 while still robust against large residuals.

This paper describes the application of the Huber misfit function to velocity analysis.
Estimation of RMS velocity (or slowness) can be posed as a linear inverse problem through
the velocity transform described in the next section. Definition of the misfit via the Huber
function (or any other robust error measure) results in a nonlinear optimization problem
for the velocity model. This nonlinearity would seem to compare unfavorably with the
least squares (l2) treatment of the same problem, which leads to a linear system (the normal
equation) and so can be solved by efficient iterative methods such as conjugate gradient. We
show that use of an appropriate nonlinear optimization method gives a Huber-based solution
with comparable efficiency to that of conjugate gradient least squares solution. Thus the
noise rejection properties of the Huber misfit function come at no appreciable premium
in computational effort. In the work reported here we have used a version of the Limited

Figure 1: Error measure proposed by
Huber (Huber, 1973). The upper part
above is the l1 norm while the lower
part is the l2 norm. antoine1-huber
[NR]

1 1

22

l

l l

M(r)

r

l

Memory BFGS algorithm (Nocedal, 1980) as implemented in the Hilbert Class Library
(Gockenbach et al. , 1999). Other nonlinear iterative optimizers could be used; we have
solved the same examples with nonlinear conjugate gradient methods (Fletcher, 1980) and
obtained comparable results. We note that specially adapted Huber minimizers have been
suggested (Ekblom and Madsen, 1989). One of our questions in beginning this work was
whether a standard quasi-Newton method, as opposed to a special solver, would perform
satisfactorily in Huber estimation.

SEP–100 The Huber function 295

The second section of the paper explains the velocity transform and formulates a linear
inverse problem for velocity analysis. The third and fourth sections present synthetic and
field data examples.

APPLICATION TO VELOCITY ESTIMATION

The velocity domain representation of seismic data is an alternative to the standard CMP
presentation. Transformation of CMP data into the velocity domain (producing a velocity
model or panel of the data) exhibits clearly the moveout inherent in the data and therefore,
forms a convenient basis for velocity analysis as a linear inverse problem. The velocity
transform A from the model space (velocity domain) into the data space (CMP gathers)
stretches the velocities back in the offset plane (superposition of hyperbolas) whereas the
adjoint operation (A) squeezes the data (summation over hyperbolas):

A HS

with

Sm t x
s

t
s x m s

t2 s2x2

A S H

with

S d s
x

s x d t x
t 2 s2x2

where s x is a weighting function, H is a filter that we define later. A is related to
the velocity stack as defined by Taner and Koehler (1969).

The problem is: given a CMP gather can we find a velocity panel which synthesizes it
via A? In equations, given data d , we want to solve for model m:

Am d

A simple way to solve this problem is to find a model m that minimizes the mean square
misfit

Am d Am d

This optimization problem is equivalent to the linear system (“normal equations”)

A Am A d

This system is easy to solve if A A I , i.e if A is close to unitary: then m A d. In
general, A is far from an unitary operator for many reasons. However, the choice of a
weighting function compensates to some extent for geometrical spreading and other effects
(Claerbout and Black, 1997):

s x
1

2 s2x2 1 2 2 s2x2
xs

296 Guitton & Symes SEP–100

The summation in the velocity space boosts low frequencies. Claerbout and Black (1997)
suggest that a good choice of filter H is a half derivative operator (i). These choices for
H and s x bring A closer to being an unitary operator.

Since the data is noisy, the modeling operator is not unitary and the numbers of equations
and unknowns may be large, an iterative data-fitting approach seems reasonable:

minm E Am d

where m is the model, d , the data we want to fit, A the modeling operator, and E a misfit
measurement function we have to choose. We have already presented one possibility, namely
that E is the l2 norm (least squares inversion). A convenient iterative method in this case is
to solve the normal equation using conjugate gradient iteration. We refer to this approach as
“CG” or “l2 ”. An alternative approach is to take for E the Huber function introduced in the
first section. With this Huber misfit measure, the velocity transform inverse problem is no
longer equivalent to a linear system. We choose to solve it using a general-purpose nonlinear
optimizer, as mentioned above, rather than one of several special-purpose methods invented
for this type of problem. We refer to this approach as”Huber” or the “Huber solver”.

The next two parts of this paper compare the performance of the CG algorithm to Huber
in the velocity analysis application.

SYNTHETIC DATA TESTS

To compare the Huber function with the least squares measure, we generate a synthetic
CMP gather (Figure 2) that we perturb by introducing: (1) missing traces, (2) a low velocity
aliased plane wave, and (3) some sparsely distributed spiky noisy events. These data sets
constitute the input for the iterative schemes (0 01 for each result). The panels display
the model space on the left (after 20 iterations), and the data space on the right. The bottom
right panels show the modeling of the last velocity result. All these results (Figures 4, 6,
8) prove the following: outcome of the Huber solver is insensitive to spiky events, like a
pure l1 norm misfit function. The outcome of the missing data problem was probably less
predictable, but again, Huber copes more easily with the inconsistency introduced in the
data.

SEP–100 The Huber function 297

Figure 2: Left: ideal veloc-
ity panel. Right: data model.
antoine1-datamodel [CR]

FIELD DATA EXAMPLES

In this section we compare the CG to the Huber function for two CMP gathers. We divide this
section in three: first, we show the inverted velocity panels and modeled data obtained for
both the CG and Huber solver. The second and third section address the stability problems
and computational efficiency.

Velocity analysis on field data

Figure 9 displays different interesting features: the first CMP (A) shows low velocity events
(ground roll or guided waves) and time shifts near offset 2km while the second example
(B) shows bad traces with high amplitudes. The same clip has been applied to each figure.
Note that the offsets are probably wrong since we have reflected waves traveling at about
10 km/s for Input A! The velocities are computed after 5 iterations only, and 0 001 for
both gathers. Figure10 shows the velocity analysis using Huber and CG on a first data set.
It appears that the CG result has artifacts at times above 1.5 sec. We see some horizontal
stripes that make reliable interpretation difficult. In contrast, the Huber result displays a
focused velocity corridor. Some low frequency events do appear in the upper right part of the
panel but they do not interfere with the main fairway. It is interesting to notice that Huber
separates the low-frequency low-velocity noise from the signal whereas the l2 measure
spreads it along the velocity axis. If we now model those results back into the data-space,
we obtain Figure11. We notice that CG does not do a good job in estimating the upper part.
Furthermore, some high frequency noise appears. The Huber result however looks close to
the original data. In particular, the upper part is well estimated and no harmful artifacts are
visible. The anomalous high amplitude first trace does not affect the final results either.

Let’s now look at the results for Input B. Figure12 show the strength of the Huber
solver compared to CG. The CG velocity panel shows horizontal stripes in the velocity scan
making any reliable picking quite impossible. The Huber velocity panel displays a focused
bended corridor with low noise amplitude. If we now model those results back into the
data-space, we get Figure13. Those sections support the same observations as previous, and

298 Guitton & Symes SEP–100

Figure 3: CG result with missing data. antoine1-vel-miss2g [CR]

Figure 4: Huber result with missing data. antoine1-vel-miss3h [CR]

SEP–100 The Huber function 299

Figure 5: CG result with a slow plane wave. antoine1-vel-surf1g [CR]

Figure 6: Huber result with a slow plane wave. antoine1-vel-surf2h [CR]

300 Guitton & Symes SEP–100

Figure 7: CG result with spiky events. antoine1-vel-spiky1g [CR]

Figure 8: Huber result with spiky events. antoine1-vel-spiky2h [CR]

SEP–100 The Huber function 301

Figure 9: Input data- 2 CMP gathers. antoine1-datamodelreal [NR]

302 Guitton & Symes SEP–100

Figure 10: Velocity panel using CG and Huber solver: the left panel shows some stability
problems above 1.5 sec. The Huber solver result shows a focused velocity corridor on the
left and some artifacts on the right. Those artifacts are well separated from the fairway,
however. antoine1-modelwz08 [CR]

SEP–100 The Huber function 303

Figure 11: Data modeling after iteratively improved velocity model. antoine1-datawz08
[CR]

304 Guitton & Symes SEP–100

as expected, Huber allows to recover more accurately the original data. These results are
quite encouraging and give us a flavor of what could be accomplished with the Huber norm.
The same conclusion applies on the field data as on the synthetics: the Huber function is
robust.

Is Huber a stable solver ?

For Huber to be a serious competitor to the l2 norm and the CG, it needs to be stable with
respect to the number of iterations and to the Huber threshold, . This is what we investigate
in this section. Figure14 displays two velocity panels using 5 and 70 CG iterations on input
A. The right panel shows one of the well known characteristics of the conjugate gradient:
after a relative small number of iterations, the algorithm starts to invert noise in the data
space, making the model space particularly messy and uninterpretable. In contrast, the
Huber results are fairly stable (Figure15) since we can pick a reasonable velocity function
without bothering with the noise. Some artifacts appear, however, which may be squelched
by moving up or down the threshold. The next result is by far the most favorable to Huber
(Input B). Figure16 shows two velocity functions after 5 and 70 iterations using conjugate
gradient. The noise level is so strong after 70 iterations that we cannot distinguish any
coherent feature. Once again, the Huber solver gives a better velocity panel (Figure 17).
This is a major improvement to the performance of CG.

Testing the Huber response for different thresholds is another important issue. Remem-
ber that this threshold determines the border between the l1 and l2 norms. Ideally, we would
like not to have to specify this parameter a priori, but rather have the algorithm adaptively
estimates it from the data. It’s interesting, however, to test the system’s sensitivity to the
threshold. Figure 18 shows a comparison for ranging from 0.001 to 1 for 20 iterations.
The last panel is the CG result. As expected, Huber starts to behave like an l2 norm for large

. Nonetheless, for 0 001 to 0 1, the velocity panels are fairly comparable giving
us a wide range of possibilities in the choice of the threshold.

Computational efficiency

Despite its general design intended for arbitrary optmization problem, the Limited Memory
BFGS “off the shelf” code was successful in minimizing the Huber misfit function. The
results achieved by the two algorithms are significantly different so that a direct comparison
of cost is difficult. The Huber/BFGS combination tends to require about twice as much
CPU time per iteration as the Least squares/CG.

CONCLUSION

Since geophysical inverse problems are often ill-posed due to the presence of inconsistent
data, high amplitude anomalies and outliers, relative insensitivity to noise is a desirable
characteristic of an inversion method. The Huber function is a compromise misfit measure

SEP–100 The Huber function 305

Figure 12: Velocity model using CG and Huber solver. antoine1-modelwz11 [CR]

306 Guitton & Symes SEP–100

Figure 13: Data modeling after iteratively improved velocity model. antoine1-datawz11
[CR]

SEP–100 The Huber function 307

Figure 14: Input B: velocity panel using 5 and 70 CG iterations. antoine1-compmodel11g
[NR]

308 Guitton & Symes SEP–100

Figure 15: Input B: velocity panel using 5 and 70 Huber iterations.
antoine1-compmodel11h [NR]

SEP–100 The Huber function 309

Figure 16: Input A: velocity panel using 5 and 70 CG iterations. antoine1-compmodel08g
[NR]

310 Guitton & Symes SEP–100

Figure 17: Input A: velocity panel using 5 and 70 Huber iterations.
antoine1-compmodel08h [NR]

SEP–100 The Huber function 311

Figure 18: Input A: velocity panel for different Huber thresholds. The last panel is obtained
using the CG. antoine1-treshcomp08 [NR]

312 Guitton & Symes SEP–100

between l1 and l2 norms, not only boasting robustness in the presence of noise and outlier
effects like l1 measures, but also smoothness for small residuals characteristic of l2 measures.
The transition between the two norms is governed by a free parameter, the Huber threshold

.

The Huber solver is fairly stable with respect to two major choices: the number of
iterations and . The most striking result arises when we increase the number of iterations:
while the l2 result explodes, the Huber result looks stable. In addition, we may choose
a threshold within a large range without degrading the estimated velocity model (once
is small enough). We did not apply any regularization on the least squares method: it
would make l2 less noise-sensitive but requires either a regularization weight or a noise
level estimate and results are rather sensitive to these. The Huber function also requires
an estimate for the parameter , but the results seem not to depend strongly on its choice.
Furthermore, the Huber function gives better results than the l2 when applied to velocity
analysis showing its robustness to outlier effects. A data-dependent criterion for choosing
the Huber threshold may prove fruitful, i.e., “treat X% of the data as Gaussian in the small
residuals”, where X is specified interactively by the end-user.

These results encourage the use of the Huber function whenever the data are contam-
inated with noise and, as a robust and stable measure, to replace the l2 norm in many
geophysical applications.

ACKNOWLEDGEMENTS

The authors are grateful to Louis Vaillant and Jon Claerbout for their help and fruitful
suggestions.

REFERENCES

Barrodale, I., and Roberts, F. D. K., 1980, Algorithm 552 : Solution of the constrained l1
linear approximation problem: ACMTransactions on Mathematical Software, 6 , 231–235.

Chapman, N. R., and Barrodale, I., 1983, Deconvolution of marine seismic data using the
l1 norm: Geophys. J. Roy. Astr. Soc., 72 , 93–100.

Claerbout, J. F., and Black, J. L., 1997, Basic earth imaging: Class notes,
http://sepwww.stanford.edu/sep/prof/index.html.

Claerbout, J. F., and Muir, F., 1973, Robust modeling with erratic data: Geophysics, 38 ,
820–844.

Ekblom, H., and Madsen, K., 1989, Algorithms for non-linear huber estimation: BIT, 29 ,
60–76.

Fletcher, R., 1980, Practical methods of optimization, I:Unconstrained Optimization: Wiley
& Sons, New York.

SEP–100 The Huber function 313

Gockenbach, M. S., Petro, M., and Symes, W. W., 1999, C++ classes for linking optimization
with complex simulations: ACM Transactions on Mathematical Software, in press.

Huber, P. J., 1973, Robust regression: Asymptotics, conjectures, and Monte Carlo: Ann.
Statist., 1 , 799–821.

Nocedal, J., 1980, Updating quasi-Newton matrices with limited storage: Mathematics of
Computation, 95 , 339–353.

Scales, J. A., and Gersztenkorn, A., 1988, Robust methods in inverse theory: Inverse Prob-
lems, 4 , 1071–1091.

Scales, J. A., Gersztenkorn, A., and Treitel, S., 1988, Fast lp solution of large, sparse, linear
systems: application to seismic travel time tomography: J. Comp. Phys., 75 , 314–333.

Taner, M., and Koehler, F., 1969, Velocity spectra: digital computer derivation and applica-
tion of velocity functions: Geophysics, 34 , 859–881.

Tarantola, A., 1987, Inverse problem theory: Elsevier.

Taylor, H. L., Banks, S. C., and McCoy, J. F., 1979, Deconvolution with the l1 norm:
Geophysics, 44 , 39–52.

366 SEP–100

