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ABSTRACT

Extremal regularization finds a model fitting the data to a specified tolerance, and
additionally minimizing an auxiliary criterion. It provides relative model/data space
weights when no statistical information about the model or data is available other than
an estimate of noise level. A version of the algorithm using conjugate
gradients to solve the various linear systems implements extremal regularization for
large scale inverse problems. A deconvolution application illustrates the possibilities
and pitfalls of extremal regularization in the linear case.

INTRODUCTION

Many important inverse problems are ill-posed: precise fit to data is either impossible or
produces a model estimate so sensitive to data error as to obscure physically important
model features. Since no intrinsic sample-level distinction between signal and noise exists
in general, solution of such problems requires specification or estimation of data noise level,
or acceptable degree of data misfit. Even so, the set of “feasible” models (fitting the data to
within the prescribed tolerance or noise level) is very large. Finding a model representing
the information content of the data then requires additional information.

Under some circumstances, Bayesian estimation theory provides a computational pre-
scription for selecting a maximum likelihood model which represents the information in-
herent in the data and computing its a posteriori variance. When the modeling operator
is linear, the data statistics are known and Gaussian, and signal and noise are known to be
statistically independent, noise variance is the only additional parameter required to set up a
linear system for the maximum likelihood estimator. However if these statistical hypotheses
are not satisfied or if the modeling operator is nonlinear, Bayesian theory does not give an
explict prescription for selecting a representative model.

This paper explores an alternative selection principle, which I call extremal regulariza-
tion. Extremal regularization does not require the extensive statistical assumptions of the
Bayesian theory. It selects from the feasible set a model minimizing some auxiliary model

1This report will also appear in the TRIP 1999 Annual Report
2email: symes@caam.rice.edu
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property. Use of extremal regularization requires (1) a choice of auxiliary model property
to extremize, (2) choices of norms to measure the data misfit and auxiliary model property,
(3) knowledge of the data noise level, and (4) an algorithm for finding an extremal solution.
Depending on application, (1), (2), and (3) involve greater or lesser degrees of arbitrari-
ness. When the modeling operator is linear and the auxiliary property is quadratic in the
model, extremal regularization amounts to minimization of a quadratic function subject to
a quadratic constraint. In effect such an algorithm finds the penalty parameter or relative
weight between data and model spaces as a function of the prescribed noised level. Note
that the noise level has a much more obvious intuitive or physical meaning than the penalty
parameter, though it is not always easy to determine from available data.

This notion is not new in geophysics. For example D. D. Jackson proposed similar ideas
more than 20 years ago (Jackson, 1973, 1976). From (Jackson, 1979):

There are some who hold the recalcitrant point of view that the normal Backus-
Gilbert resolving kernels tend to present results in too abstract a fashion, but
that the use of priori data makes any error estimate rather arbitrary. For these,
the only satisfactory evidence on which to base physical conclusions is a cat-
alogue of models which fit the data well, are physically plausible, and contain
among them models which have the maximum and minimum presence of some
hypothetical feature. I must admit to having strong sympathies for this point of
view.

Jackson extremized linear functions of the model subject to prescribed data misfit. These
extrema represent the ends of model error bars.

This “recalcitrant” point of view is also natural when there is some nonlinear auxiliary
quantity that should be minimized - or ideally even zeroed out - by virtue of fundamental
model requirements of the model. This is the case for example in Claerbout’s proposal for
signal extraction via Jensen inequalities (Claerbout, 1998, 1992) and for the extended ver-
sion of differential semblance optimization for velocities (Gockenbach and Symes, 1997).
In other settings, for example the deconvolution problem used as an example in this report,
extremizing an auxiliary quantity serves merely to pick out a “simplest” solution amongst
many.

The algorithm finds the reelative weight between data and model spaces by
applying Newton’s method to the so called secular equation. The secular equation requires
that the norm of the auxiliary model property be equal to its prescribed value. Since this
norm will change as you change the relative weight between data misfit and auxiliary model
property, the secular equation determines the weight. This idea is much used in numerical
optimization, where quadratically constrained quadratic minimization goes under the name
“trust region problem” (Dennis and Schnabel, 1983). The published versions of
Hebden , 1977; Hebden, 1973), also , 1997), pp. 205-6, have typically used
LU decompositions to solve the linear systems required by Newton’s method, so are limited
to small and medium scale problems. This report describes a version appropriate for large
scale problems, using conjugate gradient iteration. The presence of this “inner” iteration
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and the necessary lack of precision in the solution of the Newton system has interesitng
consequences for convergence of the algorithm.

This report presents extremal regularization of linear inverse problems in the form of the
quadratically constrained quadratic minimization problem solved by the algo-
rithm. Examples based on ill-posed 1D deconvolution illustrate the extremal regularization
concept and the behaviour of the algorithm.

QUADRATICALLY CONSTRAINED QUADRATIC MINIMIZATION

A mathematical statement of the extremal regularization problem is (equivalent to)

minx Rx T Rx subject to Ax d T Ax d 2dT d

Here A is the modeling operator, x is the model vector, d is the data, and R is the regularizing
operator. The noise level is relative , as that is usually the most useful way to pose
noise estimates. Thus solution of this problem demands quadratically constrained quadratic
minimization.

The solution minimizes whatever quality is represented by R , subject to fitting the data
to a relative error level . The first order necessary conditions of optimality state that the
solution satisfies

AT Ax d RT Rx 0

Ax d T Ax d 2dT d 0

The first condition states parallelism of the gradients of the constraint and objective functions.
The second implies that either the constraint is satisfied as an equality - i.e. the solution is
on the boundary of the set of constraint-satisfying models - or else the Lagrange multiplier

vanishes, which means that the most regular solution actually has a smaller residual than
assumed - i.e. is larger than the actual noise level.

The first condition is the familiar normal equation of the unconstrained problem

minx Ax d T Ax d Rx T Rx

or

minx Ax d T Ax d 2 Rx T Rx

where
1
2 is the “notoriously elusive” relative weight between model space (really

constraint space) and data space.

The point of this paper, and the basis of the algorithm, is that the first
order conditions make the a function of the assumed noise level . Whenever can be
estimated directly, this relationship provide a method of estimating .
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ESTIMATING THE REGULARIZATION PARAMETER FROM THE NOISE
LEVEL

For arbitrary 0 , denote by x the solution of the normal equations

AT Ax d RT Rx 0

Set
Ax d T Ax d

The secular equation is

dT d

and its solution, if it has one, gives the correct value of the Lagrange multiplier .

The algorithm takes its cue from the simplest possible case: x and d are
one-dimensional, and A and R are scalars. In that very special case,

x
Ad

A2 R2

hence
R2d

A2 R2

i.e. the reciprocal of is a linear function of . This suggests that Newtons’s method is
more likely to converge quickly when applied to

1 1

dT d

and that is exactly what the algorithm does.

The iteration proceeds as follows:

initialize somehow

until convergence do: replace by

1
dT d

in which stands for the deriviative of , which you compute like so:

2

Now
1 Ax T Ax d
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From the normal equations,

AT A RT R x AT d Ax

so
3 AT Ax d T AT A RT 1 AT Ax d

Putting all of this together, one obtains the following algorithm for updating :

solve the normal equations for x , compute the residual

compute the normal residual g AT Ax d

solve the auxiliary system AT A RT R s g for s

compute gT s

replace by

1
dT d

The first and third steps involve solution of linear systems, which in geophysical applications
may be very large. Therefore, in contrast to conventional implementations of this algorithm,
I use conjugate gradient iteration , 1997) to compute the solutions of these systems.
As one might expect, the error reduction attained by these inner iterations affects the overall
convergence rate of the algorithm.

A final detail: since 2 must remain positive, I have replaced any large decrease
implied by the above formula by a bisection strategy. Since 0 , as soon as is too
small (which forces the weight onto the regularization term and increases the residual), the
algorithm produces regular increases in and converges very rapidly, usually in one or two
steps, so long as the normal equations are solved successfully. This is not always the case,
but failure to converge rapidly appears to signal large data components associated with very
small eigenvalues and is a sure sign that the noise level estimate has been chosen too
small.

DECONVOLUTION EXAMPLES

The operator A is 1D convolution of a source pulse with the input time series x . The data
d is this convolution plus the noise series n. The regularization operator R is taken to be
the identity I for all examples presented here.

All of the examples in this section will concern the source pulse ( ) depicted in Figure 1,
which is a 15 Hz Ricker wavelet sampled at 4 ms.

The data space consists of time series of length 1001, sample rate 4 ms. The noise free
data is the convolution of the wavelet with a spike located at 1 s, see Figure 2.
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Figure 1: 15 Hz Ricker wavelet
used in deconvolution experiments.
bill1-fig1 [ER]
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Figure 2: Noise free data.
bill1-fig2 [ER]
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The noise strength for the first set of experiments is 0.5. The noise is concentrated in
the pulse passband, as it is the convolution of a pseudorandom sequence with the pulse,
followed by scaling. Thus a signal of reasonable size fits the noisy data (Figure 3) very
precisely.

Figure 3: Noisy data: 50% RMS fil-
tered noise. bill1-fig3 [ER]
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The deconvolutions (signal estimations) resulting from underestimating, correctly es-
timating, and overestimating the noise level appear as Figure 4, Figure 5, and Figure 6.
The estimated noise levels are 10%, 50%, and 80% respectively. In the notation of the last
section, 0.1, 0.5, and 0.8 respectively. There is no particular identifiable virtue of one
result over the other, which reinforces my contention that in order to solve one of these
problems, you must have an independent means of estimating noise level: neither the data
nor the results of the signal estimations reveal the signal/noise dichotomy.

Note that even for the correctly estimated noise level, namely 0 5, you do not
recover the isolated spike. The discrepancy is partly due to the less than perfect linear
system solves via conjugate gradient iteration, but also to the nature of the problem: it is
actually possible to achieve the same fit error as that provided by the noise free data with a
slightly smaller signal, by fitting the signal less and the noise more. That’s because signal
and noise are not entirely orthogonal (and they rarely are, so you’re going to have to live
with this “crosstalk” imperfection!).

The relation between the noise level or fit error and the penalty parameter really is
obscure, as the following results suggest:

0.1 50.9061

0.5 210.593

0.8 459.234
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Figure 4: Signal estimate: tar-
get noise level 10%, filtered noise.
bill1-fig4 [ER]
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Figure 5: Signal estimate: tar-
get noise level 50%, filtered noise.
bill1-fig5 [ER]
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Figure 6: Signal estimate: tar-
get noise level 80%, filtered noise.
bill1-fig6 [ER]
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I would not have guessed the precise values of these s - would you have done? On the
other hand the trend is exactly as you would expect: as you permit more misfit, you are able
to make the auxiliary quantity (the model L2 norm in this case) smaller, corresponding to a
larger .

The second set of experiments uses the same noise free data contaminated with unfiltered
noise at the 50% level (Figure 7). As the data now contain much out of passband energy, a
perfect fit is no longer achievable.

Figure 7: Noisy data: 50% RMS un-
filtered noise. bill1-fig7 [ER]
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Estimating the noise level at 0.1,0.5, and 0.8 as before gives the signals depicted in
Figure 8, Figure 9, and Figure 10 respectively. The first of these fit errors is impossible to
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achieve by means of the conjugate gradient algorithm at least with any reasonable number
of iterations. The solution simply grows without bound, as one would expect, and retains
almost no character of the target model (Figure 8). The correct estimate 0 5 on the
other hand gives you a reasonable estimate of the signal (Figure 9), with a bandlimited
version of the spike dominating the series.

Figure 8: Signal estimate: target
noise level 10%, unfiltered noise.
bill1-fig8 [ER]
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Figure 9: Signal estimate: target
noise level 50%, unfiltered noise.
bill1-fig9 [ER]
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Again, the precise values of are inscrutable:

0.1 8.87808e-11

0.5 144.445
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Figure 10: Signal estimate: target
noise level 80%, unfiltered noise.
bill1-fig10 [ER]
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The trend is even more marked here. The large out-of-band components in the data are
essentially impossible to fit. So when you ask for a rather precise fit - 10% error - the weight
on the model space decreases throughout the iteration, apparently with no end in sight. The
value in the table above was the result of 10 iterations, and diminished by an
order of magnitude or so each iteration. As soon as the level of fit permits you to discard the
out of band components (that’s what happened at 0 5), the desired fit actually occurs
and a reasonable value of results.

Clearly, prior knowledge of a reasonable model size would enable you to guess in
this example. However then you have to know the size of the model! This may be no more
obvious than the size of the noise. This observation reinforces my contention that solution
of problems like these demands that you know something in addition to the data samples -
there is no “born yesterday” bootstrapping into a signal - noise distinction.

CONCLUSION

Extremal regularization appears to be practical for large scale problems, as the
algorithm with conjugate gradient inner solves either converges in a reasonable number of
steps or doesn’t converge when the constraint (target noise level) forces too many small
singular values into the act. All of these terms are relative - small, doesn’t converge,
etc. Modulo floating point arithmetic, the algorithm will always work if enough effort is
expended. The issue of course is reasonable level of effort, and that is in some sense a
translation of the concept of “noise level” - it’s the misfit between the data and what you
can achieve with an easily computable model, no more.
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Thus extremal regularization as implemented in this report appears to give a reasonable
approach to relative weighting in model and data space when an independent estimate of
noise level is somehow available. This is the case for example in the examples mentioned in
the introduction. Maybe quiet parts of seismic traces furnish pure noise series which might
give a usable estimate of noise level - provided that the modeling operator is sophisticated
enough to fit the rest!

ACKNOWLEDGEMENT

The author performedpart of the work reported here while a guest of the Stanford Exploration
Project. The author thanks the Director of SEP, Prof. Jon Claerbout, and the other project
members for their hospitality and for the stimulating intellectual atmosphere of SEP.

This work was partially supported by the National Science Foundation under grant
numbers DMS 9404283 and DMS 9627355; the Office of Naval Research under grant
number N00014-96-1-0156; the U. S. Department of Energy under grant number DE-FG07-
97 ER14827; and The Rice Inversion Project. TRIP Sponsors for 1998 are Amerada Hess,
Amoco Production Co., ARCO Oil and Gas, Conoco Inc., Discovery Bay, Exxon Production
Research Co., Mobil Research and Development Corp., and Shell International Research.

REFERENCES

, A., 1997, Numerical methods for least squares problems: Society for Industrial and
Applied Mathematics, Philadelphia.

Claerbout, J. F., 1992, Earth sounding analysis: Processing versus inversion: Blackwell,
Boston.

Claerbout, J., S/n segregation: The best ratio between data fitting and model regularization:
Gain control:, Technical report, Stanford Exploration Project, 1998.

DennisJr., J., and Schnabel, R., 1983, Numerical methods for unconstrained optimization
and nonlinear equations: Prentice-Hall, Englewood Cliffs.

Gockenbach, M., and Symes, W. W., 1997, Duality for inverse problems in wave propagation
in Biegler, L., Coleman, T., Santosa, F., and Conn, A., Eds., Large Scale Optimization::
Springer Verlag.

Hebden, M. D., An algorithm for minimization using exact second derivatives:, Technical
Report TP515, A.E.R.E., Harwell, 1973.

Jackson, D. D., 1973, Marginal solutions to quasi-linear inverse problems in geophysics: the
edgehog method: Geophysical Journal of the Royal Astronomical Society, 35 , 121–136.

Jackson, D. D., 1976, Most squares inversion: J. Geophys. Research, 81 , 1027–1030.



SEP–100 Extremal regularization 327

Jackson, D. D., 1979, The use of a priori data to resolve nonuniqueness in linear inversion:
Geophysical Journal of the Royal Astronomical Society, 57 , 137–157.

J. J., 1977, The levenberg-marquardt algorithm: implementation and theory in Wat-
son, G. A., Ed., Numerical Analysis:: Springer-Verlag, 630 ff.

APPENDIX: WORKING WITH THE EXAMPLES IN THIS REPORT

This report, together with its associated files, constitutes a reproducible research document.
Makefiles tie together the various components - text, code source, data, and postscript
figures. The principal make rules are the SEP standards: build, view, clean, burn. In this
section, I will assume familiarity with the Stanford Exploration Project reproducible research
concept, which guides the structure of this document. This code behind this document is
an application of the Hilbert Class Library. So the first thing you need to do is to make
HCL available. If HCL is already installed on your system, you do this by adding a line to
your .cshrc file or appropriate component file. Otherwise you must install HCL first. The
easiest way to do this is to download it from the TRIP web page:

http://www.trip.caam.rice.edu

and follow the installation instructions. The code also depends on the SU/SEGY vector class
package sVector , which therefore must also be installed. It will be part of the next HCL
release. NB: At Rice/TRIP and Stanford/SEP, no installation is necessary: the packages are
already installed. Simply add the following lines to your shell environment files:

at TRIP, add to your .cshrc:

setenv HCLROOT /import/masc39c/symes/hclr0.9

setenv KBDAROOT /import/masc39c/symes/kbda

setenv QPROOT <path to the root directory of this package>

at SEP, add to your Setup/cshrc.generic:

setenv HCLROOT /jon/symes/hclr0.9

setenv KBDAROOT /jon/symes/kbda

setenv QPROOT <path to the root directory of this package>

The “root directory of this package” referenced in these instructions is the directory you
create by downloading the tar file containing this report. In so doing, you create a directory
tree with root named qcqm. This is the “root” in question. All pathnames in the following
discussion are relative to this root. HCL includes a set of make rules which evolved from
the SEP rule set as it was about two years ago. I am sure that SEP’s rules have also evolved,
and differently. The makefiles for this report are all output of the HCL makefile autowriter,
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maw , and use HCL’s rules. If you get as far as modifying makefiles by hand, bear the
possible HCL/SEP incompatibility in mind. You can rebuild the entire package simply by
entering make build in the root directory. You will construct all of the executables and
final results (.ps files in the Fig) directories, including this postscript version of this report.
You can make individual results in the usual way. Note that all figures in this report except
the first two will vary from build to build, as you choose a new pseudorandom seed each
time you execute the commands. The command for deconvolution is sfilter/decon.x.
You execute it by following it with a parameter file name: decon.x par - it reads all of its
parameters from the file. Regrettably the “getpar” device used in curren HCL programs is
not flexible enough to permit specification of parameters on the command line. Probably I
should just steal SEP’s getpar! You can use the executable sfilter/decon.x with other
data by altering its input parameters, and so explore the capabilities of the algorithm using
data other than that supplied with this report. Parameter control requires you to edit the
parameter files manually. HCL parameter files are keyword=value lists; the values can
be integers, floating point numbers with any size of mantissa, and strings. Parameters to
be read only by one part of the program (typically a class constructor) get an identifying
string prepended, with a double colon. Thus the parameter Tol for the conjugate gradient
algorithm becomes CG::Tol. That is, the parameter file can specify many variables named
Tol , so ong as they have been equipped with qualifiers which allow each program unit to
choose a unique value. Files should be in either SU (stripped SEGY) or SEGY formats.
sVector currently supports only native binary floating point representation, so if you port
data from Linux to SGI etc. you will have to byte-swap it. Here is the parameter file
structure for the deconvolution example:

Sigma=0.5

Lambda=0.0001

Wavelet="rick15.su"

DataTimeSeries="fnd.su"

CG::Tol=1.e-4

CG::MaxItn=50

CG::DispFlag=3

QCQM::Tol=0.01

QCQM::MaxItn=10

QCQM::DispFlag=1

The parameters are

Sigma: target noise level

Lambda: initial estimate of . It may be worth thinking about sensible defaults or
crude estimates for this, and the scalar model actually suggests such an estimate. For
the moment, set by hand.

Wavelet: name of wavelet data file,in either SU or SEGY format.

DataTimeSeries: filename for data time series
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CG::Tol: convergence tolerance for HCL conjugate code - iteration terminates if
normal residual, i.e. in this case AT Ax d RT Rx

CG::MaxItn: maximum conjugate gradient iterations

CG::DispFlag: controls verbosity of CG output, as explained in HCL reference
manual (through TRIP web page: point your browser at

http://www.trip.caam.rice.edu

and follow the links to the HCL reference manual, page on the conjugate gradient
algorithms). Level 3 is max output, including a summary of the progress at each
iteration. Note that the residual reported is the normal residual for this application!

QCQM::Tol: the algorithm considers itself converged when the relative
error in the constraint is within this amount

QCQM::MaxItn: maximum iterations

QCQM::DispFlag: controls verbosity of code: 0 = silent, any other
value prints diagnostic information about run

Amongst the diagnostics printed out at the end of a run when QCQM::DispFlag is set you
will find “Lagrange cosine”. This is the cosine of the angle between the constraint gradient
and the objective gradient. It diagnoses the success of the constrained optimization: if it is
very close to 1, then the two gradients are parallel and the first order necessary condition has
been satisfied. This occurs in the deconvolution examples in all cases except that depicted
in Figure 8, in which nothing converges and you can’t fit the data. Apparently failure
to get the Lagrange cosine close to 1 in a reasonable number of CG and
iterations implies that the noise level has been set too small and you are trying to match data
components associated with very small singular values.
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