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All stationary points of differential semblance are
asymptotic global minimizers: Layered acoustics1

William W. Symes2
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ABSTRACT

Differential semblance velocity estimators have well–defined and smooth high fre-
quency asymptotics. A version appropriate for analysis of CMP gathers and layered
acoustic models has no secondary minima. Its structure suggests an approach to optimal
parametrization of velocity models.

INTRODUCTION

The core problem of primaries-only (linearized, Born approximation) modeling, imaging,
and inversion is that of finding an accurate reference velocity. Since the typical survey is
highly redundant, predictions of reflectivity are redundant, and unlikely to be consistent
(or flat in common image panels) unless the velocity field used to make them is essen-
tially correct. This concept of semblance of redundant images underlies velocity estimation
methods in widespread use (Taner and Koehler, 1969;Yilmaz and Chambers, 1984; Reshef,
1997). A number of researchers have cast velocity analysis as an optimization problem: that
is, they propose an objective function to be minimized or maximized at a correct velocity
model (Toldi , 1985; Al Yahya, 1989; Fowler, 1986; Kolb et al. , 1986; Cao et al. , 1990;

and Chavent , 1993; Sevink and Herman, 1993; Martinez and McMechan, 1991;
Sen and Stoffa, 1991). Extremization of the objective is then an automatic process, to be
accomplished through numerical optimization algorithms. The most widely investigated
objectives - variants of stack power or RMS data fit error (“output least squares”) - are ve-
locity dependent quadratic forms in the data. These functions are believed to be multimodal
and very ill-conditioned (Gauthier et al. , 1986; Scales et al. , 1991). The presumed exis-
tence of many local minima appears to mandate global search methods such as simulated
annealing. These usually require orders of magnitude more function evaluations than do
gradient-based methods which find local minima. The computational cost of global search
methods renders them unsuitable for industrial scale velocity estimation.

The mechanism underlying these features of stack power and similar objectives is asymp-

1This report will also appear in the TRIP 1999 Annual Report
2email: symes@caam.rice.edu
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totic instability: none of these functions have limiting shapes as source and data bandwidth
become infinite. Besides accounting for multimodality, saturation, ill conditioning, and
other undesirable mathematical properties, asymptotic instability of stack power, output
least squares, and similar objectives also inhibits analysis of local and global features via of
high frequency asymptotics.

These observations lead to the question: do there exist velocity dependent quadratic
forms in the data, extremized by the correct velocity with model-consistent data, which also
have stable high frequency asymptotics? The answer is “yes”, and the nature of such forms
is specified completely as part of the answer: they express semblance through comparison
of neighboring traces. In contrast, stack power and output least squares objectives measure
semblance (explicitly or implicitly) by comparing of traces with widely differing offset
and/or midpoint, and this fact accounts for the asymptotic instability of these functions.
In the ideal limit of continuous sampling, traces to be compared should be infinitely near,
so I have used the phrase differential semblance to describe these asymptotically stable
forms. For mathematical details of the connection between differential semblance and
stable asymptotics in the context of the simpler but similar plane wave detection problem,
see (Kim and Symes, 1998), also (Claerbout, 1992), pp. 93 ff.

The asymptotic stability of differential semblance opens up the possibility of analysing
its global shape by asymptotic methods. This paper presents such an analysis for a simple
special case applicable to field data, based on the convolutional model of CMPs for layered
acoustic Earth response. The layered medium assumption leads to simple explicit expres-
sions for all quantities figuring in this approach to velocity estimation. The analysis shows
that, for noise-free (model consistent) data in the continuous sampling limit and velocities
limited to natural admissible sets, the length of the gradient bounds the objective, up to
an error which vanishes in the high frequency limit. Therefore every stationary point is
asymptotically a global minimum of the differential semblance objective function in this
case. That is, differential semblance does not suffer from the local minima which plague
other optimization formulations of velocity inversion.

Simple estimates bound the effect of noise. Numerical experiments have shown that
random noise has virtually no effect on the location of DS stationary points, whereas strong
coherent noise, such as multiple reflections, has a maximal effect. In any case the influence
of noise is bounded, i.e. the differential semblance velocity estimate “degrades gracefully”
as noise of any sort is added to the data.

These conclusions - stable asymptotics, unimodality, bounded influence of noise, sig-
nificance of coherent noise - conform to the results of many numerical experiments with
field and synthetic data. The present paper concerns only analysis: details of computational
implementation and results appear elsewhere (Araya et al. , 1996; Gockenbach and Symes,
1997; Symes, 1997, 1998; Chauris et al. , 1998a,b).

The ubiquitous presence of various “multis” - multiple reflection, multiple refraction
(transmission caustics), multiple wave modes, and of course multidimensional geometry
- necessarily limits the practical importance of this or any other technique for velocity
estimation (or imaging) based on primaries only layered acoustic modeling. Note that the
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differential semblance concept is not in any way limited to layered medium models or 1D
velocity functions, any more than stack power is limited to NMO-based velocity analysis.
The abstract (Chauris et al. , 1998b) and earlier work of this author (Symes, 1993; Kern
and Symes, 1994) present examples of multidimensional velocity estimation by differential
semblance optimization.

I begin with an abstract definition of differential semblance. After defining the con-
volutional model for layered acoustics, I discuss various types of error inherent in this
approximation, the construction of mutes, and natural admissible model sets. This ground-
work supports an asymptotic analysis of the differential semblance objective, which reveals
that in the case of noise free data it is essentially a data-weighted mean square error in RMS
square slowness. This observation leads directly to the main result, and to some convenient
estimates of the influence of noise in general data. It also suggests an approach to optimal
parametrization of velocity profiles.

AN ABSTRACT FORMULATION OF DIFFERENTIAL SEMBLANCE

The general definition of differential semblance presented here owes much to ideas intro-
duced by Hua Song and Mark Gockenbach in their theses (Song, 1994; Gockenbach et al. ,
1995).

The (reference or background) velocity includes the slowly varying components of
velocity and perhaps other fields. The reflectivity r is a field (or vector of fields) encom-
passing the rapidly varying components of the model. Linearized scattering treats r as a
perturbation of . Thus in the forward modeling operator F r the dependence on r is
linear, whereas the dependence on is (quite!) nonlinear.

Minimal data sets are those on which the kinematic relations in the data are bijective.
Minimal data sets include common shot and common offset gathers, and - for layered models
- single traces. For a few models, such as constant density acoustics, the forward modeling
operator F is invertible (modulo smoothing operators) on minimal data sets. This paper
deals only with constant density acoustics.

Denote by G an approximate inverse operator for F on each (minimal) data bin
(common source, common offset, single trace,...). Thus G applied to the data produces
a prestack reflectivity volume. Similarly, understand by F the application of forward
modeling independently for each reflectivity bin.

Each binning scheme also implies a notion of neighboring bins: that is, neighboring
source positions, offsets,... Denote by W an operator approximating the derivative or gra-
dient in the bin parameter(s). Generally the definition of F necessarily incorporates a
cutoff or mute, as does that of G . Differentiation in the bin direction across this mute
produces edge artifacts. To control these, introduce an additional mute slightly more
severe than the mutes built into F and G. Since the edge effects are localized, application
of this secondary mute eliminates them.

Differentiation enhances high frequency content. To keep the spectrum of the differential



74 Symes SEP–100

semblance output comparable to that of the data, employ a smoothing operator H . An
appropriate choice is the inverse square root of the Helmholtz operator I 2 1

2 in all
of the variables on which the data depends, i.e. both within-bin and cross-bin variables.

With these notations, define differential semblance J0 by:

J0
1

2
H F W G S 2

Here S denotes the data, and the vertical double bars denote the L2 norm or root mean
square, i.e. summation of the square of the quantity inside over all variables, followed by
square root.

THE CONVOLUTIONAL MODEL FOR LATERALLY HOMOGENOUS
ACOUSTICS

Linearization of the acoustic model for a layered fluid and application of high frequency
asymtotics leads to the convolutional model of primaries-only reflection seismograms. The
convolutional model of offset traces is one of the simplest models of the reflection process
within which to pose the velocity analysis problem. A similar model for plane wave traces
is almost equally simple, and was the subject of earlier work on differential semblance
(Symes and Carazzone, 1991; Minkoff and Symes, 1997). However synthesis of accurate
plane wave traces is a nontrivial task. Accordingly the version of the model developed here
uses offset domain data.

A natural binning scheme for this model is the common midpoint gather. Since all
midpoint gathers are in principle the same for a layered model, the data consists of a single
CMP. The bins contain single traces, parameterized by offset x .

The velocity parameter is simply the interval velocity z , whereas the reflectivity is
r and is regarded as bin-dependent, i.e. r r z x ; this section plays the role of a
common image gather, as every trace represents reflectivity below the same midpoint. Thus
successful velocity estimation will produce a “flat” (x-independent) r z x .

The simple version of DS presented here will assume that source signature deconvolution
has been applied to the data, so that it is essentially impulsive.

It will be convenient to parametrize velocity and reflectivity by vertical two-way time

t0 2
z

0

dz

rather than depth: thus t0 r r t0 x .

With these conventions, the forward modeling operator is

F r t x a t x r T0 t x x

where a is the geometric amplitude and T0 t x is the inverse function of the two-way
traveltime function T t0 x .
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ERROR, ERROR EVERYWHERE!

As an approximate predictor of seismic traces, the convolutional model exhibits several
types of error:

physics error: seismic waves are not small amplitude pressure waves in a fluid;

linearization error: neglect of multiple reflections and other nonlinear effects;

deconvolution error: complete removal of the source signature is not possible;

asymptotic error: the convolutional model becomes more accurate as the frequency
content of r t0 x moves away from zero Hz.

The practical meaning of asymptotic error is that the convolutional model predicts the higher
frequency components of the data more accurately, so that the prediction error can be reduced
by more aggressive low-cut filtering. Of course this discarding of low-frequency data is
only possible to a limited extent as actual data is bandlimited.

The following computations will introduce yet more sources of asymptotic error - and,
with one exception, only asymptotic error. Therefore I will identify asymptotic error ex-
plicitly, and treat other types of modeling error as data noise. It is possible to estimate
every asymptotic error explicitly, but experience suggests that these explicit estimates are
not particularly useful. So instead I will use the symbol “ O ” to suggest proportionality
of the asymptotic error to a dominant wavelength in the data. Thus

F r t x a t x r T0 t x x O

The single important lesson to learn from the explicit error estimates of geometric optics
is that they are uniform over C -bounded sets of coefficients (meaning in this case the
velocity ). Therefore the velocities appearing in the sequel are restricted to vary over such
a C -bounded set. A byproduct of the analysis will suggest explicit finite dimensional
subspaces of smooth functions in which it is advantageous to seek .

MUTES

The linearized model accurately predicts only precritical primary reflections. For layered
media, precritical reflections have downgoing incident rays. Along downgoing rays, time
is an increasing function of depth. It follows that if t0 is to be a depth variable, then T must
be an increasing function of t0. This is generally true only in a subset of the t x plane, i.e.
only part of this plane contains data accurately modeled by linearized acoustics. Therefore
the rest of the data must be muted out.

Define the stretch factor

s t x
T0

t
t x

T

t0
T0 t x x

1
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Then the condition that T t0 x be monotone increasing as a function of t0 is equivalent to
demanding that for large enough t

0 s t x Cstretch

where Cstretch is a user-specified parameter larger than one. Define Tmute x (the mute
boundary) to be the infimum of all t for which the above inequality is satisfied on the
interval t Tmax . Then the support of the mute function should be contained in the set

t x t Tmute x .

Define a corresponding t0 x domain mute by 0 t0 x T t0 x x .

ADMISSIBLE MODELS

In this section I introduce admissible sets of models, on which the convolutional model as
defined above is reasonably well behaved. Note that the constraints imposed on the models
by membership in the admissible sets are very natural from the physical or geological point
of view.

First of all, the velocity must be smooth, as noted above in the section on errors. The
restriction of to a bounded subset of C implies bounds (maximum absolute value, mean
square,...) on any derivative of .

Second, impose smooth upper and lower “envelope” velocities as hard constraints:
min t0 t0 max t0 . It is natural to assume that the velocity is known at the surface,

so assume that min 0 max 0 . These bounds derive from geophysical measurements
and general knowledge about rock physics, so should be regarded as distinct from the bounds
implied by the first condition (membership in a bounded set in C ).

The set of velocities satisfying the constraints just outlined form the admissible set .

An important consequence is that the mute C0 R2 may be chosen uniform over
, as uniform bounds then exist for every value of the stretch factor s t x . These bounds

follow from the equations of geometric optics. However they are even more simply derived
for the hyperbolic moveout approximation to traveltime, which I will eventually adopt, so
I do not give a derivation here.

ASYMPTOTIC APPROXIMATION OF DIFFERENTIAL SEMBLANCE

The convolutional offset trace model is one of those for which the forward modeling operator
on a minimal gather, ie. a single trace, is invertible. The inverse operator is

G S t0 x
S T t0 x x

a T t0 x x

The operator measuring semblance differentially is

W
x
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Then

F W G S t x a t x
x

S T t0 x x

a T t0 x x t0 T0 t x

T

x
T0 t x x

t x
S t x

p t x
t x

S t x

where

p t x
T

x
T0 t x x

is the arrival (horizontal) slowness of the ray passing offset x at time t , and the elided terms
involve the amplitude a , but do not involve derivatives of the data S. Thus these terms
are of lower frequency content than the leading term (explicitly displayed), and are of the
same relative order in frequency as terms neglected in the derivation of the convolutional
model from the acoustic wave equation. Therefore they can be dropped: this leads to
the remarkable conclusion that the differential semblance objective is independent of the
amplitude at least to leading order in frequency.

This observation is due to Hua Song. As a result, within accuracy limitations already built
into the asymptotic linearized model, a might as well be replaced by 1!. That is, to leading
order in frequency, differential semblance is insensitive to wave dynamics (amplitude), and
responds only to kinematic model changes, i.e. changes in traveltime. Thus minimization
of differential semblance will amount to a sort of traveltime tomography.

Fons ten Kroode (personal communication) has pointed out that replacement of G by
an asymptotically unitary operator with the same kinematics also yields an asymptotocally
identical objective without leading order amplitude dependence, and without application of
the forward modeling operator, thus at lower computational cost.

The computations above are correct when the map t0 x t x is smooth and
invertible. This is so inside the mute zone defined above, uniformly for . Therefore
application of the inverse square root Helmholtz operator following will bring the spectral
content back into alignment with that of the data, uniformly over . Thus

H F W G S H
S

x
p

S

t
O

The ray slowness p is locally a smooth function of the velocity in any fixed open subset
of the mute zone, hence J0 (which is the mean square of the above expression) is a smooth
function of as well.

NOISE FREE DATA

Assume that the data S are model-consistent, that is

S t x r T0 t x O
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for target offset independent reflectivity r t0 and velocity t0 . [Since differential sem-
blance does not depend to leading order on the amplitude, as noted above, I set the amplitude
to 1 in the following, for simplicity - it can be reintroduced with almost no change in the
results to follow.]

Note that

0
x

T T0 t x x
T

t0
T0 t x x

T0

x
t x

T

x
T0 t x x

so
T0

x
t x s t x p t x

(s being the stretch factor, defined above). Thus

x
r T0 t x s t x p t x

r

t0
T0 t x

(s is the stretch factor belonging to ) whence

F W G S t x
x

p t x
t

r T0 t x

s t x p t x p t x
r

t0
T0 t x

According to the calculus of pseudodifferential operators,

H F W G S

I 2 1
2 s p p

r

t0
T0

I 2 1
2 s p p

T0

T0 T0
r T0

s p p

1 s 2 1 p 2
r T0 O

where you get from the next to the last line to the last by substituting T0 for , and using
previously derived formulas for the partial derivatives of T0.

Thus

J0 dt dx B t x p t x p t x 2 r T0 t x 2 O

where

B t x 2 s 2

1 s 2 1 p 2

is independent of , i.e. depending only on and .

In the next section I introduce the so called hyperbolic moveout approximation to trav-
eltime. Note that up to this point the development is entirely independent of this approx-
imation. In particular the formulas worked out in this section have precise analogues for
versions of differential semblance based on multidimensional seismic models.
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HYPERBOLIC MOVEOUT

Claim: To good approximation, for “small” offsets,

T t0 x t2
0

x2

2
RMS t0

T0 T t0 x x t0

where the RMS velocity is

RMS t0
1

t0

t0

0

2

Justification [Continuum derivation of the hyperbolic moveout approximation]: The
2-way traveltime T t0 x 2 z x from the surface at z 0 to depth z and back at offset
x is related to the solution of the eikonal equation z x with point source at z x 0
by

2 z x 2 z
x

2
Thus

1

4
2

z

2
2

x

2 1 2

Differentiate this twice with respect to x and use the vanishing of odd-order x derivatives
at x 0 (implied by symmetry) to conclude that the second x derivative

q z
2

x2 z 0

satisfies
1

2

dq

dz
q2 0

Introduce temporarily a new depth coordinate

z 2
z

0

Then in terms of , q satisfies the Ricatti equation

dq

d
q2 0

The solution which is singular at 0 , i.e. z 0, is

q
1 1

2 z
0

Since dz 1
2 dt0 , you can also write this as

q
1

t0
0

2
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Thus

T t0 x t0
x2

2

2T t0 0

x2

t0
x2

2 t0
0

2

Since
2

x2
T t0 x 2

x 0 2t0
2T

x2
t0 0

the above can be rewritten

T t0 x 2 t2
0

x2

1
t0

t0
0

2

t2
0

x2

2
RMS t0

which reveals that the hyperbolic moveout approximation is just the second order Taylor
expansion of T 2 in x , which should be good for “small” x .

This report adopts the hyperbolic moveout approximation, i.e. truncate the Taylor ex-
pansion above and take

T t0 x 2 t2
0

x2

2
RMS t0

This amounts to assuming that all events in the data have precisely hyperbolic moveout. Of
course this assumption is not entirely consistent with geometric optics. It has been suggested
that the deviation of actual two-way time from the hyperbolic moveout approximation may be
mistaken for evidence of anisotropy in some cases. In any case the error caused by replacing
actual two way time by its hyperbolic moveout approximation is not an asymptotic error in
the sense of the last section, so I will treat it as a component of data noise.

The reciprocal square RMS velocity, or RMS square slowness is the primary expression
of velocity in the above formula. It occurs so often as to warrant its own notation:

u t0 RMS t0
2

The conditions defining the mute can be restated: since

T

t0
t0 x

t0 x2

2
u
t0

t0

T t0 x

the quantity on the right hand side of this equation must be bounded away from zero. Since
generally increases with depth, hence u decreases, such a lower bound will only be possible
for t0 exceeding a threshold for each x , which is the mute boundary mentioned before. In
the data, i.e. t x , coordinates, the stretch factor condition becomes

s t x
T0

t
t0 x

T

t0
T0 t x x

1 t

T0 t x x2

2
u
t0

T0 t x
Cstretch
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and as before the mute must be supported in the set specified by this condition.

The upper and lower velocity envelopes implied by membership of the velocity in
imply corresponding envelope mean square slownesses (umin corresponding to max and
vis-versa) so that umin t0 u t0 umax t0 .

It is usually reasonable to assume the lower velocity bound to be constant (independent
of t0) - for example, equal to sound velocity in water, or close to it. Then umax is also
constant, so you can explicitly estimate a lower bound for T0:

T 2 t0 x t2
0 x2u t0 t2

0 x2umax

so
T0 t x t2 x2umax

The velocity bounds also imply a bound on the derivative of u:

du

dt0

u2

t0
2 1

u

u2

t0
2 2 0

1

t0

t0

0

2 2 0

The bounds on , the known value of at the surface, and the maximum two way time
imply bounds on the slope

2 t0 2 0

t0
whence a bound umax on the derivative of u follows immediately.

Since both the lower bound on T0 and the uppoer bound on the derivative of u are uniform
over , a -uniform bound on the stretch factor follows:

s t x
t

t2 x2umax
x2

2 umax

From this you can derive a -uniform mute boundary. Therefore assume henceforth that
is a -uniform mute.

GLOBAL ANALYSIS OF STATIONARY POINTS IN HYPERBOLIC MOVEOUT
APPROXIMATION

Until further notice regard F etc. as depending on RMS square slowness u rather than on
interval velocity . Dependence on , through the relatively easily analyzed map u ,
will be reintroduced at the end.

A short calculation shows that

p t x
x

t
u T0 t x

Introduce the quantity , with units of time:

t0 x T0 T t0 x x
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That is, t0 x is the zero offset time for which the time at offset x is the same in the
slowness u as the time one obtains for t0 x in slowness u .

Then introducing the expression for p , and changing variables from t to t0 in the integral
above, yields

J0 u dt0 dx B0 t0 x u t0 x u t0
2 r t0

2 O

where

B0 t0 x T t0 x x B T t0 x x
x

T t0 x

2

depends only on u and .

It is now straightforward to compute the first order perturbation J0 of J0 with respect
to u. First,

T t0 x
x2

2 u t0
T t0 x

0 T T0 t x x T T0 t x x
T

t0
T0 t x x T0 t x

x2

2 u T0 t x

t

T0 t x

s t x
so

T0 t x
x2

2 s t x u T0 t x

t
whence

t0 x T0 T t0 x x
x2

2 s T t0 x x u t0 x

T t0 x

and

u t0 x u t0 x
du

dt0
t0 x t0 x

u t0 x 1
x2

2 s T t0 x x du
dt t0 x

T t0 x

Recall that
s t x

t

T0 t x x2

2
u
t0

T0 t x

so that

s T t0 x x
T t0 x

t0 x x2

2
u
t0

t0 x

so

u t0 x u t0 x 1
x2

2
du
dt t0 x

t0 x x2

2
u
t0

t0 x
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u t0 x

1 x2

2 t0 x
u
t0

t0 x

t0 x

T t0 x
s T t0 x x u t0 x

Putting this all together,

J0 u dt0 dx B1 t0 x u t0 x u t0 r t0
2 u t0 x O

where

B1 t0 x
B0 t0 x

1 x2

2 t0 x
u
t0

t0 x

t0 x

T t0 x
B0 t0 x s T t0 x x

depends on u , u , and . To compute the gradient, change variables again to t0 t0 x
for each x . Since

t0
t0 x

t0
T0 T t0 x x

T0

t
T t0 x x

T

t0
t0 x

s T t0 x x

s T t0 x x

and so
1

t0
t0 x

s T t0 x x

s T t0 x x

you get

J0 u dt0 dx B1 t0 x u t0 u 1 t0 x r 1 t0 x 2 u t0 O

with

B1 t0 x B1
1 t0 x x

s T t0 x x

s T t0 x x

Thus the L2 gradient of J0 is

J0 u t0 dx B1 t0 x u t0 u 1 t0 x r 1 t0 x 2 O

Both expressions for J0 and its gradient suggest that these quantities are comparing the
trial square slowness u and the target square slowness u at different points (eg. t0 vs.

1 t0 x ), and this in turn makes understanding of the implications for determination of
u difficult. Fortunately this is not really the case:

Key Lemma: There exists a function h t0 x , depending on velocity (or slowness u) and
also on u and , having the following properties:

h t0 x 0 over the mute zone, and log h t0 x is uniformly bounded for t0 x in
the mute zone and ;

u t0 u 1 t0 x h t0 x u t0 u t0
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Proof of Key Lemma: Note first that since

T T0 t x x t

T

x
T0 t x x

T

t0
T0 t x x

T0

x
t x 0

xu T0 t x

t

1

s t x

T0

x
t x

so
T0

x
t x s t x

xu T0 t x

t

It follows that since
1 t0 x T0 T t0 x x

1

x
t0 x

T0

t
T t0 x x

T

x
t0 x

T0

x
T t0 x x

s T t0 x x
xu t0

T t0 x
s T t0 x x

xu T0 T t0 x x

T t0 x

xs T t0 x x

T t0 x
u t0 u 1 t0 x

Thus

u t0 u 1 t0 x u t0 u t0
x

0
dx

x
u t0 u 1 t0 x

u t0 u t0
x

0
dx

u

t0
1 t0 x

1

x
t0 x

u t0 u t0
x

0
dx

u

t0
1 t0 x

x s T t0 x x

T t0 x
u t0 u 1 t0 x

u t0 u t0
x

0
dx g t0 x u t0 u 1 t0 x

where

g t0 x
u

t0
1 t0 x

x s T t0 x x

T t0 x

This simple integral equation has the solution

u t0 u 1 t0 x h t0 x u t0 u t0

where

h t0 x exp
x

0
dx g t0 x

has the properties claimed for it in the statement of the lemma. Q.E.D.
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Now changing variables in the asymptotic formula for J0 , and applying the above relation
to both this and the formula for J0 , you obtain

J0 u dt0 u t0 u t0
2 dx B0 t0 x h t0 x r 1 t0 x 2 O

J0 u t0 u t0 u t0 dx B1 t0 x h t0 x r 1 t0 x 2 O

where

B0 t0 x B0
1 t0 x x

s T t0 x x

s T t0 x x

Now B0 and B1 differ at each point in the mute zone by factors or divisors of s s T and
the like, and these are bounded over the mute zone uniformly in . Therefore there
exists a constant C 0 depending only on for which

J0 u C dt0 u t0 u t0 J0 u t0 O

and we have proved the

Theorem: If u , the RMS square slowness for , is a stationary point of J0 u , then
J0 u O .

That is, for noise free data, any stationary point of J0 is a global minimizer, up to an
asymptotically vanishing error.

NOISE: GENERAL CASE

Suppose that the data S t x is the sum of model-consistent data and another field, regarded
as noise or error:

S t x S t x E t x

where “model-consistent” means as before

S t x r T0 t x O

and E t x is arbitrary (but finite “energy” = mean square).

Since there are several data running around in this part of the discussion, include the
name of the data in the notation for the differential semblance objective:

J0 S
1

2
H F W G S 2

etc. Then
J0 S J0 S J0 E K S E

where
K S E H F W G S H F W G E
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dx dt
x

p
t

S I 2 1

x
p

t
E

satisfies
K S E C S E

Here and in the following, C will stand for a constant uniform over (though the
precise value may vary from display to display).

Likewise,
J E C E 2

Similarly, the gradients with respect to RMS square slowness u satisfy

J0 S J0 S J0 E K S E

and
K S E C S E

J0 E C E 2

Suppose that u (or its corresponding ) is a stationary point of J0 S , i.e. J0 S 0.
Then

J0 S J0 S C E S E

C u u J0 S E S E O

C u u J0 S J0 E K S E E S E O

C E S E O

If you presume that the data error is less than 100%, i.e. E S , which seems
reasonable (or pick any other fixed percentage, if 100% seems wrong to you - just absorbs
in C), then this becomes

J0 S C E O

That is,

Theorem: At a stationary point of the differential semblance objective, its value is bounded
by a -uniform multiple of the distance of the data to the set of model-consistent data.

Thus for a family of data converging to model-consistent data, any set of corresponding
stationary points of J0 must have J0 values which converge to zero, modulo asymptotic
errors.

This result may well not imply that stationary points for noisy data are global minima.
Indeed, substitute the “target” velocity in the expression for J0 S : from the expansion
and estimates above you easily see that

J S C E 2 O E

Certainly one hopes that the asymptotic error is no worse than other errors, in particular
than the data error E , so this inequality effectively implies that the global minimum value
of J0 S is proportional to E 2 for near consistent data, whereas the theorem shows only
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that the stationary values are proportional to E , so presumeably larger at least in some
cases.

In the next section I will show that when the differential semblance minimization is
supplemented with proper constraints on the velocity model, in addition to those already
imposed, the error in the RMS square slowness is proportional to the error in the data. It then
follows from the estimates above that stationary values conforming to these constraints are
indeed proportional to the square of the error level, hence essentially global minima. It would
be interesting to know whether relaxing these constraints actually permits anomalously large
stationary values.

DATA DRIVEN MODEL PARAMETRIZATION AND OPTIMAL ERROR
ESTIMATES

Up to this point I have imposed only minimal constraints on the RMS velocity, namely
those necessary to justify use of the convolutional model. Most velocity analysis imposes
far more stringent constraints, either explicitly or implicitly, in the form of parsimonious
parametrization or regularization. In the former case, the choice of parameters (eg. how
many spline nodes, where to place them) is ad hoc. In the latter, the type of regularization
(first derivative, second derivative,...) and the choice penalty weight are also obscure.

In this section I suggest that the differential semblance objective itself supplies a mech-
anism for constraining the velocity to a parsimoniously parametrized space. I’ll propose a
choice of subspace within which

the global minimum is unique for noise free data;

the error in RMS square slowness is proportional to the error in the data, and so

any stationary values are proportional to the square of the data error energy, so essen-
tially global minima.

Assume until further notice that the data is free of noise:

S t x r T0 t x O

The Key Lemma proved in the last section then implies that the Hessian J0 takes the
form

J0 u u t0 u t0 dx B1 t0 x h t0 x r 1 t0 x 2 O u u

R u t0 u t0

While the expression for R above is not easily computable, the approximation

R u t0 dx r 1 t0 x 2
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is simply the stack of the squared prestack reflectivity estimates,and therefore an inexpensive
byproduct of the computation. At u u ,

J0 u u t0 b u t0 R u t0 u t0

i.e. the Hessian is actually the approximation followed by a positive diagonal scaling.

Now suppose that u differs from a reference square slowness u0 (in practice, an initial
estimate) by a member of a space W . Introduce an inner product in the space of W by

1 2 2
d2

1

dt2
0

d2
2

dt2
0

To make this inner product positive definite, thus defining a Hilbert space structure, assume
furthermore that

0
d

dt0
0 tmax

0
d

dt0
tmax
0 0

Thus W is a subspace of the Sobolev space H2
0 0 tmax

0 .

Since the interval velocities, hence the RMS square slownesses, are supposed to vary
over a bounded set in C , membership in entails a bound on the W norm of u u0.

Let g t1
0 t2

0 be the Green’s function for the operator

d4

dt4
0

with the boundary conditions stated above. Then the W gradient of J0 restricted to u0 W
is

W J0 u J0 u

in which denotes the operator with kernel g. Similarly,

W W J0 u J0 u

Next suppose that H u is uniformly positive definite for all u . That is, there exist
0 h h for which

h 2 H u 2 h 2
2

for all W u .

Then there exists a similar uniform bound for W W J u , since the latter differs from
H u by a diagonal scaling operator with uniform upper and lower bounds over . For the
same reason,

W J0 u 2 b u H u u u 2 l u u 2

for a suitable l 0.

That is: within u0 W , u is the unique stationary point of J0.
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Moreover, consulting the estimates of the last section, you see that if the search is limited
to u0 W , then at a stationary point u ,

J0 u S C E 2

as claimed, since the cross-term K u S E in the notation of that section is bounded by a
multiple of u u 2.

Finally, how does one lay hands on such a paragon of a function space as W with
the properties supposed here? The operator H u is symmetric positive semidefinite on
H2

0 0 tmax
0 . An optimal choice for W is the direct sum of eigenspaces of W W J0 u

corresponding to the eigenvalues above the cutoff level h . A computable estimate of
this space is the corresponding direct sum of eigenspaces of H u . A basis consists of
eigenfunctions of the Sturm-Liouville problem

d4

dt4
0

R u

0
d

dt0
0 tmax

0
d

dt0
tmax
0 0

To construct W , find the eigenfunctions of this problem, and choose those whose eigenvalues
lie above a “suitable” cutoff.

Note that if there is little data in a t0 interval, R u will be small in that interval and
eigenfunctions of the 4th derivative operator will smoothly interpolate values to either side.
Thus my suggested space implicitly “picks events” with significant energy, pins the RMS
velocity down at those places, and interpolates between “events” - just as a human velocity
analyst would.

It remains to analyse this “picking” effect, and to devise good algorithms for choosing the
eigenvalue cutoff as a function of data quality and success in fitting moveout (i.e. minimizing
J0), so as to justify the assumption that u u0 W . But that’s another story...
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