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ABSTRACT

Seismic tomography is a non-linear problem with a significant null-space. Our estima-
tion problem often converges slowly, to a geologically unreasonable model, or not at
all. One reason for slow or non-convergence is that we are attempting to simultaneously
estimate reflector position (mapping velocity) and image our data (focusiing velocity).
By performing tomography in vertical travel-time space, we avoid estimating mapping
velocity, instead concentrating on focusing velocity. By introducing anisotropic pre-
conditioning oriented along bedding planes, we can quickly guide the inversion towards
a geologically reasonable model. We illustrate the benefits of our tomography method
by comparing it to more traditional methods on a synthetic anticline model. In addition,
we demonstrate the method’s ability to improve the velocity estimate, and the resulting
migrated image of a real 2-D dataset.

INTRODUCTION

Tomography is inherently non-linear, therefore a standard technique is to linearize the prob-
lem by assuming a stationary ray field (Stork and Clayton, 1991). Unfortunately, we must
still deal with the coupled relationship between reflector position and velocity (Al-Chalabi,
1997; Tieman, 1995). As a result, the back projection operator must attempt to handle
both repositioning of the reflector and updating the velocity model (van Trier, 1990) . The
resulting back projection operator is sensitive to our current guess at velocity and reflector
position.

In addition to non-linearity, tomography problems are often under-determined. To create
more geologically feasible velocity models and to speed up convergence, Michelena (1991)
suggested using varying sized grid cells. Unfortunately, such a parameterization is prone
to error when the wrong size blocks are chosen (Delprat-Jannaud and Lailly , 1992). Other
authors have suggested locally clustering grid cells (Carrion, 1991) or characterizing the ve-
locity model as a series of layers (Kosloff et al. , 1996). These methods are also susceptible
to errors when the wrong parameterization is chosen. An attractive alternative approach is
to add an additional model regularization term to our objective function (Toldi , 1985). In
theory, this regularization term should be the inverse model covariance matrix (Tarantola,
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1987). The question is how to obtain an estimate of the model covariance matrix. The ob-
vious answer is through a priori information sources such a geologist’s structural model of
the area, well log information, or preliminary stack or migration results. Incorporating these
varied information sources into our objective function has always been problematic. For
years, geostatisticians have successfully combined these mixed types of information to pro-
duce variograms (Issaks and Srivastava, 1989). Unfortunately, the geostatistical approach
does not easily fit within a standard global tomography problem. In this paper we follow the
course outlined in Clapp and Biondi (1998) to address both the velocity-depth ambiguity
and the problem of adding geologic constraints. We formulate our tomography problem
in vertical travel-time ( ) coordinates rather than depth. In this coordinate system, reflec-
tors are significantly less sensitive to velocity (Biondi et al. , 1997) and the resulting back
projection operator is less sensitive to the background velocity model (Clapp and Biondi ,
1999). We make the assumption that velocity follows geologic dip or some other known
trend. We then approximate the model covariance matrix by creating small, plane-wave
annihilation filters (Claerbout, 1992b), or steering filters oriented along geologic dip (Clapp
et al. , 1997, 1999). To speed up convergence, we reformulate our regularization problem
to a preconditioned problem (Claerbout, 1998) using the helix transform and polynomial
division (Claerbout, 1998b).

We create a synthetic anticline velocity model and compare the inversion result using a
symmetric regularization operator in depth, steering filter in depth, and finally steering filter
in vertical travel time space. We study the speed and quality of our tomographic estimate
using two different synthetic models. We conclude with some preliminary tests on a 2-D
marine dataset with gas hydrates. Preliminary migration results are encouraging.

THEORY

Following the method described in Clapp (1998), we began by linearizing the tomography
problem around an initial guess at our slowness model s0. We assumed ray stationarity and
described the change in travel time ( t) as being linearly related to our change in slowness
( s):

t Tz s (1)

Tz is composed of two portions. The first, Tz ray simply applies

t l s (2)

or that the change in the travel time is ( t) is equal to change in slowness ( s) times length
of the ray of the ray segment (l) of the ray connecting the source, reflector, and the receiver.
The second component, Tz ref , can be thought of as a chain of two operators: the first maps
our change in slowness ( s) into reflector movement, the second maps the reflector move-
ment into our change in travel times ( t) (van Trier, 1990). This second term amounts to
performing residual migration and can be done by back projecting a ray located at the reflec-
tion point perpendicular to the reflector (Stork, 1994), Figure 1. Taking both components
into account our tomography fitting goal becomes

t Tz ray Tz ref s (3)
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Figure 1: The two portions of the back projection operator. Tz ray is the pair of rays through
s0 from the source to the receiver that obey Snell’s law at the reflector. Tz ref is the raypath
from this reflection point to the surface. bob1-schematic [NR]

Smoothing slowness rather than change of velocity

In general, the tomography problem is under-determined and requires some type of regu-
larization. Ideally, this regularization should be the inverse model covariance (Tarantola,
1987) but that is not readily available. In many cases we do have well logs, initial migration
surfaces, or a geologist’s model of the region that can at least indicate the trend that velocity
should follow. Following the method described in Clapp, et al. (1999) we can build a
space-varying operator composed of small plane wave annihilation filters that can smooth
our velocity along this predetermined trend. The problem is that our model is not slowness,
but change in slowness. To a degree, we can get around this problem by following the
method similar to the one described by Bevc (1994). We start by stating our goal to smooth
the slowness field:

0 As (4)

where A is our steering filter operator. But s is actually s0 s , so we can write a new
regularization goal as

0 A s0 s (5)

As0 A s

A problem with this method is where the adjoint of our modeling operator (Tz) does not
contribute at all to the model we can introduce artifacts. Our best solution to date for
this problem is to introduce a smooth masking operator that tapers off to zero in locations
unaffected by Tz.
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Preconditioning

The proposed regularized tomography problem still has the problem of slow convergence.
By reformulating the problem in helix space (Claerbout, 1998b), we can take advantage
of 1-D theory to change our regularized problem into a preconditioned one. We start by
defining a new variable p:

p A s (6)

By applying polynomial division to our steering filters, we can create A 1 which becomes
a smoothing operator. We can then rewrite our fitting goals as

t Tz ray Tz ref A 1p

As0 p (7)

Tau tomography

In depth tomography we must constantly deal with the depth-velocity ambiguity problem.
Put another way, we are simultaneously trying to estimate both a focusing (S f ) and a mapping
(Sm) slowness. Biondi et al.(1997) showed that by mapping (z x) into ( x) through

z x
z

0
2S z x z (8)

we can write a focusing eikonal equation which only indirectly depends on the mapping
velocity

4
t x

S f x 2 t x

x m x
t x 2

1 (9)

where m is the differential mapping operator defined as

m x
0

S 1
m x

x
S f x (10)

From this eikonal equation we can derive a new relation for the change in travel time due
to a change in the focusing velocity:

t
x

2

l
s x x 0 x (11)

where x and are the change in x and position of the ray segment, 0 x is the
differential mapping factor of our initial slowness model at the ray location, and is
defined as

x
0 x

s0 x
s x 2s0 x

z z

x
(12)

where

z z
0

s x

2s2
0 x

(13)
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We now have a way to back project travel time errors and can write a new set of fitting goals,

t T ray T ref A 1p

As0 p (14)

where T ray and T ref use (11) rather than (2) to back project.

SYNTHETIC TESTS

To test the effectiveness of the method we create a simple anticline synthetic velocity model,
Figure 2. We simulated six reflectors, one on top, four in the anticline, and a basement
reflector. We calculated travel times to all the reflectors for an offset range of 4 kms. These
travel times represent our ‘recorded travel times’. For our initial model we created a v(z)
model by taking the lateral average of the velocity field, Figure 2. From this initial model

Figure 2: Left panel is our synthetic model superimposed by the six reflectors. The right
panel is our starting guess for our velocity function and the map migrated reflector position
using this initial velocity estimate. bob1-model [CR]

we attempted to invert the velocity function by three progressively advanced methods:

Depth-Standard : Inverted for a depth model, using an inverse Laplacian preconditioner
(Claerbout, 1998b) for A 1 in our depth fitting goals (7)

Depth-Steering : Inverting for a depth model, using a steering filter operator for our
preconditioner in our depth fitting goals (7)

Tau-Steering : Inverting for a tau model, using a steering filter operator for our precondi-
tioner in tau fitting goals (14)

Figure 3 shows the result of one non-linear iteration for all three inversions schemes. All
three methods were able to recover the dome shape after one iteration. When using a
Laplacian smoother the velocity increase is spread too far both laterally and vertically. As a
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result, the bottom reflector is located too deep throughout the model. When using steering
filters we still have a significant velocity-depth ambiguity problem, but we have done a little
better job position the bottom reflector. In the case of tau tomography with steering filters
we have done almost a perfect job after a single iteration. We have not perfectly recovered
the lower portion of the anticline structure but we have almost completely flattened the
bottom reflector. To see if, and how fast, we could converge to the correct solution in depth

Figure 3: Left panel is Depth-Standard, middle is Depth-Steering, right is Tau-Steering. All
after 1 non-linear iteration. bob1-model1-iter1 [CR]

we performed several more non-linear iterations. As Figure 4 shows we did a decent job
recovering the anticline with all three methods. In this case, where the model is fairly simple
and we have good travel time coverage, the big advantage seems to be speed. We got a high
quality result with steering filter tau tomography in a single iteration, while it took three with
steering filter depth tomography, and four when using the Laplacian and depth tomography.
The smoothness of the anticline was well suited for the Laplacian so we decided on a slightly
more difficult challenge that could better differentiate between a Laplacian and steering filter
regularization. Our new model keeps the same basic shape for the model but adds a low
velocity layer within the anticline. Figure 5 shows the correct, initial, and the result of 4
iterations using both the Laplacian and steering filters to precondition the problem. After 4
iterations the steering filters have done a much better job recovering the low velocity layer.

TEST ON REAL DATA

We next decided to test the method on real data. For this initial test we decided to work
with a relatively clean data which still had some residual move-out in the common reflection
point (CRP) gathers. The data is from the Blake Outer Ridge as was used by Ecker(1998)
to characterize methane hydrate structures. For our initial velocity model we used Ecker’s
Dix (1955) derived model, Figure 6. Our general philosophy was to limit human time
as much as possible. Therefore we chose to do tau migration (Alkhalifah, 1998) using a
generic Kirchhoff package(Biondi, 1998). By using tau rather than depth migration, we
were quickly able to compare CRPs from iteration to iteration and it allowed us to pick
reflector positions only once. After performing the migration we picked six reflectors,
Figure 7. We picked the sea floor, a strong reflector above the bottom simulating reflector
(BSR), the BSR itself, the flat reflector below the BSR, and two deeper reflectors. Rather
than pick move-out differences we decided to create residual semblance panels at each
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Figure 4: Top-left: Depth-Standard, after 4 non-linear iterations; top-right: Depth-Steering
after 3 iterations; bottom-left: Tau-steering after 1 iteration; and bottom-right: a comparison
of the reflector positions using all 3 methods. The solid, white line is correct reflector
position, the small dashes represent Tau-Steering: large-dashes:Depth-Steering; and the
solid black line is Depth-Standard. bob1-model1-best [CR]
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Figure 5: Top, left Our new model with a low velocity layer within the anticline; top-right,
our starting model; bottom-left, Depth-Standard after 4 iterations; bottom-right Depth-
Steering after 4 iterations. bob1-model2 [CR]
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Figure 6: Initial velocity model in depth. Note the low velocity zone caused by the gas
hydrate starting at approximately 32000 kms and extending to the end of the section.
bob1-christine-vel0 [NR]

Figure 7: Initial stack overlaid by reflectors picked for tomography. bob1-stack [CR]
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reflector location, Figure 8. The panels indicate that there is significant residual curvature,
especially where the BSR meets the lower reflector. From these semblance panels we picked
smooth curves at approximately the maximum semblance at each reflector. To check to see
if a single parameter adequately described the move-outs we back projected the picked
semblance into our CRP gathers. Figure 9 shows that the semblance picks did a fairly
good job describing the move-out. We used our picked reflectors to construct our steering

Figure 8: Residual semblance panels for the bottom 5 reflectors. The black line in each
panel represents the picked maximum. bob1-sem-vel0 [CR]

filters and then applied our tau tomography fitting goals (14). Generally, we have increased
velocity, Figure 10, but the changes still keep velocity following reflector dip. The next step
is to see if our new velocity model flattens our CRP gathers and improves the focusing of the
data. Figures 11 and 12 indicate that we have accomplished both of these goals. Figure 9
shows that all of our reflectors are significantly flatter, with only significant curvature left
along the BSR. Figure 12 shows a much more continuous BSR reflection along with overall
improved focusing of the section above and below.

CONCLUSIONS

By performing tomography in tau space we are able to quickly converge to geologically
realistic velocity models. The results on synthetics indicate that the method when velocity
is not the smooth function that the a Laplacian regularize will attempt to create. Early tests
on field data are encouraging.
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Figure 9: Common reflection point gathers from every 2000 meters starting from 28000.
The lines are the result of mapping back the picked residual slowness values. Note how
the curves do an excellent job matching the actual reflector move-out. bob1-overlay.vel0
[CR]
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Figure 10: The velocity after 1 iteration of tau-steering tomography bob1-christine-vel1
[CR]
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Figure 12: The stack using our initial velocity and the velocity after 1 iteration of tau
steering tomography. Note how the reflectors are generally better focused at a, b, c, and d.
bob1-stack-comp [CR]
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