
Stanford Exploration Project, Report 100, April 20, 1999, pages 197–210

196



Stanford Exploration Project, Report 100, April 20, 1999, pages 197–210

Directional smoothing of non-stationary filters

Robert G. Clapp, Sergey Fomel, Sean Crawley, and Jon F. Claerbout1

keywords: helix, non-stationary, filtering, steering

ABSTRACT

Space-varying prediction error filters are an effective tool in solving a number of com-
mon geophysical problems. To estimate these filters some type of regularization is
necessary. An effective method is to smooth the filters along radial lines in CMP gath-
ers where dip information is relatively unchanging.

INTRODUCTION

Estimating filters is routine in seismic processing. The simplest example might be decon-
volution, but filter estimation is also valuable in many other aspects of seismic processing:
interpolation (Spitz, 1991; Crawley, 1998), noise attenuation (Canales, 1984; Soubaras,
1994; Abma, 1995), missing data (Claerbout, 1998; Fomel et al. , 1997), and coherency
estimation (Schwab, 1998; Bednar, 1997) to name just a few. All of these processes are
based on the concept of finding a filter that minimize the energy when it is applied to a
given set of data. The fundamental assumption is that that statistics of the data does not
change spatially. This is often not the case. One solution to this problem is to separate the
data into a number of overlapping patches (Claerbout, 1992d) where the stationary statistic
assumption is more valid. Unfortunately, there is a limit to how small we can make our
patches and still gather sufficient statistics.

A way around this limitation is to estimate a space varying prediction error filter (PEF)
(Crawley et al. , 1998). In the extreme case you can think of estimating a filter at every data
location, or more realistically, at a coarser grid spacing. With so many filters and, as result,
so many filter coefficients, our estimation can quickly turn into an undetermined or at least
poorly determined problem. Therefore we must impose some type of regularization to our
estimation problem. Choosing an appropriate regularization then becomes an issue. In this
paper we argue that when estimating filters on seismic CMP data, you should smooth along
radial lines. In a constant velocity medium the dip along a radial trace does not change, but
in a more complex media it will vary slowly (Ottolini , 1982). By limiting filter variation
in the radial direction we gather more data in our filter estimation thus enhancing stability.
Here we show how to estimate the appropriate smoothing direction, and how to build and
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apply the appropriate regularization.

WHY SMOOTH RADIALLY

Dips change quickly along every axis in seismic data. As a result a single PEF has trouble
characterizing it, even in small patches (Crawley, 1999). By estimating a space-varying PEF,
we can overcome this deficiency. Unfortunately, this changes our estimation problem from
something overdetermined to something,at times, grossly underdetermined. To stabilize our
filter estimation we must apply some type of regularization to the standard PEF estimation
optimization goals:

0 Ya (1)

0 Fa

where a is our space-varying filter, Y is convolution with our data, and F is a roughener.
To speed up convergence, we can take advantage of helix theory (Claerbout, 1998b) and
reformulate our regularized problem into a preconditioned one

0 YF 1A 1p (2)

0 p

where
p Fa (3)

Our choice for F can have significant influence on both the speed and quality of our filter
estimation. The character of seismic data itself gives us a clue on what type of regularization
we should use. A PEF filter is most successful when the statistics of the data it is being
estimated from are stationary. Logically, our rougher F , or F 1 , should tend to smooth
along a region with consistent dips, or along Snell traces (Claerbout, 1978). Figure 1
shows several constant velocity hyperbolas, with the same dips highlighted. These dips
all fall along a radial line through zero time and zero offset. If we look at hyperbolas in

z , Figure 2, we see that there is deviation from a simple line, but generally this trend is
preserved.

CHOOSING SMOOTHING DIRECTIONS

Prediction-errorfilters work best on predicting local plane waves (Claerbout, 1992c; Canales,
1984). With non-stationary filters, it is possible to predict data with variable slopes. For
preconditioning the filter estimation problem, such filters can be smoothed along the direc-
tion where the slope stays locally constant. To put this principle into a mathematical form,
let us denote the monodop data as P x y , where x and y are the coordinate values. On a
seismic data section, the y coordinate would have the meaning of time, but here we would
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Figure 1: Constant velocity curves.
The thick lines are the same dip on all
the reflectors. Note how they form a
line. bob3-dips.constant [ER]

Figure 2: V(z) medium curves. The
thick lines represent the same dip.
Note how they are not perfectly lin-
ear but generally lay along a line.
bob3-dips.vz [ER]

like to develop a general method that would work on different kinds of data. The local dip
field of the data can be defined by the formula

D x y
Px

Py
(4)

where Px and Py denote the first partial derivatives: Px
P
x , Py

P
y . To validate

formula (4), consider a plane-wave model with the slope s:

P x y P0 y sx (5)

Substituting (5) into formula (4), we can see that the D x y indeed produces an estimate
of s (Claerbout, 1992). In the general case, D x y corresponds to the tangent of the
local plane wave angle, measured from the x axis in the direction of the y axis. Bednar
(1997) describes an application of formula (4) for computing coherency attributes. Instead
of using formula (4) explicitly, we intend to estimate prediction-error filters that would
destroy local plane waves in the data (Claerbout, 1992c; Schwab, 1998). To precondition
the filter estimation problem we can smooth the filters in the direction of the least change
in the slope. By analogy with (4), the smoothing direction can be defined as follows:

S x y
Dx

Dy
(6)
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Figure 3: The effect of dip smoothing. The top-left panel is the input, the top-right is the
result of applying the forward operator, bottom-left is the adjoint response; and bottom-right
is the cascade of forward and the adjoint. bob3-random [ER]
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or, substituting formula (4),

S x y
Px Pxy Py Pxx

Py Pxy Px Pyy
(7)

where Pxx , Pyy , and Pxy are the corresponding second-order partial derivatives. An impor-
tant analytical test case is a constant-velocity CMP gather, composed of reflection hyper-
bolas:

Phyper x y P0 y2 s2x2 (8)

Substituting (8) into formula (7) leads to the expression

Shyper x y
y

x
(9)

which suggests smoothing the estimated prediction-error filters along radial lines on the
x y plane (Crawley et al. , 1998). Figure 4 and 5 illustrate a practical application of

Figure 4: Synthetic model from Basic Earth Imaging (left), its estimated dip field (center),
and estimated smoothing directions (right). bob3-sigmod [ER]

Figure 5: Seismic shot gather (left), its estimated dip field (center), and estimated smoothing
directions (right). bob3-wz [ER]

formulas (4) and (6) on a synthetic reflectivity model from Basic Earth Imaging (Claerbout,
1995) and on a shot gather from the Yilmaz collection (Yilmaz, 1987). In both cases the
first- and second-derivative operators were computed with simple finite-difference schemes.
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To avoid a non-stable division in formulas (4) and (6), we solve the regularized least-square
system

Dx N
x 0

(10)

where D and N denote the denominator and the numerator respectively, is the scalar
regularization parameter, and x is the estimated regularized ratio. Our simple two-point
finite-difference scheme does not handle correctly the aliased dips on the seismic gather
in Figure 5. Nevertheless it produces a reasonable output, which we can use as a rough
estimate of the smoothing directions.

HOW TO SMOOTH RADIALLY

Once we know what directions we wish to smooth in, we must build an operator that can
smooth in the desired directions. We want to minimize the cost of smoothing, so we would
like the filters to be small. As discussed in Clapp (1997) an effective method is to build a
series of small plane-wave annihilation filters (Claerbout, 1992b) and then combine them
into a single operator.

Constructing a filter

The basic idea in building a steering filter is to create a filter that destroys a given slope p.
Further, we would like to keep differences of the bandwidth response for filters oriented at
different slopes to a minimum. We can achieve both these goals by constructing a triangle
centered at the appropriate slope (Figure 6.) Every grid cell center which the triangle passes
through is assigned a negative value proportional to the height of the triangle at that location.
The wider the triangle base, the less precise, and more Gaussian-like our smoother becomes,
Figure 7. By decreasing the sum of the coefficients (with a hard limit of -1 to ensure filter
stability when applying polynomial division (Claerbout, 1976)), we can spread information
larger distances.

Control

The number of adjustable parameters in the filter construction is both a curse and a blessing.
Whenever you add parameters to your problem, the model space that you have to search
increases exponentially. With two adjustable parameters, taken to the extreme, at every
model point, the task can seem daunting. Generally, the smartest course is to keep these
two parameters constant throughout the whole model space. But, this freedom also opens
up interesting possibilities. In certain regions of the data you might feel that the radial
assumption is not quite is valid, or that dips aren’t changing quite as fast. In this region you
could consider making your triangle bigger, smoothing you filter coefficients over a wider
angle range, while keeping it small in areas where dip changes quickly. The sum of the
non-zero lag coefficients opens up another intriguing freedom. As Figure 8 shows, when
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Figure 6: A finite-difference star for
a monoplane rejection filter. The left
column contains a ‘1’. The right col-
umn contains samples off a triangle.
The desired slope is represented by
p , the smaller w the more precise the
dip smoothed, and the larger h the
bigger the area the smoother acts on.
bob3-steering [NR]

p

w

h

the sum of the non-zero lag coefficients gets close to 1, the area over which the smoother
operates increases greatly. This is similar to increasing the value over only a portion of
your model space. This gives you the freedom to easily smooth regions where filter stability
is questionable, while allowing high frequency changes in areas of good data.

Applying filter

As discussed by Claerbout (1998), by defining our filters in helix space we can use polyno-
mial division to apply their inverse. This same principal holds true for space varying filters.
The basic algorithm is:

integer function npolydiv(adj,add,model,data){

logical :: adj,add

real :: xx(:),yy(:)

integer :: ia, ix, iy, ip

integer, dimension(:), pointer :: lag

real, dimension(:), pointer :: flt,tt

allocate(tt(size(yy)))

tt = 0.

if( adj) {

tt = yy

do iy= nd, 1, -1 { ip = aa%pch( iy)

lag => aa%hlx( ip)%lag; flt => aa%hlx( ip)%flt

do ia = 1, size( lag) {

ix = iy - lag( ia); if( ix < 1) cycle

tt( ix) -= flt( ia) * tt( iy)

}

}

xx += tt

} else {
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Figure 7: The impulse response of the smoothing filter as function of the triangle base. Note
the wider the base, the less precise the dip smoothing. bob3-width [ER]

Figure 8: The impulse response of the smoothing filter as the sum of the non-zero lag
coefficients get closer to 1. bob3-distance [ER]
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tt = xx

do iy= 1, nd { ip = aa%pch( iy)

lag => aa%hlx( ip)%lag; flt => aa%hlx( ip)%flt

do ia = 1, size( lag) {

ix = iy - lag( ia); if( ix < 1) cycle

tt( iy) -= flt( ia) * tt( ix)

}

}

yy += tt

}

allocate(tt(size(yy)))

}

PREDICTING A CMP GATHER

To show how radial smoothing can be valuable, we constructed a synthetic CMP gather
using a Kirchhoff modeling code. To these CMP gathers we added two lines, one in a
radial direction and one at constant time (left panel of Figure 9.) The constant time line
can be thought of as noise, while the radial line represents conflicting information that fits
our model of valid data. We then attempted to estimate the shot gather using fitting goals
(3) with filters every 20 points in time and every 5 points in offset using two different types
of preconditioners. The center panel shows the residual after using an inverse Laplacian
(Claerbout, 1998b) and the right panel, radial smoothers. Generally, the two approaches
did approximately the same job in predicting the data. The difference comes where the lines
intersect the hyperbolas. If we examine the intersection points, more closely, Figure 10, we
see that in the case of the Laplacian we did an equal job of predicting the hyperbolas and
the constant time line. When using steering filters, the constant time line is much stronger
(we avoid predicting noise).

INTERPOLATING A CMP GATHER

Once filters are estimated, one of their potential uses is missing data interpolation. Sys-
tematic gaps in data acquisition may cause data aliasing sufficient to make some processing
steps difficult (Spitz, 1991; Crawley, 1998). Adding more traces can dealias the data. To
add more traces, we require that the original data and the new data have the same dips
(Claerbout, 1997). The dip information is carried in the PEFs. The missing data estimation
is formulated just like the filter estimation, except that the PEFs are known and the data
unknown. Also, we constrain the data by specifying that the originally recorded traces do
not change. To separate the known and unknown data we have a known data selector K
and an unknown data selector U , with U K I. These multiply by 1 or 0 depending on
whether the data was originally recorded or not. With A signaling convolution with the PEF
and y the vector of data, the regression is 0 A U K y , or AUy AKy. Filters at
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Figure 9: The result after 15 conjugate gradient steps of fitting goals (3). The left panel is
the input, the center is using an inverse Laplacian preconditioner, the right panel is using
radial smoothing. bob3-comparison1 [ER]

every data point are cumbersome to estimate, so we estimate filters over small areas. This
is just like patching (Claerbout, 1992d) except that now the patches are not independent.
If the patches are independent, there is a lower limit on the patch size, because a patch
must contain plenty of data to provide enough fitting equations to determine all the filter
coefficients. Experience shows that where the data have curvature, the minimum patch
size tends to be too large for the assumption of stationarity to be reasonable. Smoothing
the filters allows us to make the patches much smaller, so that stationarity assumptions are
workable. We arrange the new patches in polar coordinates, to take advantage of the notion
of radial smoothing. An illustration is given in Figure 11. The cmp gather is overlayed by
lines which delineate patch boundaries. Degree of smoothing in r and is adjustable. The
patches shown are fairly large. Crawley and Claerbout(1999) explains further this method
and shows the result of interpolating using radial patches and smoothers.

CONCLUSIONS

As the progress report deadline arrived, the authors were uncertain among themselves
whether the results were correct. The prediction-error filters have clearly reduced the output
variance, but the results do not clearly show the dip dependences that we expected. Gen-
erally we expected to see strong energy locally where events cross, and we expected to see
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Figure 10: An enlargement of Figure 9. Note that the constant time line, what we con-
sider noise, is much better predicted by the inverse Laplacian (center panel) than by radial
smoothing. bob3-comparison2 [ER]

Figure 11: Example CMP gather overlayed by patch boundaries. Smoothing of filter coef-
ficients is adjustable in r and . bob3-web [ER]
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weak energy where the data was locally monodip. It is not clear that this happened.
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