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ABSTRACT

The eikonal equation with point source is difficult to solve with high order accuracy be-
cause of the singularity of the solution at the source. All the formally high order schemes
turn out to be first order accurate without special treatment of this singularity. Adaptive
upwind finite difference methods based on high order ENO (Essentially NonOscilla-
tory) Runge-Kutta difference schemes for the paraxial eikonal equation overcome this
difficulty. The method controls error by automatic grid refinement and coarsening based
on an a posteriori error estimation. It achieves prescribed accuracy at far lower cost than
fixed grid methods. Reliable auxiliary quantities, such as take-off angle and geometrical
spreading factor, are by-products.

INTRODUCTION

Many finite difference methods have been introduced to compute the traveltime for isotropic
media directly on a regular grid (Reshef and Kosloff , 1986; Vidale, 1988; van Trier and
Symes, 1991; Schneider et al. , 1992; Qin et al. , 1992; Schneider, 1995; El-Mageed, 1996;
El-Mageed et al. , 1997; Fomel , 1997; Popovici and Sethian, 1997).

The traveltime field is mostly smooth, and the use of upwind differencing (in all of the
cited methods) confines the errors due to singularities which develop away from the source
point. The source point itself is, however, also a singularity. The truncation error of a pth
order method is dominated by the product of p 1 st derivatives of the time field and the
p 1 st power of the step(s). The p 1 st derivatives of the time field, however, go like

the p 1 th power of the distance to the source. Therefore, near the source — when the
distance is on the order of the step — the truncation error is quadratic in the step, i.e., first
order. This inaccuracy spreads throughout the computation, and renders all higher order
methods first-order convergent unless the scheme is modified near the source. The issue
is not academic: the first-order error is sizeable, as we shall show. Moreover, it prevents
reliable computation of auxiliary quantities such as takeoff angle and amplitude.

1This paper will also appear in TRIP 1999 Annual Report.
2email: jlqian@caam.rice.edu, symes@caam.rice.edu
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In this paper, we show how to use adaptive gridding concepts commonplace in the
numerical solution of ordinary differential equations to resolve this difficulty. This work
refines and extends the method introduced in Belfi and Symes (1998). The efficiencies
achieved by adaptive gridding are considerable — usually more than an order of magni-
tude gain in computation time for problems of typical exploration size. We also obtain
dramatic improvements in the accuracy of takeoff angle computations and, therefore, for
other geometrical acoustics quantities as well.

PARAXIAL EIKONAL EQUATION

Denote by xs zs the coordinates of a source point, and by x z the coordinates of a
general point in the subsurface. The first arrival traveltime field x z xs zs is the viscosity
solution of the eikonal equation
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as x z xs zs , where is the velocity, s 1 is the slowness (Lions, 1982).

In some seismic applications, the traveltime field is only needed in regions where

z
s cos max 0

i.e., along downgoing, first-arriving rays making an angle max 2 with the vertical.

To enforce this condition, we modify the eikonal equation as an evolutionary equation
in depth, as suggested by Gray and May (1994):
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where smmax is a smoothed max function:
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This equation defines a stable nonlinear evolution in z , suitable for explicit finite dif-
ference discretization. The solution is identical to the solution of the eikonal equation
provided that the ray makes an angle max 2 with the vertical.
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THE ADVECTION EQUATION FOR TAKE-OFF ANGLE

The amplitude satisfies the zeroth order transport equation (Červ et al. , 1977):

A
1

2
A 2 0 (3)

If the traveltime field has been found by solving the eikonal equation, then equation
(3) is a first order advection equation. However, we see that the Laplacian of traveltime
field is involved in the transport equation, which implies that we need a third order accurate
traveltime field to get a first order accurate amplitude field (Symes, 1995; El-Mageed, 1996;
El-Mageed et al. , 1997). To avoid this complexity, we use another approach to compute the
amplitude.

In 2D isotropic media, the amplitude satisfies (Červ et al. , 1977; Friedlander, 1958)

A
2 2 J

2 2

where J x z xs zs is the Jacobian of the transformation from Cartesian coordinates x z
to ray coordinates , is the traveltime, x z xs zs is the take-off angle from
source point xs zs to a general point x z in the subsurface:

J
x z

x z

x z
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where and are the gradients of take-off angle and traveltime, respectively.

Since the take-off angle is constant along any ray,

x x z z
0 (4)

That is, the gradient x z is the wavefront normal which is tangential to the ray; the

gradient x z is tangential to the wavefront.

However, the gradient of the take-off angle depends on the second order derivative of
traveltime, so that we need third order accurate traveltimes to get a first order accurate
gradient of take-off angle. Zhang (1993) used this equation in polar coordinates to compute
the geometrical spreading factor, but his computation of the take-off angle was based on the
first order traveltime field. Consequently, the gradient of take-off angle computed by his
scheme was inaccurate. Vidale (1990) encountered a similar difficulty.
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ENO AND WENO FOR EIKONAL EQUATIONS

There is a large number of competing finite difference and related schemes for the solution
of the eikonal equation suggested in the literature; we have chosen to use the essentially
nonoscillatory (“ENO”) schemes of Osher and Sethian (1988) and Osher and Shu (1991)
and the related weighed ENO (WENO) schemes (Liu et al. , 1994; Shu, 1997; Jiang and
Peng, 1997) for the following reasons: (1)stable schemes of arbitrarily high order accuracy
exist, permitting accurate solutions on coarse grids (which is critical to the mesh refinement
or coarsenment); (2) versions exist in any dimension so that we can extend our methodology
to the three-dimensional case straightforwardly (El-Mageed, 1996; El-Mageed et al. , 1997;
Qian and Symes, 1998).

Our adaptive scheme is based on the 2nd and 3rd order WENO difference schemes
introduced by Jiang and Peng (1997). These are in turn extensions of 2nd and 3rd order
ENO difference schemes, which we present first.

For a function f of the space variable x z in the computational domain, we write

f k
i f xi zk

xi zk xmin i 1 x zmin k 1 z

Let k
i xi zk xs zs and define the forward D and backward D finite difference

operators
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The second and third order ENO refinements of Dx are
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The upwind ENO approximations for x are

Dn
x modmax max D n

x 0 min D n
x 0

for n 2 3, where modmax function returns the larger value in modulus.

The second order and third order ENO Runge-Kutta steps are
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and
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The depth step z must satisfy the stability condition:

z zc f l
0 9 x

tan max

We have typically chosen z 0 9 zc f l .

The nth order scheme is then

k 1 k n
n

k (7)

for k 0 1 2 , n 2 3.

However, we have observed that the gradient of the take-off angle based on the third
order ENO traveltime is too noisy to give us a smooth amplitude function. To alleviate this
phenomenon, instead of ENO 3rd order refinements, we use WENO 5th order refinement
(Jiang and Peng, 1997) to compute Dx in the third order Runge-Kutta step, which gives
us a smooth amplitude field.

The WENO 5th order schemes for Dx i are
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In the denominators above, we added a small positive number to avoid dividing by zero.
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WENO FOR ADVECTION EQUATIONS

Recall the advection equation for the take-off angle,

x x z z
0

To match with the evolutionary form of the eikonal equation in depth, we formulate the
advection equation as an evolution equation in depth as well, i.e.,

z z
1

x x
(8)

To take advantage of the accuracy of traveltime provided by an ENO (or WENO) Runge-
Kutta third order scheme for eikonal equation, we embed the third order scheme for equation
(8) into the third order scheme for the eikonal equation.

To be more precise, we introduce the approximations for x-derivative and z-derivative
of in the above advection equation:

x
D5

x modmax max D 5
x 0 min D 5

x 0

z
H D5

x

However, we must be careful in defining the upwind ENO difference approximation for

x because the ENO choice of stencil is too sensitive to the zeros of solution (Liu et al. ,
1994; Jiang and Shu, 1996). Instead, we will use a weighted ENO (WENO) scheme to
approximate the derivative. Because the coefficient of the discretized advection equation
has only second order accuracy, which is computed from the eikonal equation by the third
order scheme, we use a third order WENO scheme to approximate the derivative x . The
third order WENO scheme is based on the second order ENO stencils, so it does not give
rise to any new complexities in the coding.

The third order upwind WENO approximations to x (Jiang and Peng, 1997) are
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and is a small positive constant to prevent the denominators from becoming zero.

Now we define the upwind WENO difference for x , which corresponds to the upwind
direction of x as follows:

Dup
x

k
i

D 3
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k
i if D5

x
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i 0

D 3
x

k
i else

Finally, we can formulate the third order WENO Runge-Kutta scheme for the advection
equation as
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where
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The 3rd order scheme for is then

k 1 k 3
3

k (10)

for k 0 1 2 .

But this scheme is really a second order scheme because the coefficients have only
second order accuracy.

ADAPTIVE GRID METHOD AND ITS IMPLEMENTATION

The adaptive multigrid method has been widely used for the accurate and efficient solution
of PDE (Berger and Oliger, 1984; Berger and LeVeque, 1997), which uses an adaptive local
error estimate to refine or coarsen the computational grid near the singularity or discontinuity
of solution. For initial value problems of ODE, most state-of-the-art software uses adaptive
timestepping algorithms where the timesteps are inductively chosen so that some estimate
of the local (one step) error at each step is less than some quantity related to the user-defined
tolerance.

The essential principle is simple. It is based on a hierarchy of difference schemes of
various orders. Presumably a higher order step is more accurate than a lower order step, so
the higher order step can serve as an ersatz for the exact solution of the differential equation
with the same data. Therefore, one can combine the step computations of two different
orders to obtain a so-called a posteriori estimate of the truncation error for the lower order
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step. Since the lower and higher order truncation errors stand in a known asymptotic relation,
this permits an estimate of the higher order truncation error as well. The asymptotic form
of the truncation error then permits prediction of a step that will result in a lower order
truncation error less than a user-specified tolerance. So long as the steps are selected to
maintain this local error, standard theory predicts that the higher order global error, i.e., the
actual error in the solution computed using the higher order scheme, will be proportional to
the user-specified tolerance.

This straightforward idea is embedded in most modern software packages for solutions
of ordinary differential equations (Gear, 1971). Its use for partial differential equations
is a little more complicated because it is usually necessary to adjust the grid of the non-
evolution variables along with the evolution step. The solution of the (paraxial) eikonal
equation changes in a sufficiently predictable way to make grid adjustment practical.

To initialize our algorithm, the user supplies a local error tolerance ; 1 and 2 are two
user-defined positive functions of which are used to control the coarsening and refinement,
for example, we can take 1 0 1 and 2 . We use the 2nd and 3rd order eikonal
solvers (equations (5) and (6)), and estimate the truncation error of the 2nd order scheme
at the kth step as ek

2
2
2

k 3
3

k . So long as 1 ek
2 2 , we simply proceed

to the next step; it is well known and explained in the references already cited that efficient
adaptive stepping requires rather loose control of the local error. When ek

2 1 , we
increase the step by a factor of two, i.e., z 2 z , and recompute ek

2. Similarly, when
ek

2 2 , we decrease the step by a factor of two. As soon as the local error is once
again within the tolerance interval we continue depth-stepping. A very important point: we
retain the 3rd order (a more accurate one) computation of at the end of each depth step,
discarding the 2nd order computation, which is used only in step control.

The usual step adjustment in ODE solvers would change z by a factor computed from
the asymptotic form of the truncation error. This is impractical for a PDE application,
because it would require an arbitrary adjustment of the spatial grid (i.e., the x-grid in the
eikonal scheme) and, therefore, expensive interpolation. Scaling z by a factor of two,
however, implies that stability may be maintained by scaling x by the same factor. For
coarsening, this means simply throwing out every other grid point, i.e., no interpolation
at all, which dramatically reduces the floating point operations required. Since the typical
behaviour of the traveltime field is to become smoother as one moves away from the source,
the truncation errors tend in general to decrease. Therefore, most of the grid adjustments
are coarsenings and very little or no interpolation is required.

One final detail must be supplied to produce a working algorithm. Since the traveltime
field is nonsmooth at the source point, the truncation error analysis on which the adaptive
step selection criterion is based is not valid there. So it is necessary to produce a smooth
initial traveltime field. We do this by estimating the largest zinit 0, at which the constant
velocity traveltime is in error by less than 2 . Details of the zinit calculation are given
in (Belfi and Symes, 1998). Having initialized at zinit , the algorithm invokes adaptive
gridding. Since zinit is quite small, changes rapidly, resulting in a large number of grid
refinements at the outset. However, no interpolation is performed, as is given analytically
on z zinit. This initial very fine grid is rapidly coarsened as the depth stepping proceeds.
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In our current implementation, we maintain a data structure for the computational grid
that is independent of the output grid; the desired quantities are calculated on the computa-
tional grid and interpolated back to the output grid.

A simplified algorithm framework is as follows:

Input: , z0 , z0 , x0 , n 0, maxre f .

Marching step:

– do while zn target depth,

– zn zn zn , n n 1,

– compute ek
2

n zn ;

– if ek
2

n zn
1 and k 0,

zn 2 zn ,
xn 2 xn ,

k k 1.

– else if ek
2

n zn
2 and k maxref ,

zn zn 2,
xn xn 2,

k k 1.

– end if

– end do

NUMERICAL EXPERIMENTS

In the first example, we test our method on a constant velocity model( 1km s) with
two-dimensional geometry x z 0 5 x 0 5 0 z 1 0 .

In this case, all the desired quantities have an obvious analytical solution to compare
against the computed solutions. We compare the results obtained by two approaches, the
first approach is computing all the quantities on the fixed output grid which reduces to be
a first order method, the second is computing all the quantities by adaptive gridding. The
ouput grid is 51 51 with x z 0 02. For adaptive grid, maxref is set to be 5 with
the coarsest grid 17 17, and the error tolerance is set to be 0.0001.

Figures 1 and 2 show the traveltime contours by the two approaches, from which we
cannot see any differencesbetween two approaches. Similarly, we cannot see any differences
in accuracy between two approaches from take-off angle, as shown in figures 3 and 4. This
is due to visual limitations of graphics.

Figures 5 and 6 are contours of x computed by two approaches. We can see that x

by the fixed grid approach is oscillating, but x by the adaptive grid traveltime solver is
convergent. Similar conclusions can be drawn for z , as shown in figures 7 and 8.
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Now we come to take-off angle derivatives. Figure 9 and 10 are contours of x by two
approaches. Because the coefficients in the advection equation for take-off angle depend on
the traveltime gradient, any first order traveltime solver results in inaccurate which leads
to the divergence of x , as shown in figure 9. However, the adaptive gridding approach
gives us accurate traveltime gradients, which leads to the convergent x , as shown in figure
10. Similar conclusions can be drawn for z , as shown in figure 11 and 12.

To illustrate further the difference of accuracy between two approaches, figures 13 and
14 show the error distributions of x and z .

Finally, the amplitudes based on the gradients of traveltime and take-off angle computed
by the two approaches are shown in figures 15 and 16, one is divergent by the fixed grid
approach, another accurate by the adaptive gridding approach.

In the second example, we use our new eikonal and amplitude solver in 2D Kirchhoff
prestack migration and inversion. Figure 17 shows the impulse response by inversion with
an ENO 3rd order eikonal solver. Figure 18 shows the impulse response by inversion with
a WENO 5th order eikonal solver. By figures 17 and 18, we can see that the WENO 5th
order solver does give us a more smooth amplitude than ENO 3rd solver.

Figure 1: Traveltime for con-
stant velocity model: fixed grid
jianliang1-comtau.fir [CR]
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Figure 2: Traveltime for con-
stant velocity model: adaptive grid
jianliang1-comtau.ada [CR]
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Figure 3: Take-off angle for con-
stant velocity model: fixed grid
jianliang1-cometa.fir [CR]
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Figure 4: Take-off angle for con-
stant velocity model: adaptive grid
jianliang1-cometa.ada [CR]
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Figure 5: Traveltime x derivative x

for constant velocity model: fixed
grid jianliang1-comtaux.fir [CR]
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Figure 6: Traveltime x derivative x

for constant velocity model: adap-
tive grid jianliang1-comtaux.ada
[CR]

0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z

x

x
: adaptive solver 



280 Qian & Symes SEP–100

Figure 7: Traveltime z derivative z

for constant velocity model: fixed
grid jianliang1-comtauz.fir [CR]
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Figure 8: Traveltime z derivative z

for constant velocity model: adap-
tive grid jianliang1-comtauz.ada
[CR]
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Figure 9: Take-off angle x deriva-
tive x at z 1 for con-
stant velocity model: fixed grid
jianliang1-angxder.fir [CR]
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Figure 10: Take-off angle x deriva-
tive x at z 1 for con-
stant velocity model: adaptive grid
jianliang1-angxder.ada [CR]
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Figure 11: Take-off angle z deriva-
tive z at z 1 for con-
stant velocity model: fixed grid
jianliang1-angzder.fir [CR]
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Figure 12: Take-off angle z deriva-
tive z at z 1 for con-
stant velocity model: adaptive grid
jianliang1-angzder.ada [CR]

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

x

z

z
 at z=1:adaptive solver

**:comp. value

Figure 13: Error distribution in take-
off angle derivatives x and z : fixed
grid jianliang1-angxzerr.fir [CR]
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Figure 14: Error distribu-
tion in take-off angle deriva-
tives x and z : adaptive grid
jianliang1-angxzerr.ada [CR]
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Figure 15: Amplitude for con-
stant velocity model: fixed grid
jianliang1-amp.fir [CR]
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Figure 16: Amplitude for con-
stant velocity model: adaptive grid
jianliang1-amp.ada [CR]
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Figure 17: The impulse re-
sponse by inversion with ENO
3rd order adaptive eikonal solver
jianliang1-eno600.ada [CR]
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Figure 18: The impulse response
by inversion with WENO 5th
order adaptive eikonal solver
jianliang1-weno600.ada [CR]
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CONCLUSIONS

In this paper we formulated a paraxial eikonal equation with depth as evolution direction.
Then we presented high order ENO difference schemes to solve the eikonal equation for
traveltime and the advection equation for take-off angle. To deal with the singularity of
point source, we proposed a new adaptive traveltime eikonal solver and detailed the imple-
mentation. Numerical experiments showed that the new method is not only accurate but
also gives us efficiency gain of more than an order of magnitude in computational time. The
extension to 3D isotropic media is straightforward.
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