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ABSTRACT

To account for large-volume low-permeability storage porosity and low-volume high-
permeability fracture/crack porosity in oil and gas reservoirs, phenomenological equa-
tions for the poroelastic behavior of a double porosity medium have been formulated
and the coefficients in these linear equations identified. This generalization from a sin-
gle porosity model increases the number of independent inertial coefficients from three
to six, the number of independent drag coefficients from three to six, and the number
of independent stress-strain coefficients from three to six for an isotropic applied stress
and assumed isotropy of the medium. The analysis leading to physical interpretations
of the inertial and drag coefficients is relatively straightforward, whereas that for the
stress-strain coefficients is more tedious. In a quasistatic analysis, the physical interpre-
tations are based upon considerations of extremes in both spatial and temporal scales.
The limit of very short times is the one most pertinent for wave propagation, and in
this case both matrix porosity and fractures are expected to behave in an undrained
fashion, although our analysis makes no assumptions in this regard. For the very long
times more relevant to reservoir drawdown, the double porosity medium behaves as
an equivalent single porosity medium. At the macroscopic spatial level, the pertinent
parameters (such as the total compressibility) may be determined by appropriate field
tests. At the mesoscopic scale pertinent parameters of the rock matrix can be determined
directly through laboratory measurements on core, and the compressiblity can be mea-
sured for a single fracture. We show explicitly how to generalize the quasistatic results
to incorporate wave propagation effects and how effects that are usually attributed to
squirt flow under partially saturated conditions can be explained alternatively in terms
of the double-porosity model. The result is therefore a theory that generalizes, but is
completely consistent with, Biot’s theory of poroelasticity and is valid for analysis of
elastic wave data from highly fractured reservoirs.
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INTRODUCTION

It is well-known in the phenomenology of earth materials that rocks are generally heteroge-
neous, porous, and often fractured or cracked. In situ, rock pores and cracks/fractures can
contain oil, gas, or water. These fluids are all of great practical interest to us. Distinguishing
these fluids by their seismic signatures is a key issue in seismic exploration and reservoir
monitoring. Understanding their flow characteristics is typically the responsibility of the
reservoir engineer.

Traditional approaches to seismic exploration have often made use of Biot’s theory of
poroelasticity (Biot, 1941; 1956a,b; 1962; Gassmann, 1951). Many of the predictions of this
theory, including the observation of the slow compressional wave, have been confirmed by
both laboratory and field experiment (Berryman, 1980; Plona, 1980; Johnson et al. , 1982;
Chin et al. , 1985; Winkler, 1985; Pride and Morgan, 1991; Thompson and Gist, 1993; Pride,
1994). Nevertheless, this theory has always been limited by an explicit assumption that the
porosity itself is homogeneous. Although this assumption is often applied to acoustic studies
of many core samples in a laboratory setting, heterogeneity of porosity nevertheless exists
in the form of pores and cracks. Also, single homogeneous porosity is often not a good
assumption for application to realistic heterogeneous reservoirs in which porosity exists in
the form of matrix and fracture porosity. One approach to dealing with the heterogeneity is to
construct a model that is locally homogeneous, i.e. , a sort of finite element approach in which
each block of the model satisfies Biot-Gassmann equations. This approach may be adequate
in some applications, and is certainly amenable to study with large computers. However,
such models necessarily avoid the question of how we are to deal with heterogeneity on the
local scale, i.e. , much smaller than the size of blocks typically used in such codes.

Although it is clear that porosity in the earth can and does come in virtually all shapes
and sizes, it is also clear that just two types of porosity are often most important at the
reservoir scale: (1) Matrix porosity occupies a finite and substantial fraction of the volume
of the reservoir. This porosity is often called the storage porosity, because this is the volume
that stores the fluids of interest to us. (2) Fracture or crack porosity may occupy very little
volume, but nevertheless has two very important effects on the reservoir properties. The
first effect is that fractures/cracks drastically weaken the rock elastically, and at very low
effective stress levels introduce nonlinear behavior since very small changes in stress can
lead to large changes in the fracture/crack apertures (and at the same time change the fracture
strength for future changes). The second effect is that the fractures/cracks often introduce a
high permeability pathway for the fluid to escape from the reservoir. This effect is obviously
key to reservoir analysis and the economics of fluid withdrawal.

It is therefore not surprising that many attempts have been made to incorporate fractures
into rock models, and especially models that try to account for partial saturation effects and
the possibility that fluid moves (or squirts) during the passage of seismic waves (Budiansky
and O’Connell, 1975; O’Connell and Budiansky, 1977; Mavko and Nur, 1979; Mavko
and Jizba, 1991; Dvorkin and Nur, 1993). Previous attempts to incorporate fractures have
generally been rather ad hoc in their approach to the introduction of the fractures into Biot’s
theory, if Biot’s theory was used at all. The present authors have recently started an effort to
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make a rigorous extension of Biot’s poroelasticity to include fractures/cracks by making a
generalization to double-porosity/dual-permeability modeling (Berryman and Wang, 1995).
The previously published work concentrated on the fluid flow aspects of this problem in
order to deal with the interactions between fluid withdrawal and the elastic behavior (closure)
of fractures during reservoir drawdown. The resulting equations have been applied recently
to the reservoir consolidation problem by Lewallen and Wang (1998).

It is the purpose of the present work to point out that a similar analysis applies to the
wave propagation problem. Just as Biot’s early work on poroelasticity for consolidation
(Biot, 1941) led to his later work on wave propagation (Biot, 1956; 1962), the present work
follows our own work on consolidation (Berryman and Wang, 1995) with its extension
to wave propagation. We expect it will be possible to incorporate all of the important
physical effects in a very natural way into this double-porosity extension of poroelasticity
for seismic wave propagation. The price we pay for this rigor is that we must solve a larger
set of coupled equations of motion locally. Within traditional poroelasticity, there are two
types of equations that are coupled. These are the equations for the elastic behavior of the
solid rock and the equations for elastic and fluid flow behavior of the pore fluid. In the
double-porosity extension of poroelasticity, we have not two types of equations but three.
The equations for the elastic behavior of the solid rock will be unchanged except for the
addition of a new coupling term, while there will be two types of pore-fluid equations (even
if there is only one fluid present) depending on the environment of the fluid. Pore fluid
in the matrix (storage) porosity will have one set of equations with coupling to fracture
fluid and solid; while fluid in the fractures/cracks will have another set of equations with
coupling to storage fluid and solid. Although solving these equations is surely more difficult
than for simple acoustics/elasticity, finding solutions for the double-porosity equations is
not significantly more difficult than for traditional single-porosity poroelasticity. We will
solve these equations in the present paper. We will first derive them and then show that the
various coefficients in these equations can be readily identified with measurable quantities.
Then we develop and solve (numerically) the dispersion relation.

EQUATIONS OF MOTION

The seismic equations of motion for a double-porosity medium have been derived recently
by Tuncay and Corapcioglu (1996) using a volume averaging approach. (These authors
also provide a thorough review of the prior literature on this topic.) We will present instead
a quick derivation based on ideas similar to those of Biot’s original papers (Biot, 1956;
1962), wherein a Lagrangian formulation is presented and the phenomenological equations
derived.

Physically what we need is quite simple — just equations embodying the concepts of
force = mass acceleration , together with dissipation due to viscous loss mechanisms. The
forces are determined by taking a derivative of an energy storage functional. The appropriate
energies are discussed at length later in this paper, so for our purposes in this section it will
suffice to assume that the constitutive laws relating stress and strain are known, and so
the pertinent forces are the divergence of the solid stress field i j j and the gradients of
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the two fluid pressures p 1
i and p 2

i for the matrix and fracture fluids, respectively. (In
this notation, i j index the three Cartesian coordinates x1 x2 x3 and a comma preceding
a subscript indicates a derivative with respect to the specified coordinate direction.) Then,
the only new work we need to do to establish the equations of motion for dynamical double-
porosity systems concerns the inertial terms arising from the kinetic energy of the system.

Generalizing Biot’s approach (Biot, 1956) to the formulation of the kinetic energy terms,
we find that, for a system with two fluids, the kinetic energy T is determined by

2T 11u u 22U 1 U 1
33U 2 U 2

2 12u U 1 2 13u U 2 2 23U 1 U 2 (1)

where u is the displacement of the solid, U k is the displacement of the kth fluid which
occupies volume fraction k , and the various coefficients 11 , 12 , etc., are mass coeffi-
cients that take into account the fact that the relative flow of fluid through the pores is not
uniform, and that oscillations of solid mass in the presence of fluid leads to induced mass
effects. Clarifying the precise meaning of these displacements is beyond our current scope,
but other recent publications help with these interpretations (Pride and Berryman, 1998).

Dissipation plays a crucial role in the motion of the fluids and so cannot be neglected in
this context. The appropriate dissipation functional will take the form

2D b12 u U 1 u U 1 b13 u U 2 u U 2

b23 U 1 U 2 U 1 U 2 (2)

This formula assumes that all dissipation is caused by motion of the fluids either relative to
the solid, or relative to each other. (Other potential sources of attenuation, especially for
partially saturated porous media (Stoll, 1985; Miksis, 1988), should also be treated, but will
not be considered here.) We expect the fluid-fluid coupling coefficient b23 will generally be
small and probably negligible, whenever the double-porosity model is appropriate for the
system under study.

Lagrange’s equations then show easily that

t

T

ui

D

ui
i j j for i 1 2 3 (3)

and that

t

T

U k
i

D

U k
i

p k
i for i 1 2 3 k 1 2 (4)

where the pressures p k are the macroscopic fluid pressures across interfaces and are related
to the internal pore pressures p k by factors of the porosity so that p 1 1 2 1 p 1

and p 2 2 2 p 2 , with 2 being the total volume fraction of the fracture porosity
and 1 and 2 being the matrix and fracture porosities, respectively. (Note that in
this method of accounting for the void space, 2 1.) These equations now account
properly for inertia and elastic energy, strain, and stress, as well as for the specified types
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of dissipation mechanisms, and are in complete agreement with those developed by Tuncay
and Corapcioglu (1996) using a different approach. In (4), the parts of the equation not
involving the kinetic energy can be shown to be equivalent to a two-fluid Darcy’s law in
this context, so b12 and b13 are related to Darcy’s constants for two single phase flow and
b23 is the small coupling coefficient. Explicit relations between the b ’s and the appropriate
permeabilities [see Eqs. (53) and (54) of Berryman and Wang (1995)] are not difficult to
establish. The harder part of the analysis concerns the constitutive equations required for the
right hand side of (3). After the following section on inertia and drag, the remainder of the
paper will necessarily be devoted to addressing some of these issues concerning stress-strain
relations.

In summary, equations (3) and (4) can be combined into

11 12 13

12 22 23

13 23 33

ui

U 1
i

U 2
i

b12 b13 b12 b13

b12 b12 b23 b23

b13 b23 b13 b23

ui

U 1
i

U 2
i

i j j

p 1
i

p 2
i

(5)

showing the coupling between the solid and both types of fluid components.

In the next section we show how to relate the inertial and drag coefficients to physically
measureable quantities.

INERTIAL AND DRAG COEFFICIENTS

Inertial coefficients

It is easy to understand that the inertial coefficients appearing in the kinetic energy T must
depend on the densities of solid and fluid constituents s and f , and also on the volume
fractions 1 , 2 and porosities 1 , 2 of the matrix material and fractures, respectively.
The total porosity is given by 1 1 2 2 and the volume fraction occupied by
the solid material is therefore 1 .

For a single porosity material, there are only three inertial coefficients and the kinetic
energy can be written as

2T u U 11 12

12 22

u
U

(6)

where U is the velocity of the only fluid present. Then, it is easy to see that, if u U , the total
inertia 11 2 12 22 must equal the total inertia present in the system 1 s f .
Furthermore, Biot (1956) has shown that 11 12 1 s and that 22 12 f .
These three equations are not linearly independent and therefore do not determine the three
coefficients. So we make the additional assumption that 22 f , where (Note: This
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without subscripts should not be confused with the stress tensor introduced earlier in the
paper.) was termed the structure factor by Biot (1956), but has more recently been termed
the electrical tortuosity (Brown, 1980; Johnson et al. , 1982), since F , where F is the
electrical formation factor. Berryman (1980) has shown that

1 r
1

1 (7)

follows from interpreting the coefficient 11 as resulting from the solid density plus the
induced mass due to the oscillation of the solid in the surrounding fluid. Then, 11

1 s r f , where r is a factor dependent on microgeometry that is expected to lie in
the range 0 r 1, with r 1

2 for spherical grains. For example, if 0 2 and r 0 5,
equation (7) implies 3 0 , which is a typical value for tortuosity of sandstones.

For double porosity, the kinetic energy may be written as

2T u U 1 U 2
11 12 13

12 22 23

13 23 33

u
U 1

U 2
(8)

We now consider some limiting cases: First, suppose that all the solid and fluid material
moves in unison. Then, in complete analogy to the single porosity case, we have the result
that 11 22 33 2 12 2 13 2 23 must equal the total inertia of the system
1 s f . Next, if we suppose that the two fluids can be made to move in unison, but

independently of the solid, then we can take U U 1 U 2 , and telescope the expression
for the kinetic energy to

2T u U 11 12 13

12 13 22 2 23 33

u
U

(9)

We can now relate the matrix elements in (9) directly to the barred matrix elements appearing
in (6), which then gives us three equations for our six unknowns. Again these three equations
are not linearly independent, so we still need four more equations.

Next we consider the possibility that the fracture fluid can oscillate independently of the
solid and the matrix fluid, and furthermore that the matrix fluid velocity is locked to that of
the solid so that u U 1 . For this case, the kinetic energy telescopes in a different way to

2T u U 2 11 2 12 22 13 23

13 23 33

u
U 2 (10)

This equation is also of the form (6), but we must be careful to account properly for the
parts of the system included in the matrix elements. Now we treat the solid and matrix fluid
as a single unit, so

11 2 12 22 1 s 1 2 1
f

2 1 2 2
f (11)

13 23
2 1 2 2

f (12)
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and

33
2 2 2

f (13)

where 2 is the tortuosity of fracture porosity alone and 2 is the volume fraction of the
fractures in the system.

Finally, we consider the possibility that the matrix fluid can oscillate independently of
the solid and the fracture fluid, and furthermore that the fracture fluid velocity is locked to
that of the solid so that u U 2 . The kinetic energy telescopes in a very similar way to the
previous case with the result

2T u U 1 11 2 13 33 12 23

12 23 22

u
U 1 (14)

We imagine that this thought experiment amounts to analyzing the matrix material alone
without fractures being present. The equations resulting from this identification are com-
pletely analogous to those in (11)-(13), so we will not show them explicitly here.

We now have nine equations in the six unknowns and six of these are linearly independent,
so the system can be solved. The result of this analysis is that the off-diagonal terms are
given by

2 12 f
2 1 2 2 1 1 1 2 1 1 (15)

2 13 f
1 1 1 2 1 2 1 2 2 1 (16)

and

2 23 f 1 1 1 1 2 1 2 1 2 2 (17)

The diagonal terms are given by

11 1 s 1 f (18)

22
1 1 2 1

f (19)

and 33 is given by (13).

Estimates of the three tortuosities , 1 , and 2 may be obtained using (7), or direct
measurements may be made using electrical methods as advocated by Brown (1980) and
Johnson et al. (1982). Appendix A explains one method of estimating for the whole
medium when the constituent tortuosities and volume fractions are known.
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Drag coefficients

The drag coefficients may be determined by first noting that the equations presented here
reduce to those of Berryman and Wang (1995) in the low frequency limit by merely neglect-
ing the inertial terms. What is required to make the direct identification of the coefficients
is a pair of coupled equations for the two increments of fluid content 1 and 2 . These
quantities are related to the displacements by 1 1 2 1 U 1 u and

2 2 2 U 2 u .

The pertinent equations from Berryman and Wang (1995) are
1

2
k 11 k 12

k 21 k 22
p 1

ii

p 2
ii

(20)

where is the shear viscosity of the fluid, the k i j are permeabilities including possible
cross-coupling terms. The pressures appearing here are the actual pore pressures in the
storage and fracture porosity. We can extract the terms we need from (5), and then take the
divergence to obtain

1 1 2 1 0
0 1 2 2

b12 b23 b23

b23 b13 b23

U 1 u
U 2 u

p 1
ii

p 2
ii

(21)

Comparing these two sets of equations and solving for the b coefficients, we find

b12
1 2 1 1 2 1 k 22 2 2 k 21

k 11 k 22 k 12 k 21
(22)

b13

2 2 2 2 k 11 1 2 1 k 12

k 11 k 22 k 12 k 21
(23)

and

b23

2 1 2 1 2 k 21

k 11 k 22 k 12 k 21

2 1 2 1 2 k 12

k 11 k 22 k 12 k 21
(24)

For wave propagation, it will often be adequate to assume that the cross-coupling vanishes,
as this effect is presumably more important for long term drainage of fluids than it is for
short term propagation of waves. When this approximation is satisfactory, we have b23 0,
and

b12
1 2 2 1 2

k 11
(25)

and

b13

2 2 2

k 22
(26)

which also provides a simple interpretation of these coefficients in terms of the porosities
and diagonal permeabilities.

This completes the identification of the inertial and drag coefficients introduced in the
previous section.
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CONSTITUTIVE EQUATIONS

In previous work (Berryman and Wang, 1995) chose the external confining pressure, pc ,
and the fluid pressures in the matrix, p 1 , and in the fracture, p 2 , to be the independent
variables. The dependent variables were chosen to be the volumetric strain, e , and Biot’s
increment of fluid content (fluid volume accumulation per unit bulk volume) in the matrix,

1 , and fracture, 2 , separately. The phenomenological approach then relates each
dependent variable linearly to the independent variables. This choice of variables leads to a
symmetric coefficient matrix because the scalar product of the dependent and independent
variables is an energy density. The double-porosity theory with six independent coefficients,
ai j , for hydrostatic loading is a straightforward generalization of Biot’s original equations.

e
1

2

a11 a12 a13

a21 a22 a23

a31 a32 a33

pc

p 1

p 2
(27)

The six coefficients occur in three classes, which correspond to the three original Biot
coefficients. The coefficient a11 1 K is an effective compressibility of the combined
fracture-matrix system. The coefficients a12 and a13 are generalized poroelastic expansion
coefficients , i.e., the ratio of bulk strain to matrix pressure and fracture pressure, respectively.
The terms a22 , a23 , a32 a23 , and a33 are generalized storage coefficients , i.e. , ai j is the
volume of fluid that flows into a control volume (normalized by the control volume) of phase
i 1 due to a unit increase in fluid pressure in phase j 1.

Formulas relating these parameters to properties of the constituents are summarized
in TABLE 1 , in which values are used for Berea sandstone from the results tabulated in
TABLE 2. The definitions of the input parameters are: K and K 1 are the (jacketed) frame
bulk moduli of the whole and the matrix respectively, Ks and K 1

s are the unjacketed bulk
moduli for the whole and the matrix, 1 K Ks and 1 1 K 1 K 1

s are the
corresponding Biot-Willis parameters, K f is the pore fluid bulk modulus, 2 1 1

is the total volume fraction of the fractures in the whole, and B 1 is Skempton’s pore-
pressure buildup coefficient for the matrix. Poisson’s ratio and the porosity of the matrix
are 1 and 1 , respectively. It was observed by Berryman and Wang (1995) that the
fluid-fluid coupling term a23 was small or negligible for the examples considered, and that
it is expected to be small or negligible in most situations in which it makes sense to use the
double-porosity model at all. Since our main goal for this paper is to extract and evaluate a
somewhat simplified version of these formulas, from the more general analysis presented so
far, we will therefore make the approximation in the remainder of this paper that a23 0.
This physically reasonable choice will also make the subsequent analysis somewhat less
tedious.

We need to express the vector on the right hand side of (35) in terms of the macroscopic
variables, using the constitutive relations in (27), plus the usual relations of linear elasticity.
The basic set of equations for assumed isotropic media [analogous expressions for single-
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porosity with and without elastic anisotropy are given in Berryman (1998)] has the form

S11 S12 S12
1 2

S12 S11 S12
1 2

S12 S12 S11
1 2

1 1 1 a22 a23
2 2 2 a23 a33

1
2

1
2

1
2

11

22

33

p 1

p 2

23

31

12

e11

e22

e33
1

2

e23

e31

e12

(28)

where the Si j ’s are the usual drained elastic compliances, and the ’s are poroelastic ex-
pansion coefficients approximately of the form 3K , where is the Biot-Willis
parameter (Biot-Willis, 1957) for single-porosity and K is the drained bulk modulus. We
will not show our work here, but it is not hard to derive the following three relations:

i j j e i ui j j 3K 1 p 1
i

2 p 2
i (29)

3K 1 p 1
i

2 p 2
i pc i K e i (30)

and

3 1 p 1
i

2 p 2
i B 1 1

i 3 1 pc i B 2 2
i 3 2 pc i (31)

Appearing in (29) are and , which are the parameters for the drained medium. A
linear combination of the last two equations can be found to eliminate the appearance of
pc i , and then this result can be substituted into (7) to show that

i j j Ku
1

3
e i ui j j Ku B 1 1

i B 2 2
i (32)

where

Ku
K

1 3K 1 B 1 2 B 2
(33)

is the undrained bulk modulus for the double porosity medium — specifically, it is the
undrained bulk modulus for intermediate time scales, i.e. , undrained at the representative
elementary volume (REV) scale but equilibrated between pore and fracture porosity locally.
(This statement is consistent with our assumption that a23 0, but needs some qualification
if a23 0.)

Combining (32) with (27) and taking the divergence, we finally obtain the expression
we need:

i j j i

p 1
ii

p 2
ii

Ku
4
3 B 1 Ku B 2 Ku

a12a33 D a11a33 a2
13 D a12a13 D

a13a22 D a12a13 D a11a22 a2
12 D

e ii
1
ii
2
ii

(34)

where D a11a22a33 a2
12a33 a2

13a22.
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THE DISPERSION RELATION AND ITS SOLUTION

It is now possible to write down and solve the dispersion relation for waves propagating
through the double-porosity medium that we have been developing in the previous sections.

Derivation of the dispersion relation

We will first take a Fourier transform of (5) in the time domain, equivalent to assuming
a time dependence of the form exp i t . (Strictly speaking we should now introduce
new notation for the variables that follow to account for the differences between the time-
dependent coefficients and the Fourier coefficients. But we will not refer further to the
time-dependent coefficients in this paper, so no confusion should arise if we use the same
notation from now on for the Fourier coefficients.) Then, (5) becomes

2
q11 q12 q13

q12 q22 q23

q13 q23 q33

ui

U 1
i

U 2
i

i j j

p 1
i

p 2
i

(35)

where

q11 11
i

b12 b13

q12 12
i

b12 etc. (36)

It is also convenient to notice that

xi

ui

U 1
i

U 2
i

e
U 1

i i

U 2
i i

1
1 1

1 2 1

1 1
2 2

e
1

2
R

e
1

2
(37)

which will permit us to write the final equation in terms of the macroscopic strain and fluid
contents e , 1 , and 2 . The final equality in (37) defines the matrix R , which we need
again later in the analysis.

Taking the divergence of (35), then substituting (37) and (34), and finally taking the
spatial Fourier transform (having wavenumber k) gives the complex eigenvalue problem
associated with wave propagation:

Ku
4
3 B 1 Ku B 2 Ku

a12a33 D a11a33 a2
13 D a12a13 D

a13a22 D a12a13 D a11a22 a2
12 D

e
1

2

2
1

1
1 2 1

1
2 2

q11 q12 q13

q12 q22 q23

q13 q23 q33

1
1 1

1 2 1

1 1
2 2

e
1

2
(38)
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where the eigenvalue 2 2 k2 has the physical significance of being the square of
the complex wave velocity. With obvious definitions for the matrices A , P , and Q , while
R was previously defined in (37), we rewrite (38) as

A
e

1

2

2 PQR
e

1

2
(39)

and then, in terms of these matrices, the dispersion relation determining 2 at all angular
frequencies is

det A 2 PQR 0 (40)

This is a 3 3 determinant of complex numbers that must be solved for 2. A method for
finding the three solutions is discussed in the next subsection.

Solution of the dispersion relation

A variety of numerical methods may be used to solve (40), including for example Crout’s
reduction method (Crout, 1941). However, since the system is relatively small (3 3) and
since our purposes include gaining some physical insight into the processes involved, it will
prove instructive to do some more analysis on the problem prior to the ultimate numerical
calculations.

First, note that our analysis will be considerably simplified by an obvious rearrangement
of the determinant (40) so that

det G 2I 0 (41)

where I is the identity matrix and

G AR 1Q 1P 1 (42)

having complex matrix elements gi j , for i j 1 2 3. The matrix R was given previously
in (37) and is clearly invertible for finite values of the two porosities. Matrix Q is also
always invertible for realistic choices of material parameters.

Using the properties of determinants, it is not hard to show that the 3 3 determinant
(41) can be reduced to a 2 2 determinant in either of two convenient forms:

det
g11

2 g22
2 g12g21 1

g12g23g31 g13g32g21 g22
2 g13g31 g11

2 g23g32 g33
2

det
g11

2 g33
2 g13g31 1

g12g23g31 g13g32g21 g33
2 g12g21 g11

2 g23g32 g22
2

0 (43)

It is useful to write the determinant in each of these two ways in order to make connections
with single-porosity models. The first version in (43) has as its upper left-hand element an
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expression that corresponds precisely to the determinant for the 2 2 system when the only
porosity present is the matrix (or storage) porosity. Similarly, the second version in (43)
has as its element in the upper left-hand position a term that corresponds to the determinant
for the 2 2 system when the only porosity present is the fracture/crack porosity. In each
case the remaining terms determine the effect of coupling to the second type of porosity.
Depending on other system parameters such as permeabilities and porosities, either of these
limits may be useful to consider, and may also provide good starting points for the iterative
(Newton-Raphson) procedure that we will use to solve the determinant equation for the
complex velocity .

If we express the determinant (41) as a polynomial D x where x 2 , then

D x x3 g11 g22 g33 x2

g22g33 g33g11 g11g22

g23g32 g13g31 g12g21 x

g11g22g33 g23g32g11 g13g31g22

g12g21g33 g12g23g31 g13g32g21 0 (44)

The Newton-Raphson method (Hildebrand, 1956) for solving this equation for x is an
iteration process starting from some initial choice x 0 and computing

x i x i 1 D x i 1 D x i 1 for i 1 2 Nc (45)

(where D is the first derivative of D with respect to x) until some convergence criterion
has been met at i Nc. The fact that the coefficients and the solution of the problem are
complex adds no special complication to this procedure. However, since the polynomial is
complex, it is important that good starting values x 0 be obtained for at least two of the
three roots of (44), as a search procedure in the complex plane would be considerably more
difficult to implement than is pure Newton-Raphson iteration.

From (43), we see that two choices of starting values for the complex parameter x are
given by (for example)

x 0
1 2

1

2
g11 g22 g11 g22

2 4g12g21 (46)

Once the Newton-Raphson iteration has converged from both of these starting values to
their final values of x1 and x2 , then the third solution of the dispersion relation is obtained
directly by recalling that

D x
3

n 0

Dn x n x x1 x x2 x x3 (47)

Using the linear independence of the terms in powers of x in (47), we have three equations
showing that

x3 D2 x1 x2
D1 x1x2

x1 x2

D0

x1x2
(48)
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Any one of these three formulas may be used to calculate x3 directly, or combinations of
them (such as the geometric mean of any two) may be used to reduce the errors that might
be introduced by premature termination of the Newton-Raphson iteration process for x1 and
x2. An alternative method (but not the one we used in the examples of the present paper) is
to use the formulas of (48) in a different way to arrive at a quadratic formula for x2 and x3 ,
once that x1 is known from the iteration procedure. The resulting formulas are given (for
example) by

x2 3
1

2
D2 x1 D2 x1

2 4D0 x1 (49)

In this approach it is clearly preferable to solve for the fast wave solution as x1 , and then
use the formulas in (49) to obtain the two slow wave solutions since the fast wave solution
will virtually always be well-behaved.

For each value of x that solves the dispersion equation, we can then compute the wave
velocity and inverse of the quality factor Q using the definition

1

x

1 1

r
1

i

2Q
(50)

where the choice of square root is determined by the requirement of physical realizability
as discussed in the following section. This definition of 1 Q is accurate when attenuation
losses are low, but should be carefully interpreted for high loss situations (e.g., low frequency
diffusive modes). In particular, it is often stated that, when losses are high, (50) needs to be
modified so that if

1 1

r
1

i r (51)

where is the attenuation coefficient (having units of inverse length), then [as Hamilton
(1972) and et al. (1987) show]

1

Q

2 r
2 2

r
(52)

However, for diffusive modes the imaginary and real parts of the velocity are of compa-
rable size, and therefore it is possible that the formula (52) will become singular at low
frequencies for such modes. This complication can and does happen in practice. To avoid
this complication, we use the definition (50) in all cases, and then interpret those situations
in which 1 Q 2 as an indication that the mode under consideration is actually diffusive
rather than propagatory.

Physical realizability at higher frequencies

For the purposes of this paper, we will take (25) and (26) to be the low frequency limits of
the drag coefficients and also assume that b23 0. Then, the coefficients b12 and b13 must
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be modified at higher frequencies in order to assure that the theory as a whole preserves
obvious physical requirements such as nonnegative dissipation for all modes at all times. (If
the theory always predicts nonnegative dissipation, then we will say it is “realizable.” If the
theory predicts negative dissipation for any of the modes of propagation, then the theory is
not realizable, and further effort will be required to make the theory fully realizable.) This
issue arises naturally when we have obtained the solution x 2 to (45) for any one of the
three compressional modes. Then, taking the complex square root, we get two roots that
differ only by and signs. We want the solution that has both positive real velocity and
a negative imaginary part. This is so because k k0 i , where should be a
physical attenuation coefficient such that

exp i kz t exp z exp ik0 z 0t (53)

leads to a decrease in the overall amplitude of the compressional mode. If, for any of the
three compressional modes, no root exists with both positive real velocity and negative
imaginary part, then the dispersion relation is unphysical and the approximations we have
made in deriving it are suspect. In our examples to follow, we will tentatively take the results
from Appendix B as the proper way to modify the drag coefficients at higher frequencies,
but must always be careful to check that this choice does not lead to unphysical behavior.

EXAMPLE

The example we present here is for Berea sandstone saturated with water. The parameters
used in the calculations are taken from TABLES 1 and 2. Most of the mechanical properties
were obtained from measurements made by Coyner (1984). The permeability values for
the matrix k 11 and the fractures k 22 are the same as those used by Lewallen and Wang
(1998). The approach described in the preceding text, together with the results obtained in
Appendices A and B, has been implemented by writing a Fortran code and computing the
eigenvalues for the three compressional modes and their corresponding eigenvectors in the
frequency range 10.0 Hz to 1 MHz. The results for the computed velocities and inverse
quality factors are then displayed in Figures 1–6. The results for the eigenvectors will be
described but not displayed here. We will not present results for the shear modes, but expect
them to differ little from results for single-porosity calculations for the same material, since
the pore fluid does not significantly affect the shear moduli in these models. (However,
shear dispersion effects due to pore-fluid will still be of importance.) Figures 1 and 2 show
that the first compressional wave is dispersive and has its main contributions to attenuation
(1 Q 001) centered at about 3 kHz, with significant decrease in the attenuation envelope
(by about an order of magnitude) at 100 Hz and 100 kHz. Wave velocity dispersion is
localized approximately to the frequency range 1 kHz to 10 kHz, and the total dispersion is
less than 1 %. The eigenvector for this mode shows that the storage pore fluid is essentially
moving in concert with the solid frame throughout the frequency range considered, with
some small but largely negligible deviations above 1 kHz. On the other hand, the fracture
pore fluid oscillates out of phase with respect to the solid frame with an amplitude as much
as about one half that of the frame amplitude above about 10 kHz. The observed dissipation
for this mode is clearly tied to the out of phase motion of the fracture fluid.
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Figures 3 and 4 show that the second compressional mode is diffusive at low frequencies,
but becomes propagatory with a Q 5 or greater at about 10 kHz. The wave speed is quite
small at these higher frequencies (about 550 m/s), indicating that the wave is probably
propagating mostly through some pore fluid along a tortuous path. The eigenvector analysis
shows that the storage fluid excitation is again quite small compared to that of the fracture
fluid, although it is about two orders of magnitude larger than that observed for the first
compressional wave. The main effect observed for the second compressoinal wave is a
large oscillation of the fracture fluid relative to the solid frame, so that this mode can
be properly characterized in this example as a slow wave (in the sense of single-porosity
poroelasticity) through the fracture fluid.

Figures 5 and 6 show that the third compressional mode is diffusive at all frequencies in
the range considered. The apparent velocity is much lower (less than 100 m/s) — even than
that of the second compressional mode. The eigenvector analysis for this mode shows that
both the storage fluid and the fracture fluid are oscillating with significant and comparable
amplitudes, larger than that of the solid frame. The two fluids are also oscillating out of
phase with each other. The amplitude of the storage fluid oscillation slightly dominates that
of the fracture fluid, which partly explains the increased attenuation for this mode. For this
example, we might characterize this mode as a slow wave through the storage fluid, but note
that this interpretation is slightly over simplified.

Finally, we note that other examples have been computed in an attempt to verify the nature
of the dependence of the mode parameters on the input parameters. It has been observed
for example that the second and third compressional wave “velocities” at low frequencies
are proportional to the square root of the fluid bulk modulus as would be expected for a
single-porosity slow wave (Berryman, 1981; Chandler and Johnson, 1981). In the single
porosity case, the slow wave velocity is inversely proportional to the square root of the
specific storage coefficient (Green and Wang, 1990). If the solid compressibility is small
compared with that of the fluid, then the slow wave velocity would be proportional to the
square root of the fluid bulk modulus.

DISCUSSION AND CONCLUSIONS

The physical realizability issue is an important one, but not one we have dwelt much on
in this paper. Because of the complex nature of the dispersion equations and the existence
of three compressional modes for this theory, it will require some substantial amount of
effort to clarify the proper analytic structure for the theory so that unphysical results are not
generated. The main issues here are whether or not it is always appropriate to use the results
presented in Appendix B. It is known that these types of results are valid for single-porosity
analysis, but when used together with some of the approximations we have made here —
such as (for example) the neglect of cross-terms in the quasistatic permeability equations
— may introduce some unphysical behavior at high frequencies for some combinations of
parameters. We leave this analysis to future work.

Another important practical issue involves the careful comparison of these results with
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the extensive literature on wave propagation and attenuation in fractured earth materials.
These comparisons will also be left to the future.

We conclude that the double-porosity dual-permeability analysis that has been presented
here has the capability to explain both wave propagation and attenuation in earth materials
when the attenuation is due to out-of-phase motion of pore fluids in storage and fracture
porosity. However, there remains quite a lot of work to do yet both on the theory and on its
applications to real data before we can consider the story to be complete.
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APPENDIX A

Tortuosity for Double-Porosity Media

Theoretical estimates of tortuosity for the matrix and fracture components of the double-
porosity medium may be obtained by noting that equation (7) implies

1 1

2
1

1
1

(54)

for storage porosity that is spherical in shape, while

2 1 (55)

for the fracture porosity, because 2 1 by assumption.

It is more difficult to estimate the overall tortuosity , but a physically reasonable value
can be obtained by considering the Hashin-Shtrikman bounds on electrical conductivity of
a composite medium (Hashin and Shtrikman, 1962). These bounds show that for a two-
component medium the effective conductivity will lie between the values H S given by the
formula (Berryman, 1995)

1

H S 2 m

1 2

1 2 m

2

2 2 m
(56)

where

m max 1 2 for H S (57)

and

m min 1 2 for H S (58)
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This notation means that H S is the upper bound, while H S is the lower bound.

Recalling that electrical tortuosity is related to formation factor F by F , where
F f , we find that the tortuosity bounds for the double-porosity medium are:

1

2 Fm

1 2

1 1 2 Fm

2

1 2 Fm
(59)

We will assume that the overall tortuosity of the fractured double-porosity medium is in
fact dominated by the fractures, in which case it is appropriate to assume that the actual
electrical conductivity will be close to the upper bound H S. In this case we choose Fm 1
and, after rearranging the formula, we find

2 1 3 2 1

3 2 2 1 2 2 1
(60)

Also, recall that the overall porosity is given by 1 2 1 2 . The formula (60) is
expected to be valid for situations in which 2 1, and then (60) reduces approximately
to 1 . For applications to media in which such an assumption is not valid, the bounds
in (56) should generally be used instead of (60).

Another physical constraint imposed by our model is that, if the drag/permeability cou-
pling terms b23 are neglected, then internal consistency of the theory may also require that

23 0. Then, (17) can be used to solve for the effective that gives 23 0. Interestingly,
the result in the limit 2 1 is again that 1 . So these two approaches give very con-
sistent results, and suggest that 23 0 may also be a physically reasonable approximation
in many situations.

APPENDIX B

Frequency dependent permeability, tortuosity, and viscosity

Johnson et al. (1987) have shown that, for a single-porosity medium, the frequency depen-
dence of the dynamic permeability and tortuosity can be well-approximated by

k
k0

1 4ik2
0

2
f

2 2
1
2 ik0 f

(61)

and

i

k0 f
1 4ik2

0
2

f
2 2

1
2 (62)

The symbol stands for the fluid viscosity (in units of kgm m s), while f is the
kinematic viscosity (in units of m2 s). The new symbols appearing in these formulas are
the d.c. permeability k0 , the high frequency tortuosity , and the lambda parameter
introduced by Johnson et al. (1986). The values of the high frequency tortuosity for
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double-porosity media were considered here in Appendix A. The d.c. permeabilities for
double-porosity media have been considered in Berryman and Wang (1995) and in Lewallen
and Wang (1998).

For single porosity media, Johnson et al. (1987) show that the lambda parameter ap-
proximately satisfies

2 8k0 F 8k0 (63)

For the present purposes, we will assume that this relation holds independently for the
storage porosity and the fracture porosity. Then we have

1 8k 11 1 1
1
2

(64)

and

2 8k 22 2 2
1
2

8k 22
1
2

(65)

Finally, we see that for the double-porosity medium, the corrections due to frequency
dependence can be viewed alternatively as a frequency dependent viscosity, since equations
(61) and (62) follow by assuming that

1 i 2
f 16

1
2 (66)

These corrections need to be made separately for the two types of pores. This interpretation
of the frequency dependence as being associated specifically with the viscosity is the one
advocated by Biot (1956b), and has some advantages in the present context as it makes it
quite straightforward to determine what the corrections should be for the multiple porosity
problem. Note that we used (63) to simplify the factors inside the square root in (66).

It is not yet clear how to generalize these expressions for the permeability coupling terms
k 12 , but our assumption following (24) that b23 0 has eliminated this potential problem
from the present paper. Achieving an understanding of this issue will be one goal of our
future work.
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TABLE 1. Stress-strain parameters in double-porosity modeling as derived by Berryman
and Wang (1995).

Parameter Formula Berea
Sandstone

a11 (GPa 1) 1 K 0.167
a12 (GPa 1) 1 K 1

s K 1 Ks -0.074
a13 (GPa 1) K a12 -0.068
a22 (GPa 1) 1 1 B 1 K 1 0.144
a23 (GPa 1) 1 1 K 1 a12 0.001
a33 (GPa 1) 2 K f

1 K 1 1 2 K 2a12 0.075
a33 (GPa 1 a33

2 K f 0.067

TABLE 2. Material Properties for Berea Sandstone and Water
Berea

Parameter Sandstone
K (GPa) 6.0a

Ks (GPa) 39.0a

0.85a

K 1 (GPa) 10.0a

1 0.15
K 1

s (GPa) 39.0a

1 0.74a

1 0.178a

B 1 0.600
2 0.0178

k 11 (m2) 1.0 10 16

k 22 (m2) 1.0 10 12

Water
K f (GPa) 2.3

f (Kgm/m3) 1000.0
(Pa s) 0.001

aFrom Coyner (1984)
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Figure 1: First compressional wave velocity as a function of frequency for fractured Berea
sandstone. jim1-vp [NR]
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Figure 2: First compressional wave inverse quality factor 1 Q as a function of frequency
for fractured Berea sandstone. jim1-qp [NR]
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Figure 3: Second compressional wave velocity as a function of frequency for fractured Berea
sandstone. jim1-vm [NR]
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Figure 4: Second compressional wave inverse quality factor 1 Q as a function of frequency
for fractured Berea sandstone. jim1-qm [NR]
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Figure 5: Third compressional wave velocity as a function of frequency for fractured Berea
sandstone. jim1-vf [NR]
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Figure 6: Third compressional wave inverse quality factor 1 Q as a function of frequency
for fractured Berea sandstone. jim1-qf [NR]
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