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Extending common-azimuth migration
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ABSTRACT

We present a review of common-azimuth prestack depth migration theory and propose a
new extension to the original method. In common-azimuth migration theory, source and
receiver raypaths are constrained to lie on the same plane at each depth level. By using
data with a broader range of cross-line offsets, we increase the number of raypaths ex-
amined and consider more information. Consequently, our extended common-azimuth
migration is theoretically better able to model lateral velocity variations due to real
3-D structures and is more compatible with the standard marine acquisition geome-
try, in which cross-line offsets are concentrated in a narrow band. We first discuss
the theory of the process, and then introduce computational issues leading to future
implementation.

INTRODUCTION

Common-azimuth migration was first introduced by Biondi and Palacharla (1994). It is a
3-D depth imaging method based on a recursive downward continuation of prestack data, and
allows a robust and accurate depth migration since it is derived directly from the full wave
equation. As opposed to Kirchhoff methods, common-azimuth migration is not derived
from asymptotic approximations, and thus it represents a potentially robust alternative to
Kirchhoff methods for 3-D prestack migration.

The implementation of wave-equation methods presents several difficulties. Whereas
Kirchhoff methods handle irregular geometries relatively easily, the downward-continuation
process needs data with a regular geometry in order to correctly propagate the wavefield.
Additionally, full volume 3-D wave equation migration still has a high computational cost.
The challenge for such a recursive algorithm is to extrapolate the wavefield in a 5-D
space: time, in-line and cross-line midpoint coordinates, and in-line and cross-line off-
sets, t mx m y hx h y . This computation is still beyond the reach of current computer
technology. We can address this problem by only downward continuing common-azimuth
data for which h y 0. In this way, the data space is reduced to 4-D. Common-azimuth data
are obtained through azimuth moveout (AMO), which rotates and modifies the offset of 3-D
prestack data (Biondi et al. , 1998). AMO is used as a preprocessing step to regularize the
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3-D data acquisition, and organize it in sets of constant cross-line offset. The first section
discusses the original method, and the second one presents its new extension.

COMMON-AZIMUTH PHASE-SHIFT MIGRATION

One way to reduce the computational cost of 3-D prestack depth migration is to use common-
azimuth data, which is only a 4-D dataset. Common-azimuth migration is then derived as the
solution of the one-way wave equation through a recursive downward-continuation operator.
In the frequency-wavenumber domain, this operator can be expressed as a simple phase-shift
applied to the wavefield. We use the notation indicated below. The vertical wavenumber
kz is given by a 3-D dispersion relation called the Double Square Root (DSR) equation
(Claerbout, 1984):
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where km is the midpoint wavenumber (km kmx xm kmyym), kh the offset wavenumber
(kh khxxh khyyh) and kz the vertical wavenumber (kz DSR km kh z ), with xm ,
ym , xh and yh unit vectors of the four midpoint and offset axes. The propagation velocities

r z and s z correspond respectively to the receiver and source locations.

The first square root in equation (1) downward-continues the receiver wavefield,whereas
the second one downward-continues the source wavefield. In the algorithm developed by
Biondi and Palacharla (1996), the data at the new depth level Dz dz are obtained from
common-azimuth data Dz by the following integration:

Dz dz km khx h y 0 Dz km khx h y 0 e ikzdzdkhy

Dz km khx h y 0 e ikzdzdkhy (2)

Dz km khx h y 0 Down km khx z

In practice, we use the stationary-phase approximation to compute this integral (see Ap-
pendix A). Popovici (1995) finds a very similar expression for the kernel of migration to
zero-offset (MZO) in 2-D and asserts that the stationary-phase approximation avoids the
very high computational cost of a numerical evaluation of the integral.

In our case, the stationary phase approximation of the common-azimuth downward-
continuation operator for data where h y 0 can be written as
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with the phase DSR km kh z dz.

For data evaluated only at the origin of the cross-line offset axis (h y 0), Biondi and
Palacharla (1996) derived an analytical expression for the stationary point:
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We have implemented the kernel of downward-continuation and phase-shift migration with
the preceding theory. Simulations performed with the standard common-azimuth migration
code have already proven its efficiency in imaging complex media (Biondi, 1999). As
shown in Figures 1 and 2, the common-azimuth technique provides accurate subsalt images.
Still, on the left side of Figure 1(b), imaging the major fault has obviously met with some
difficulties, which can be attributed to rapid lateral variations of the velocity model. As seen
in Figures 2(a) and 2(b), the same fault, now on the right side, is also dipping in the cross-
line direction. Extending the common-azimuth technique may help improve the imaging of
these lateral velocity variations.

EXTENDING CROSS-LINE OFFSET RANGE

Marine data usually contain in-line offsets up to 3-5km, and only show a narrow range of
offsets in the cross-line direction. For standard common-azimuth migration, AMO is used
to rotate the data to zero cross-line offset. What we do now is use AMO to regularize the
acquisition but organize data along several near-zero cross-line offsets. Strictly speaking,
the data are not “common-azimuth”, but “quasi-common-azimuth” or “narrow-azimuth”
since we have only a narrow range of cross-line offsets.

These narrow-azimuth data Dz km khx h y are downward-continued as before, with
an important difference in the phase of the integrand:

Dz dz km khx h y Dz km khx h y e ikzdze ikhyh y dkhy

Dz km khx h y e ikzdze ikhyh y dkhy (5)
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In 2-D, for the case of a phase-shift migration in which the equations are similar to ours,
Alkhalifah (1997) found that solving for the minimum of the phase involves a sixth-order
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Figure 1: Common-azimuth prestack depth migration of data from the SEG-EAGE salt
model. In-line section at CMPy=10400 (m). The top plot (a) represents the exact velocity
model and the bottom plot (b) represents the migration result. louis1-SEG-EAGE-in [CR]
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Figure 2: Common-azimuth prestack depth migration of data from the SEG-EAGE salt
model. Cross-line section at CMPx=2100 (m). The top plot (a) represents the exact velocity
model and the bottom plot (b) represents the migration result. louis1-SEG-EAGE-cross
[CR]
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polynomial, making it difficult to find an analytical expression of the stationary path. Thus,
since we are unable to use such an analytical expression for non-zero h y , we instead use
only a range of values of khy centered around the stationary path k0

hy , which is given by

equation (4), at zero cross-line offset. At each khy , a different phase shift is applied: the
data Dz km khx h y are transformed by modulation and FFT along the cross-line offset
axis into Dz km khx khy , in which the range of the coordinate khy is centered around
k0

hy . Then we apply the phase shift, khy , for each value of the set khy k0
hy ikhydkhy .

The reformulation of the problem has some interesting geometrical consequences. In
the case of standard common-azimuth migration, the stationary path of phase derived in
equation (4) is equivalent to the following relationship between the ray parameters (Biondi,
1998):
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The subscript, s , refers to the source ray, and, r , to the receiver ray:
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The ray parameters are linked by the relationship:
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Equation (7) constrains the source ray and the receiver ray to lie on the same plane between

Figure 3: Schematic showing
the ray geometry for common-
azimuth downward continuation.
louis1-ray-comaz [NR]

S
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depths z and z dz , so that the sources and receivers at the new depth are aligned along
the same azimuth as at the preceding depth (Figure 3). Assuming this constraint, common-
azimuth migration is not strictly correct even in the simple case of a z medium (Figure 4).
Since the projections of the source and receiver rays on a cross-line plane do not coincide
unless the angles and are equal, azimuth is not conserved at each depth step of downward
continuation. As a general consequence, local variations in velocity, which cause ray bend-
ing phenomena, introduce an error in the computation of the common-azimuth downward
continuation. Biondi and Palacharla (1996) put forward that this error is small, but by using
several discrete values of khy in a neighborhood of k0

hy , we hope to improve the result.

The narrow-azimuth approachmay improve the imaging process by better taking velocity
variations into account (Figure 5). Lateral velocity variations, for example, can make rays



SEP–100 Extending common-azimuth migration 131

Figure 4: Schematic showing the
ray geometry for common-azimuth
downward continuation in a sim-
ple z velocity model. The pro-
jections of both rays on a cross-
line plane do not coincide due to
non-conservation of azimuth at each
depth level. louis1-ray-vofz [NR]

S
R

bend in the cross-line direction, and even make rays start in different planes before they
converge to a deeper reflection point. The bending due to real 3-D structures is implicitly
eliminated when strictly zero-azimuth data are downward continued, whereas we would
like to keep it for an extension of common-azimuth migration.

Figure 5: Schematic showing the ray
geometry for narrow-azimuth down-
ward continuation. A larger range
of cross-line offsets will allow the
modeling of lateral variations in the
velocity model by taking into con-
sideration rays not lying in the same
slanted plane. louis1-ray-extended
[NR]

S

dzR

Our approximation, using a neighborhood of k0
hy , is valid if the stationary path, khy ,

varies slowly with h y around the analytical solution, k0
hy . To estimate these variations, we can

use the Implicit Function theorem: the equation khy
0, which gives the stationary path

khy , also defines a relation of the general form F khy h y 0. Thus, in a neighborhood of
the solution khy , we use a function khy h y , whose variations are determined by the inverse
of the phase second derivative:
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We now need to examine the variations of the phase with khy. We introduced the ray param-
eter notation in equation (4). Therefore the phase has the expression shown in equation (9).
We can calculate its first and second partial derivatives with respect to khy (see Appendix B):
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According to equation (6), the computation process will blow up if the second derivative
becomes close to zero. The failure happens for (and only for) pr x

1 , corresponding to the
quasi-horizontal propagation of evanescent waves. We also see that the second derivative
is independent from the value of the cross-line offset, h y . This means that the variations of
khy with h y , given by equation (8), will be the same around each stationary point.

Ideally, we would like to have small variations of the stationary path with h y , in order
to use correctly values of khy around the known solution k0

hy for the stationary points khy ,
which we cannot determine analytically. Small variations mean a high value of the phase
second derivative in equation (11). When the derivative is close to zero, problems in the
computation may arise, but this will never happen for waves propagating downward. The
“limiting” case is horizontal propagation. It means that narrow-azimuth migration may not
completely overcome the steep-dip limitations of common-azimuth migration.

CONCLUSION AND FUTURE WORK

We have presented a review of common-azimuth prestack depth migration theory and pro-
posed an extension to improve the imaging where there are strong lateral variations of the
velocity model. Since the extended code is still “work in progress,” we are not, as yet,
able to present concrete results. We intend to test the program in the case of a simple V z
medium and with more complex synthetics, before applying both common-azimuth and
narrow-azimuth on a real dataset adequately preprocessed with AMO.

ACKNOWLEDGEMENTS

We would like to thank Elf Aquitaine for providing the data and supporting this study. We
thank in particular Henri Calandra for his help and fruitful discussions.

REFERENCES

Alkhalifah, T., 1997, Prestack time migration for anisotropic media: SEP–94 , 263–298.

Biondi, B., and Palacharla, G., 1994, 3-D prestack migration of common-azimuth data:
SEP–80 , 109–124.



SEP–100 Extending common-azimuth migration 133

Biondi, B., and Palacharla, G., 1996, 3-D prestack migration of common-azimuth data:
Geophysics, 61 , no. 6, 1822–1832.

Biondi, B., Fomel, S., and Chemingui, N., 1998,Azimuth moveout for 3-D prestack imaging:
Geophysics, 63 , no. 2, 574–588.

Biondi, B. 3-D Seismic Imaging:. http://sepwww.stanford.edu/sep/biondo/Lectures, 1998.

Biondi, B., 1999, Subsalt imaging by common-azimuth migration: SEP–100 , 113–124.

Bleistein, N. Mathematical methods for wave phenomena:. Academic Press, 1984.

Claerbout, J. F., 1984, Imaging the Earth’s Interior: SEP–40.

Popovici, A. M., 1995, Migration to zero offset in variable velocity media: Ph.D. thesis,
Stanford University.

APPENDIX A

The stationary phase theorem announces the following result (Bleistein, 1984):

Integrals of the form

I k eik t f t dt (A-1)

can be approximated asymptotically when k by:

I k
2

k t0
f t0 eik t0 sgn t0 i

4 (A-2)

where t0 is the stationary point at which the phase derivative t 0, f t is a complex
function, and the phase t is real.

The method is based on a high-frequency approximation, the general idea being that
the integral has most of its area near the stationary point t0. The approximate value of
the integral in the neighborhood of the stationary point is then obtained analytically by
expanding t and f t in a Taylor series around t0.

APPENDIX B

We develop here the calculation of the second derivative of the phase from its expression in
narrow-azimuth migration:

DSR km kh z dz khyh y
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We derive our conclusions concerning the validity of the stationary-phase approximation
from this final formula. It also highlights intrinsic limitations of the algorithm with steep
dips and evanescent waves.
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