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ABSTRACT

The spectrum of a prediction-error filter (PEF) tends toward the inverse spectrum of the
data from which it is estimated. I compute 2-D PEF’s from known “training images”
and use them to synthesize similar-looking textures from random numbers via helix
deconvolution. Compared to a similar technique employing Fourier transforms, the
PEF-based method is generally more flexible, due to its ability to handle missing data,
a fact which I illustrate with an example. Applying PEF-based texture synthesis to a
stacked 2-D seismic section, I note that the residual error in the PEF estimation forms
the basis for “coherency” analysis by highlighting discontinuities in the data, and may
also serve as a measure of the quality of a given migration velocity model. Last, I relate
the notion of texture synthesis to missing data interpolation and show an example.

INTRODUCTION

In terms of digital images, the word texture might be defined as, “an attribute representing
the spatial arrangement of gray levels of the pixels in a region,” (IEEE, 1990). In the same
context, I define texture synthesis as the process of first estimating the spatial statistical
properties of a known image and then imparting these statistics onto a second (random)
image. Figure 1 illustrates the general approach taken here: an uncorrelated image is
transformed into one with the same statistical qualities as a known “training image” (TI),
through an as-yet undefined filtering operation.

Texture synthesis is an active area of research in the computer graphics community,
owing to the need for realistic, quickly generated surface textures (Simoncelli and Portilla,
1998; Heeger and Bergen, 1995; Brown and Mao, 1998), but the same notion of texture applies
to the earth sciences as well. Physically measurable quantities, be they geology, gravity, or
topography, behave in certain repeatable ways as a function of space, i.e., these quantities
have a given texture. Inversion problems are often underdetermined, hampered by a lack of
“hard” measurements, causing a nullspace of high dimension. A priori “soft” constraints
on functional form of the unknown model help in suppressing the nullspace of modeling
operators. These a priori constraints can be conceptualized as textures. For instance, in
velocity analysis and tomography, the earth’s velocity field is sometimes assumed to have a
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Figure 1: The generalized texture syn-
thesis algorithm. From the training im-
age (TI), statistics are extracted and en-
coded into a filtering operation, which
forces an uncorrelated image to have the
same statistical qualities, or texture, as
the TI. morgan1-syn-templ [NR]

“blocky” texture (Clapp et al. , 1998). Underdetermined inverse interpolation problems are
often regularized by assuming “smooth” model texture (Claerbout, 1998).

The prediction-error filter (PEF) is an autoregressive filter which has the distinction
of capturing the inverse spectrum of the data it is regressed upon. Because it captures
this essential statistical property of the data, the PEF is a candidate for the generic "filter"
operation shown in Figure 1.

This paper is intended as a follow-up to the earlier work by Claerbout and Brown (1999),
which presented a texture synthesis technique utilizing 2-D PEF’s and 2-D deconvolution
via the helix transform (Claerbout, 1998b). First I motivate the texture synthesis problem
by applying a Fourier transform-based technique to create synthetic textures of everyday
objects, then introduce and apply a PEF-based technique to synthesize the same images. I
compare the results of the two methods and conclude that the PEF-based method is the better
choice because it more naturally handles missing data. Next I apply the PEF-based method
to a 2-D stacked seismic section. The nature of the residual error in the PEF estimation of
this example suggests application to seismic discontinuity detection and migration velocity
analysis. Last, I solve a simple missing data problem to illustrate how regularization with
a PEF imparts a reasonable “texture” onto the nullspace.

FOURIER TRANSFORM METHOD

The texture synthesis methodology of this paper really boils down to one of spectral estima-
tion. An image’s amplitude spectrum contains the relative weights between frequency com-
ponents, while the phase spectrum localizes these frequency components in space (Castleman,
1996). Therefore, it stands to reason that the texture of stationary, loosely correlated images
is adequately modeled using the amplitude spectrum alone. This idea is the basis for the
Fourier Transform method of texture synthesis: all “realizations” of texture synthesis are
forced to have the same amplitude spectrum, differing only in phase. The following is an
outline of the method.



SEP–100 Texture synthesis 213

1. Given a training image, t x y , compute its amplitude spectrum:

R kx ky T kx ky T kx ky (1)

2. Create random phase function: r kx ky random numbers.

3. Reconstruct by substituting random phase:

trecon x y 1 R kx ky ei r kx ky (2)

Figures 2 and 3 illustrate the Fourier transform method of texture synthesis. Clockwise
from top-left: the training image, the synthesized image, the TI’s amplitude spectrum, and
the TI’s phase spectrum.

Figure 2: Smoothed random im-
age and Fourier transform synthesis.
The TI is stationary, so the synthe-
sis result is convincing. Notice that
the true phase, in the regions where
the modulating amplitude spectrum is
nonzero, is quite random in appearence.
morgan1-rand2d-ftsyn [ER]

PEF-BASED METHOD

Theoretically, the convolution of data (Nd points) and a PEF (Na coefficients) estimated
from the data is approximately uncorrelated in the limit Na Nd : a spike at zero lag
plus Gaussian, independent identically distributed (iid) noise elsewhere. Thus the spectrum
of this residual error is approximately white. The frequency response of the “inverse PEF”,
as computed by deconvolution, is an Na-point parameterization of the Nd-point inverse
amplitude spectrum, as illustrated in Figure 4. As the size of the filter increases, the param-
eterization becomes more accurate, as expected from theory (Claerbout, 1976). The notion
of PEF as “decorrelator” is quite akin to decomposition by principal components (Castle-
man, 1996), where the number of principal components used in computation determines the
degree of decorrelation.

The following is an outline of the PEF-based texture synthesis method.
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Figure 3: "Ridges" image and Fourier
transform synthesis. The correlation is
both long-range and extremely compli-
cated - quite like a meandering network
of fluvial channels. Though the synthe-
sized image has the same general char-
acter as the TI, not all of the structures
are modeled, proving the inadequacy
of the amplitude spectrum for modeling
nonstationary, highly correlated images.
The TI phase spectrum shows some or-
dering, so the random phase substitution
was ill-advised. morgan1-ridges-ftsyn
[ER]

Figure 4: Frequency response of “in-
verse PEF” (deconvolution) as a func-
tion of filter size. As expected, as the
filter length increases, the approxima-
tion improves. morgan1-rand1d-spec
[ER]
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1. Given training image t x y , estimate unknown PEF a x y via least squares mini-
mization:

min t a 2 (3)

2. The residual r t a is approximately uncorrelated, with the same dimension as
the TI, since we use an "internal" convolution algorithm (Claerbout, 1998). It can be
proved that a is a minimum phase filter, (Claerbout, 1976)so deconvolution (polynomial
division) robustly and stably reconstructs t given r . Generate a random residual r
with the same dimension as r . To create the synthetic texture, simply deconvolve r
by a:

tsyn r a (4)

where the “ / ” refers to polynomial division, our preferred method of deconvolution.

Though the residual is uncorrelated, it does contain “phase” information. Deconvolution
of a random image blindly spreads scaled copies of the impulse response of the inverse PEF
across the output space. If the residual r is not sufficiently whitened, then the replacement
of r with r will lead to an ineffective representation of t by tsyn.

Figures 5 through 7 illustrate the PEF-based texture synthesis process. The left-hand
panel shows the training image, the center panel shows the residual r t a , and the
right-hand panel shows the synthesized image, tsyn r a. A 10x10 PEF is used in each
case. The blank areas in the residual panel correspond to regions where the PEF falls outside
the bounds of the known data.

Figure 5: Smoothed random 2-D image and PEF-based texture synthesis result. The TI is quite
simple (stationary, low correlation), so as expected, the synthesized image and the TI are almost in-
distinguishable. To the naked eye, the residual appears effectively white. morgan1-rand2d-pefsyn
[ER]

WHY USE THE PEF?

PEF-based texture synthesis can only achieve the results of the Fourier transform method
(Figures 2 and 3) in the limit Na Nd , which is unrealistic in practical situations, where
Nd is very large. Least squares estimation of the filter in this case is certainly costlier than
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Figure 6: “Ridges” image and PEF-based texture synthesis result. Recall that the complicated
connected features of this image were not completely synthesized by the Fourier transform method
(Figure 3), of which the PEF method is an approximation. This synthesized image bears even less
resemblance to the TI, exhibiting only a general southwest-to-northeast trend. The wavy, ridge-
like features have many different dips, making them difficult to predict with a PEF, and with two
point statistics in general. The same can be said for the ubiquitous hyperbolic features of reflection
seismology. morgan1-ridges-pefsyn [ER]

Figure 7: “Wood” image and PEF-based texture synthesis result. The synthesis result is pleasing.
The PEF-based method preserves the general trend and relative scale length of the lineations in the
TI. The correlation of the TI is relatively long-range, in that the lineations cross a large portion of
the image, but the features are merely straight lines at one dip. morgan1-wood-pefsyn [ER]
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three Fast Fourier transforms. On the other hand, if the filter size can be limited without
compromising quality, which is the case for stationary, simply correlated images, then the
PEF-based method is more flexible. Unlike the Fourier transform a PEF can be estimated
easily when data are missing. Figure 8 shows that the PEF estimated from the incomplete
data captures enough features of the data’s spectrum to make a fairly convincing texture
synthesis result. The output of the PEF-based method can be of any size, while the output
of a Fourier transform is generally constrained to be the same size as the input.

APPLICATIONS

PEF Estimation with incomplete data

Modern reservoir characterization efforts take a pragmatic view of collected data. Rather
than wait for collection of the elusive “perfect” dataset, the desire is to incorporate a wide
variety of possibly incomplete data types into a single inversion scheme (Caers and Journel,
1998). Often the only data available is spatially incomplete. Figure 8 shows the result of
texture synthesis on training images with large void regions. As noted earlier, the blank
areas in the center panels of the figure correspond to regions where the filter can’t fit without
falling on one or more missing points. Each of the “in-bounds” data points contributes one
equation to the LS estimation of the 100 or so filter coefficients. Even when well over half
of the data points are removed from the training image this result shows that we can still
safely estimate a filter and synthesis a believable texture.

2-D Stacked Seismic Section

Figure 9 shows the result of applying PEF texture synthesis to a 2-D stacked seismic section.
The residual panel is interesting; notice uncollapsed diffraction hyperbolas, two highlighted
fault planes, and also statics-like artifacts in the earlier times. PEF’s easily predict straight
lines (plane waves) and sinusoids, but hyperbolas and discontinuities are quite another
matter.

Matthias Schwab used the “plane wave prediction” property of the PEF in his Ph.D.
thesis (Schwab, 1998) to create so-called “coherency cubes” from 3-D seismic data by
nonstationary convolution with small PEF’s. Development of viable seismic coherency
attributes merits considerable industrial interest, as evidenced by the concentration of related
articles in the March, 1999 edition of The Leading Edge.

If a good velocity model is used, poststack migration should collapse these hyperbolas,
so one measure of the fitness of a given velocity model could be the relative amount of
residual energy in the data*PEF panel. Additionally, to the same end, this technique could
be used to measure the relative amount of residual curvature in common reflection point
(CRP) gathers, which are flattened when the correct migration velocity is used (Biondi,
1997). This preprocessing could be done quickly, for the necessary PEF’s are small.
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Figure 8: Comparison showing the effects of missing data on the PEF texture synthesis result, for
two different “holes”. Although half or more of the equations are removed from the PEF estimation
problem, the synthesized textures still capture the character of the training image. Fourier transforms
are ill-defined on irregular coordinate systems, but the PEF makes an estimate of the known data’s
spectrum regardless. morgan1-holes [ER]



SEP–100 Texture synthesis 219

Figure 9: Stacked 2-D seismic section. morgan1-WGstack-pefsyn [ER]

Preconditioned Missing Data Infill

To fill “holes” in collected data, we have the familiar SEP formulation (Claerbout, 1998):

Km d 0 (5)

Am 0 (6)

[5] is the “data matching” goal, which states that the model m must match the known
data d , while [6] is the “model smoothness” goal, where A is an arbitrary roughening
operator. To combat slow convergence, Claerbout (1998) preconditions with the inverse
of the convolutional operator A (multidimensional deconvolution). Provided that A is
minimum phase or factorizable into the product of minimum phase filters (Sava et al. ,
1998), the helix transform now permits stable multidimensional deconvolution. Making the
change of variables m A 1x , we have the equivalent preconditioned problem:

KA 1x d 0 (7)

x 0 (8)

The operator K effectively maps vectors in model space into a smaller-dimension “known
data space”, so it has a nonempty nullspace. Missing points in model space are completely
unconstrained by K , so our choice of A wholly determines the behavior of the missing model
points, i.e., their texture (Fomel et al. , 1997). The PEF is a perfect choice for A , as shown in
Figure 10. The preconditioned, PEF-regularized result fills the hole quite believably after
only 20 iterations, as opposed to the case where A 2 , which imposes an unrealistically
smooth texture on the missing model points.
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Figure 10: Clockwise from top left: Data with hole, impulse response of “inverse PEF” (deconvo-
lution of the PEF estimated from the data and a spike), data in-filled using 2 regularization, data
in-filled using preconditioned PEF regularization. morgan1-tree-hole-filled [ER]
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DISCUSSION

The goal of this paper is not to make slick surface textures for computer games. Nontheless,
as a tutorial device, texture synthesis using the PEF is valuble, since it concretely and
intuitively illustrates in two dimensions some of the fundamental concepts of autoregression
which are proved only in the one dimensional case (Claerbout, 1976). In fact, some of the
results shown here and in Claerbout and Brown (1999) have recently been incorporated into
Jon Claerbout’s textbook, Geophysical Estimation by Example (1998).

Both the Fourier transform and PEF-based texture synthesis operate under the assump-
tion that the training image is sufficiently well characterized by amplitude spectrum alone.
For some images (Figures 2, 5, and 7) the assumption holds, but for others (Figures 3, 6) it
is obviously violated. Real digital images and earth phenomena alike often exhibit complex
spatial correlation which are modelable only with multiple point templates (Caers and Jour-
nel, 1998; Malzbender and Spach, 1993). Additionally, I have ignored the interesting subjects
of nonstationarity and spatial scale variance. By scale-variant, I mean that the characteristic
scale of an image’s features is not constant with respect to spatial frequency. Many methods
for characterizing scale-variant images appeal to the world of wavelets for a methodology
known as multiresolution analysis (Simoncelli and Portilla, 1998; Heeger and Bergen, 1995;
Strang and Nguyen, 1997). The notion of texture synthesis for nonstationary images is ill-
defined, since it amounts to a random reordering of filters estimated on locally-stationary
patches, followed by deconvolution on the correspondng patches.

When the training image has missing values, as in Figure 8, the PEF-based texture
synthesis method performs favorably. As shown in the missing data interpolation example
(Figure 10), the ability of the PEF to reliably estimate the data spectrum, even with missing
data, makes it an ideal regularization operator. Figure 9 illustrates the fact that the PEF
primarily predicts plane waves. I proposed using a PEF residual measure to determine the
viability of a given migration velocity. In general, PEF estimation/convolution might have
value as a preprocessing step for a variety of applications. For instance, a very small PEF
(2 columns) has a relatively large residual in the presence of conflicting dips, and thus may
help in determining local filter size or patch size.
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