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3-D traveltime computation
by Huygens wavefront tracing
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ABSTRACT

In this paper, | present a 3-D implementation of Huygens wavefront tracing. The three-
dimensional version of the method retains the characteristics of the two-dimensional
one: stability, accuracy, and efficiency. The mgor difficulty of the 3-D extension is
related to the handling of triplications. An easy to implement solution isto approximate
the wavefronts at the triplications as planes orthogonal to the incident ray.

INTRODUCTION

The goal of obtaining efficient and robust multiple-arrival traveltimes has yet to be ac-
complished in practice. The typical traveltime methods—eikonal solvers, ray tracing and
wavefront construction—either only compute the first-arrival traveltimes (eikonal solvers)
or are expensive and not always robust in regions of high velocity variation (ray tracing
and wavefront construction). However, Huygens wavefront tracing (HWT), introduced in
aprevious paper (Sava and Fomel , 1998), does offer a robust and very efficient method of
computing multiple-arrival traveltimes.

This paper presents my extension of Huygens wavefront tracing to three dimensions. |
start by briefly reviewing the theory, then | discuss how to handle the triplications of the
wavefronts and present one 2-D and two 3-D examples. | continue with a brief comparison
to other traveltime methods, and end with conclusions and possible directions for future
work.

REVIEW OF HWT THEORY

Given an isotropi c heterogeneous medium, wavefronts are represented by surfaces of equal
traveltime, constrained by the eilkonal equation
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and appropriate boundary conditions.

Each point on awavefront can be parametrized by either its Cartesian coordinates x, y,
and z, or itsray coordinates, which consist of the traveltime t, and the two shooting angles
at the source, y and ¢.

For complex velocity fields, theray coordinatesasafunction of the Cartesian coordinates
become multi-valued, in other words, thereismore than one ray going through agiven point
in the subsurface. In contrast, the Cartesian coordinates as afunction of the ray coordinates
remain single-valued, that is, there is one unique position in the subsurface where a ray,
shot with two particular shooting angles, arrives at a given time. Figure 1 illustrates the
difference between the two representations of the wavefronts.

X Y

Y Y

Figure 1. The ray coordinates as a function of the Cartesian coordinates are multi-valued
(left). The Cartesian coordinates as a function of the ray coordinates are single-valued
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Sincex(z, y, ¢), y(z, y, ¢),and z(z, y, ¢) areuniquely defined for arbitrarily complex
velocity fields, the eikonal equation (Equation 1) can be transformed to another form that
is better suited for analysisin ray coordinates (Sava and Fomel , 1998):
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Converting equation (2) to afinite-difference equation using a first-order discretization
scheme, we obtain

ik k)2 ik k)2 ik k)2 k)2
(2 =)+ (e =9") + (B -2%) = () 3
where j isthe index of the current wavefront, j + 1 isthe index of the new wavefront to
be computed, and i and k are the indices of the shooting angles. This equation represents
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a sphere, the wavefront of a secondary Huygens source placed at (x
current wavefront.

According to the Huygens principle, the new wavefront is the envelope of al the sec-
ondary wavefronts. Mathematically, the position of the new wavefront is described by a
system of three equations composed of Equation (3) and the following two equations (Sava
and Fomel , 1998):

(xij,k _ le-tl) (Xij+l,k B X}A,k) n (y},k _ ylj—tl> (y}+1,k _ yijfl,k) n
(Zij,k B le-ku> (Zij+l,k _ Zij—l,k) _ r},k <r}+l,k _ r}—l,k) 4
and
(x},k _ x'h‘fl) (xij,k+1 B X},kfl> n (y},k B y;—tl) (y},k+l _ yij,k—1> n
<Zij,k _ le-ku> (Zij,k+1 _ Zij,k—l) _ r},k (r},k+1 _ r},k—l) . 5)

Figure 2 contains asimple geometrical interpretation of the system described by Equations
(3), (4), and (5). Five points on the current wavefront, represented by the five spheres, not

Figure 2: A geometrical updating
scheme for 3-D HWT in the phys-
ical domain. Five points on the cur- {
rent wavefront, represented by the ImeSY
fivespheres, notal visible, withradii
defined by thevel ocitiesat the corre-
sponding pointsof thewavefront, are
used to compute a point on the next
wavefront. The sphere in the mid-
dle represents equation (3), and the
planes represent equations (4) and
(5). | paul 2-huygens3d| [CR]

all visible, with radii defined by the velocities at the corresponding points of the wavefront,
are used to compute a point on the next wavefront. The sphere in the middle represents
equation (3), while the planes represent equations (4) and (5).

Huygenswavefront tracing, based on the system of equations(3), (4), and (5), isnothing
but an explicit finite-difference method in the ray coordinate system. The coordinates of the
new wavefronts are computed according to those of the current wavefront. A three-point
stencil isneeded in two dimensionsto compute the centered finite-difference representation
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Figure 3: Finite-difference traveltime computation scheme. A 3-point stencil isneeded in
2-D to compute the centered finite-difference representation of the derivative with respect
to the shooting angle (left). A 5-point stencil is needed in 3-D to compute the centered
finite-difference representation of the derivatives with respect to the shooting angles (right)
paul2-scheme] [NR]

of the derivative with respect to the shooting angle, while a five-point stencil is needed in
three dimensionsto compute the centered finite-difference representation of the derivatives
with respect to the shooting angles. Figure 3isagraphical illustration of thefinite-difference
stencils.

BOUNDARIESAND TRIPLICATIONS

This section presents a short discussion of the special treatment required by the boundaries
of the computation domain. These boundaries are of two kinds: exterior boundaries, rep-
resented by the edges of the computational domain, and interior boundaries, represented
by the triplication lines. Because of the centered finite-difference scheme, HWT cannot be
used at the boundaries of the computational domain. This means that the boundaries need
to be treated differently from the rest of the domain. Also, the centered finite-difference
scheme cannot be used when the wavefronts create triplications. Triplications represent
points of discontinuity of the derivative along the wavefront, and, therefore, the centered
finite-difference representation of the derivativeisinappropriate. Figure 4 describes a point
of triplication represented in both the physical (Cartesian) domain (left) and the ray coordi-
nate domain (right).

One possible solution for the boundariesis to make alocal approximation of the wave-
front. Instead of considering the actual points on the wavefront, we can create an approxi-
mate wavefront that islocally orthogonal to theray arriving at the cusp point, asdepictedin
Figure 5. We can then pick an appropriate number of points (two in 2-D or four in 3-D) on
this approximate wavefront, and use the HWT scheme without any change. A new search
for the cusp pointsis then needed on the new wavefront before we can proceed any further.
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Figure 4. The centered finite-
difference representation of the
derivative along the wavefront can-
not be used at the cusps. These
points represent discontinuities in
the derivative, and need to be treated

separately. [NR]

j+1

Figure 5. The centered finite-
difference representation of the
derivative along the wavefront can-
not be used at the cusps. Instead, we o
can use alocal approximation of the A
wavefront as a plane locally orthog- -1

onal to the ray arriving at the cusp.

[ N R] approximate wavefront

correct wavefront

i+1

EXAMPLES

This section presents a number of results of traveltime computation using several models
that exemplify the main features of the method.

The first example compares the results of the traveltime computation with those of the
full wave-equation modeling for the 2-D salt dome model shown in Figure 6. Figure 7 is
a snapshot of the wavefield at 1.23 s, superimposed on an outline of the velocity model.
Figure 8 shows, in addition, the wavefront corresponding to the same propagation time
(1.23s), and some of the rays derived from the computed wavefronts. The first arrivals of
the wavefronts superimpose well on the similar events in the wavefield. The later arrivals
al so superimpose well on the corresponding eventsin the wavefield, though the sampling is
alot sparser. Thisisunderstandable, sincein HWT thewavefrontsare sampled evenly inthe
ray domain, but not in the physical domain. Because samplinginthetwo domainsisrelated,
a better sampling in the ray domain can generate more accurate sampling in the physical
domain. However, sampling is dependent on the model; there is no guarantee of more
accurate sampling for rays shot with a smaller angle step. A better idea is to dynamically
modify the sampling on the wavefronts as is done in some of the wavefront construction
methods (Vinje et a., 1993).

The next two examples are three-dimensional. In thefirst, | consider a strong negative
Gaussian velocity anomaly of —2500 m/s placed in a constant vel ocity medium of 3000 m/s
(Figure9). Thesourceis placed on the surface above the center of the anomaly. Figure 11
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Figure 6: The EIf velocity model. | paul2-velfsa| [ER]

Figure 7: Wave-equation modeling on the EIf velocity model. The snapshot was taken at
1.23s. The outline on the model is superimposed on the wavefield. | paul2-melfsa| [ER]
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Figure 8: HWT wavefront superimposed on a wave-equation modeling snapshot at 1.23s.
The portion of the wavefronts corresponding to thefirst-arrival matcheswell thefirst-arrival
of the wavefield. Also, the later HWT arrivals match well with similar events of the wave-

equation modeling shown in Figure 7. | paul 2-welfsa| [ER]
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Figure9: A 3-D Gaussian velocity anomaly. | paul2-velgaus| [ER]
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Figure 10: The 3-D SEG-EAGE salt velocity model. | paul2-velsalt| [ER]

depicts the traveltimes obtained by HWT and interpolated on the Cartesian grid using a
multi-valued traveltime interpolation method (Sava and Biondi, 1997). From the multiple
values of the traveltime field, | have selected those that correspond to the minimum ray-
length from the source (Nichols et al., 1998). For comparison, Figure 12 indicates the
first-arrival traveltimes of a fast marching eikonal solver (FME) (Popovici and Sethian,
1997; Fomel, 1997). As expected, the traveltime cubesin Figures 11 and 12 match well for
the regions that correspond to the first-arrival wavefronts. However, the traveltime cubes
are completely different in the regions where the wavefronts triplicate, regions where the
shortest ray does not correspond to thefirst arrival, but to alater one.

Inthe second 3-D example, | consider the SEG-EAGE salt model presentedin Figure 10.
Again, the HWT multiple-arrival traveltimes are interpolated on the Cartesian grid, and
selected to have the minimum ray-length from the source, as we see in Figure 13. For
comparison, thefast-marching eikonal resultsfor the same source point and thesamevel ocity
model appear in Figure 14. The HWT traveltimes for the volume above the salt body
correspond to the direct arrival, while the FME traveltimes correspond to the head waves
from the top of the salt.

DISCUSSION

This section briefly compares Huygens wavefront tracing with the other major traveltime
computation methods. paraxial ray tracing (PRT) (Cerveny, 1987), eikonal solvers (ES)
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Figure 11: The 3-D Gaussian velocity anomaly. A traveltime cube obtained using HWT.
Thetraveltimesareinterpolated on therectangular grid. The selected traveltimescorrespond
to the shortest rays (Nichols et al., 1998). | paul 2-hwtgaus| [ER]
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Figure 12: The 3-D Gaussian velocity anomaly. A traveltime cube obtained using a fast-
marching first-arrival eikonal solver. | paul2-fmegaus| [ER]
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Figure 13: The SEG-EAGE salt model. A traveltime cube obtained using HWT. The
traveltimes are interpolated on the rectangular grid. The selected traveltimes correspond to

the shortest path rays. | paul2-hwtsalt| [ER]
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Figure 14: The SEG-EAGE sat model. A traveltime cube obtained using a fast-marching
first-arrival eikonal solver. | paul2-fmesalt| [ER]
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Table 1. Comparison of methods for traveltime computation

Wavefront Tracing Ray Tracing
finds the solution to a system of PDES finds the solution to a system of ODES

Wavefront Tracing Eikonal Solvers
gives the output in ray coordinates gives the output in Cartesian coordinates
computes multiple arrivals computes one arrival
Wavefront Tracing Wavefront Construction

finds a new wavefront by finite-differences | finds a new wavefront by ray tracing

(Vidale, 1990; van Trier and Symes, 1991; Popovici and Sethian, 1997; Fomel, 1997), and
wavefront construction (WC) (Vinjeet a., 1993). Table 1 summarizes the comparison.

HWT hasits output in ray coordinates, the same domain as PRT. However, PRT isdone
by solving asystem of ordinary differential equations (ODE) in the physical domain, while
in HWT the solution is obtained by solving a system of partial differential equations (PDE)
using finite-differencesin the ray coordinate domain.

Both HWT and ES are finite-difference methods. However, HWT represents a finite-
difference method in the ray domain, while ES represent finite-difference methods in the
Cartesian domain. Also, HWT generates al the arrivals, while the ES generate only one
arrival, typically the first.

Finally, HWT issimilar to WC in that both compute each wavefront from the preceding
one. However, WC involvesray tracing from one wavefront to the next, whilein HWT one
wavefront is generated from the preceding by finite-differencesin the ray domain.

CONCLUSIONSAND FUTURE WORK

My extension of Huygenswavefront tracing to three dimensions retai ns the benefits offered
by the method in two dimensions, namely its stability in regions of high velocity contrast,
its accuracy, and its computational efficiency.

As for any other traveltime method that involves computations in the ray domain, the
interpolation to a Cartesian grid remains the major problem. In the current implementa-
tion, the interpolation is about one order of magnitude more expensive than the traveltime
computation itself.

A possibledirectionfor futurework isto modify HWT to agrid-adaptivefinite-difference
method. HWT requires computing derivatives along the wavefronts. As the distance be-
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tween adj acent pointson thewavefront increases, theaccuracy of thosederivativesdecreases.
One possible way to increase the accuracy is to adapt the sampling of the wavefront in the
ray domain, as done with finite-difference methods in the physical domain (Symes et al.,
1999).
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