
Stanford Exploration Project, Report 100, April 20, 1999, pages 227–235

Spectral factorization revisited
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ABSTRACT

In this paper, we review some of the iterative methods for the square root, showing that
all these methods belong to the same family, for which we find a general formula. We
then explain how those iterative methods for real numbers can be extended to spectral
factorization of auto-correlations. The iteration based on the Newton-Raphson method
is optimal from the convergence stand point, though it is not optimal as far as stability is
concerned. Finally, we show that other members of the iteration family are more stable,
though slightly more expensive and slower to converge.

INTRODUCTION

Spectral factorization has been recently revived by the advent of the helical coordinate sys-
tem. Several methods are reported in the literature, ranging from Fourier domain methods,
such as Kolmogoroff’s (Claerbout, 1992; Kolmogoroff, 1939), to iterative methods, such as
the Wilson-Burg method (Claerbout, 1998; Wilson, 1969; Sava et al. , 1998).

In this paper, after reviewing the general theory of root estimation by iterative methods,
we derive a general square root relationship applicable to both real numbers and to auto-
correlation functions. We introduce a new spectral factorization relation and show its relation
to the Wilson-Burg method.

THE SQUARE ROOT OF REAL NUMBERS

This section briefly reviews some well known square root iterative algorithms, and derives
the Newton-Raphson and Secant methods. It also shows that Muir’s iteration for the square
root (Claerbout, 1995) belongs to the same family of iterative methods, if we make an
appropriate choice of the generating function.
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Root-finding recursions

Given a function f x and an approximation for one of its roots xn , we can find a better
approximation for the root by linearizing the function around xn

f x f xn xn 1 xn f xn

and by setting f x to be zero for x xn 1. We find that

xn 1 xn
f xn

f xn
(1)

1. Newton-Raphson’s method for the square root

A common choice of the function f is f x x2 s. This function has the advantage
that it is easily differentiable, with f x 2x . The recursion relation thus becomes

xn 1 xn
x2

n s

2xn

xn

2

s

2xn

or

xn 1
1

2
xn

s

xn

or, after rearrangement,

xn 1
s x2

n

2xn
(2)

The recursion (2) converges to s depending on the sign of the starting guess
x0 0.

2. Secant method for the square root

A variation of the Newton-Raphson method is to use a finite approximation of the
derivative instead of the differential form. In this case, the approximate value of the
derivative at step n is

f xn
f xn f xn 1

xn xn 1

For the same choice of the function f , f x x2 s , we obtain

xn 1 xn
x2

n s

xn xn 1

and

xn 1
s xnxn 1

xn xn 1
(3)

In this case, recursion (3) also converges to s depending on the sign of the starting
guesses x0 and x1.
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3. Muir’s method for the square root

Another possible iterative relation for the square root is Francis Muir’s, described by
Jon Claerbout (1995):

xn 1
s xn

xn 1
(4)

This relation belongs to the same family of iterative schemes as Newton and Secant,
if we make the following special choice of the function f x in (1):

f x x s
s 1

2 s x s
s 1

2 s (5)

Figure 1 is a graphical representation of the function f(x).

Figure 1: The graph of the function
defined in Equation (1) used to gen-
erate Muir’s iteration for the square
root (solid line). The dashed lines
are the plot of the two factors in the
equation . paul3-muf [CR]
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4. A general formula for the square root

From the analysis of equations (2), (3), and (4), we can derive the following general
form for the square root iteration:

xn 1
s xn

xn
(6)

where can be either a fixed parameter, or the value of the iteration at the preceding
step, as shown in Table 1. The parameter is the estimate of the square root at the
given step (Newton), the estimate of the square root at the preceding step (Secant), or
a constant value (Muir). Ideally, this value should be as close as possible to s.

The convergence rate

We can now analyze which of the particular choices of is more appropriate as far as the
convergence rate is concerned.
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Table 1: Recursions for the square root

Recursion

Muir 1 xn 1
s xn
xn 1

Secant xn 1 xn 1
s xn xn 1
xn xn 1

Newton xn xn 1
s x2

n
2xn

Ideal s xn 1
s xn s
xn s

If we consider the general form of the square root iteration

xn 1
s xn

xn

we can estimate the convergence rate by the difference between the actual estimation at step
n 1 and the analytical value s. For the general case, we obtain

xn 1 s
s xn xn s s

xn

or

xn 1 s
xn s s

xn
(7)

The possible selections for from Table 1 clearly show that the recursions described in

Figure 2: Convergence plots for dif-
ferent recursive algorithms, shown in
Table 1. paul3-sqroot [CR]
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the preceding subsection generally have a linear convergence rate (that is, the error at step
n 1 is proportional to the error at step n), but can converge quadratically for an appropriate
selection of the parameter , as shown in Table 2. Furthermore, the convergence is faster
when is closer to s.
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Table 2: Convergence rate

Convergence

Muir 1 linear

Secant xn 1 quasi-quadratic

Newton xn quadratic

We therefore conclude that Newton’s iteration has the potential to achieve the fastest
convergence rate. Ideally, however, we could use a fixed which is a good approximation to
the square root. The convergence would then be slightly faster than for the Newton-Raphson
method, as shown in Figure 2.

SPECTRAL FACTORIZATION

We can now extend the equations derived for real numbers to polynomials of Z, with Z
ei t , and obtain spectral factorization algorithms similar to the Wilson-Burg method (Sava
et al. , 1998), as follows:

Xn 1
S XnG

Xn G
(8)

If L represents the limit of the series in (8),

L L LG S LG

and so
L L S

Therefore, L represents the causal or anticausal part of the given spectrum S X X .

Table 3 summarizes the spectral factorization relationships equivalent to those estab-
lished for real numbers in Table 1.

The convergence properties are similar to those derived for real numbers. As shown
above, the Newton-Raphson method should have the fastest convergence.

A COMPARISON WITH THE WILSON-BURG METHOD

For reasons of symmetry, we can take Newton’s relation from Table 3

Xn 1
S Xn Xn

2Xn
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Table 3: Spectral factorization

General Xn 1
S XnG
Xn G

Muir Xn 1
S Xn

Xn 1

Secant Xn 1
S Xn Xn 1

Xn Xn 1

Newton Xn 1
S Xn Xn

2Xn

Ideal Xn 1
S Xn S
Xn S

and convert it to
Xn 1

2Xn

S Xn Xn

2Xn 2Xn

We can then consider a symmetrical relation where on the left side we insert the anticausal
part of the spectrum, and obtain

Xn 1

2Xn

S Xn Xn

2Xn 2Xn

Finally, we can sum the preceding two equations and get

Xn 1

2Xn

Xn 1

2Xn

2S Xn Xn Xn Xn

2Xn 2Xn
(9)

which can easily be shown to be equivalent to the Wilson-Burg relation

Xn 1

Xn

Xn 1

Xn
1

S

Xn Xn
(10)

In an analogous way, we can take the general relation from Table 3

Xn 1
S XnG

Xn G

and convert it to
Xn 1

Xn G

S XnG

Xn G Xn G

We can then consider a symmetrical relation where on the left side we insert the anticausal
part of the spectrum, and obtain

Xn 1

Xn G

S XnG

Xn G Xn G
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Finally, we can sum the preceding two equations and get

Xn 1

Xn G

Xn 1

Xn G

2S XnG XnG

Xn G Xn G
(11)

Equation (11) represents our general formula for spectral factorization. If we consider
the particular case when G is Xn , we obtain equation (10), which we have shown to be
equivalent to the Wilson-Burg formula.

From the computational standpoint, our equation is more expensive than theWilson-Burg
because it requires two more convolutions on the numerator of the right-hand side. However,
our equation offers more flexibility in the convergence rate. If we try to achieve a quick
convergence, we can take G to be Xn and get the Wilson-Burg equation. On the other hand,
if we worry about the stability, especially when some of the roots of the auto-correlation
function are close to the unit circle, and we fear losing the minimum-phase property of the
factors, we can take G to be some damping function, more tolerant of numerical errors.

Moreover, by using the Equation (11), we can achieve fast convergence in cases when the
auto-correlations we are factorizing have a very similar form, for example, in nonstationary
filtering. In such cases, the solution at the preceding step can be used as the G function
in the new factorization. Since G is already very close to the solution, the convergence is
likely to occur quite fast.

CONCLUSIONS

The general iterative formula for the square root that we derived can be extended to the
factorization of the auto-correlation functions. The Wilson-Burg algorithm is a special case
of our more general formula. Using such a general formula provides flexibility in choosing
between fast convergence and stability. We can achieve fast convergence when factorizing
auto-spectra that have a very similar form. This improvement in convergence rate can have
a useful application, for instance, in nonstationary preconditioning.
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