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Velocity continuation in migration velocity analysis
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ABSTRACT

Velocity continuation can be applied to migration velocity analysis. It enhances residual
NMO correction by properly taking into account both vertical and lateral movements of
reflectors caused by the change in migration velocity. I exemplify this fact with simple
data tests.

INTRODUCTION

Migration velocity analysis is a routine part of prestack time migration applications. It
serves both as a tool for velocity estimation (Deregowski , 1990) and as a tool for optimal
stacking of migrated seismic sections and modeling zero-offset data for depth migration
(Kim et al. , 1997). In the most common form, migration velocity analysis amounts to
residual moveout correction on CRP (common reflection point) gathers. However, in the
case of dipping reflectors, this correction does not provide optimal focusing of reflection
energy, since it does not account for lateral movement of reflectors caused by the change in
migration velocity. In other words, different points on a stacking hyperbola in a CRP gather
can correspond to different reflection points at the actual reflector. The situation is similar
to that of the conventional NMO velocity analysis, where the reflection point dispersal
problem is usually overcome with the help of DMO (Deregowski , 1986; Hale, 1991). An
analogous correction is required for optimal focusing in the post-migration domain. In this
paper, I propose and test velocity continuation as a method of migration velocity analysis.
The method enhances the conventional residual moveout correction by taking into account
lateral movements of migrated reflection events.

Velocity continuation is an artificial process of transforming time migrated images ac-
cording to the changes in migration velocity. This process has wave-like properties, which
have been described in my earlier papers (Fomel , 1994, 1996a, 1997). Hubral et al. (1996)
and Schleicher et al. (1997) use the term image waves to introduce a similar concept. Ve-
locity continuation extends the theory of residual and cascaded migrations (Rothman et al. ,
1985; Larner and Beasley, 1987). In practice, the continuation process can be modeled by
finite-difference or spectral methods (Fomel and Claerbout, 1997; Fomel , 1998).
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Applying velocity continuation to migration velocity analysis involves the following
steps:

1. prestack common-offset (and common-azimuth) migration - to generate the initial
data for continuation,

2. velocity continuation with stacking across different offsets - to transform the offset
data dimension into the velocity dimension,

3. picking the optimal velocity and slicing through the migrated data volume - to generate
an optimally focused image.

In this paper, I demonstrate all three steps, using a simple two-dimensional dataset. For
the implementation of velocity continuation, I chose the Fourier spectral method. The
method has its limitations (Fomel , 1998), but looks optimal in terms of the accuracy versus
efficiency trade-off. It is important to note that although the velocity continuation result
could be achieved in principle by using prestack residual migration in Kirchhoff (Etgen,
1990) or Stolt (Stolt , 1996) formulation, the first is evidently inferior in efficiency, and the
second is not convenient for velocity analysis across different offsets, because it mixes them
in the Fourier domain (Sava, 1999).

PUTTING TOGETHER PRESTACK VELOCITY CONTINUATION

Velocity continuation in the zero-offset (post-stack case) can be performed with a simple
Fourier-domain algorithm (Fomel , 1998):

1. Input an image, migrated with velocity 0.

2. Transform the time axis t to the squared time coordinate: t2.

3. Apply a fast Fourier transform (FFT) on both the squared time and the midpoint axis.
The squared time transforms to the frequency , and the midpoint coordinate x
transforms to the wavenumber k. We can safely assume that in the post-migration
domain seismic images are uniformly sampled in x , which allows us to use the
FFT technique. In the case of 3-D data, FFT should be applied in both midpoint
coordinates.

4. Apply a phase-shift operator to transform to different velocities :

P k P0 k e
i k2 2

0
2

4 (1)

5. Apply an inverse FFT to transform from and k to and x .

6. Apply an inverse time stretch to transform from to t .
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The computational complexity of this algorithm has the same order as that of the Stolt
migration (Stolt , 1978), but in practice it can be even faster because of the very simple inner
computation.

To generalize algorithm (1) to the prestack case, we first need to include the residual
NMO term (Fomel , 1996a). Residual normal moveout can be formulated with the help of
the differential equation:

P h2

3 t

P
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0 (2)

where h stands for the half-offset. The analytical solution of equation (2) has the form of
the residual NMO operator:
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After transforming to the squared time t2 and the corresponding Fourier frequency ,
equation (2) takes the form of the ordinary differential equation
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with the analytical frequency-domain phase-shift solution
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To obtain a Fourier-domain prestack velocity continuation algorithm, we just need to com-
bine the phase-shift operators in equations (1) and (5) and to include stacking across different
offsets. The algorithm takes the following form:

1. Input a set of common-offset images, migrated with velocity 0.

2. Transform the time axis t to the squared time coordinate: t2.

3. Apply a fast Fourier transform (FFT) on both the squared time and the midpoint axis.
The squared time transforms to the frequency , and the midpoint coordinate x
transforms to the wavenumber k.

4. Apply a phase-shift operator to transform to different velocities :
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To save memory, the continuation step is immediately followed by stacking.

5. Apply an inverse FFT to transform from and k to and x .
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6. Apply an inverse time stretch to transform from to t .

One can design similar algorithms by using finite differences or Chebyshev spectral methods
(Fomel , 1998).

The complete theory of prestack velocity continuation also requires a residual DMO
operator (Etgen, 1990; Fomel , 1996a, 1997). However, the difficulty of implementing this
operator is not fully compensated by its contribution to the full velocity continuation. For
simplicity, I decided not to include residual DMO in the current implementation.

Figure 1 shows impulse responses of prestack velocity continuation. The input for
producing this figure was a time-migrated constant-offset section, corresponding to an offset
of 1 km and a constant migration velocity of 1 km/s. In full accordance with the theory
(Fomel , 1996a), three spikes in the input section transformed into shifted ellipsoids after
continuation to a higher velocity and into shifted hyperbolas after continuation to a smaller
velocity.

Figure 1: Impulse responses of prestack velocity continuation. Left plot: continuation from
1 km/s to 1.5 km/s. Right plot: continuation from 1 km/s to 0.7 km/s. Both plots correspond
to the offset of 1 km. sergey2-velimp [ER]

Figure 2 compares the result of a constant-velocity prestack migration with the velocity
of 1.8 km/s, applied to the infamous Gulf of Mexico dataset from Basic Earth Imaging
(Claerbout, 1995) and the result of velocity continuation to the same velocity from a migra-
tion with a smaller velocity of 1.3 km/s. The differences in the top part of the images are
explained by differences in muting. In the first case, muting was applied after migration,
and in the second case, muting was applied prior to velocity continuation. The other parts
of the sections look very similar, as expected from the theory.

Velocity continuation creates a time-midpoint-velocity cube (four-dimensional for 3-D
data), which we can use for picking RMS velocities in the same way as we would use the
result of common-midpoint or common-reflection-point velocity analysis. The important
difference is that velocity continuation provides an optimal focusing of the reflection energy
by properly taking into account both vertical and lateral movements of reflector images with
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Figure 2: Top: The Gulf of Mexico dataset from BEI after prestack migration with the
constant velocity of 1.8 km/s. Bottom: The same data after after velocity continuation from
1.3 km/s to 1.8 km/s. sergey2-velmigr [ER]
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changing migration velocity. Figure 3 compares velocity spectra (semblance panels) at a
CRP location of about 11.5 km after residual NMO and after prestack velocity continuation.
Although the overall difference between the two panels is small, the velocity continuation
panel shows a noticeably better focusing, especially in the region of conflicting dips between
1 and 2 seconds. The next section discusses the velocity picking step in more details.

Figure 3: Velocity spectra around 11.5 km CRP after residual NMO (left) and after prestack
velocity continuation (right). The right plot shows improved focusing in the region between
1 and 2 seconds. sergey2-consmb [CR]

VELOCITY PICKING AND SLICING

After the velocity continuation process has created a velocity cube in the prestack common-
offset migration domain, we can pick the best focusing velocity from that cube. To autom-
atize the velocity picking procedure, I have designed a simple algorithm. The algorithm
based on solving the following regularized least-square system:

W x W p
Dx 0

(7)

Here p are blind maximum-semblance picks (possibly in a predefined fairway), x is the
estimated velocity picks, W is the weighting operator with the weight corresponding to
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the semblance values at p , D is a roughening operator, and is the scalar regularization
parameter. The first least-square fitting goal in (7) states that the estimated velocity picks
should match the measured picks where the semblance is high enough2. The second fitting
goal tries to find the smoothest velocity function possible. The least-square solution of
problem (7) takes the form

x W2 2 DT D
1

W2 p (8)

where DT denotes the adjoint operator. In the case of picking a one-dimensional velocity
function from a single semblance panel, we can simplify the algorithm by choosing D to
be the a convolution with the derivative filter 1 1 . It is easy to notice that in this case
the inverted matrix in formula (8) has a tridiagonal structure and therefore can be easily
inverted with a linear-time algorithm. The regularization parameter controls the amount
of smoothing of the estimated velocity function. Figure 4 shows a velocity spectrum and
two automatic picks for different values of .

Figure 4: Semblance panel (left) and automatic velocity picks for different values of the
regularization parameter. Center: 0 01, right: 0 1. Higher values of lead to
smoother velocities. sergey2-velpick [ER]

2Of course, this goal might be dangerous, if the original picks p include regular noise (such as multiple
reflections) with high semblance value (Toldi , 1985). For simplicity, and to preserve the linearity of the
problem, we assume that this is not the case.
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In the case of picking two- or three-dimensional velocity functions, one could generalize
problem (7) by defining D as a 2-D or 3-D roughening operator. I chose to use a more
simplistic approach. I transform system (7) to the form

W x W p
Dx 0

x x0

(9)

where x is still one-dimensional, and x0 is the estimate from the previous midpoint location.
The scalar parameter controls the amount of lateral continuity in the estimated velocity
function. The least-square solution to system (9) takes the form:

x W2 2 DT D 2 I
1

W2 p 2x0 (10)

where I denotes the identity matrix. Formula (10) also reduces to an efficient tridiagonal
matrix inversion. Figure 5 shows a result of two-dimensional velocity picking after velocity
continuation. I used values of 0 1 and 0 1. The first parameter controls the
vertical smoothing of velocities, while the second parameter controls the amount of lateral
continuity. Figure 6 shows the final result of velocity continuation: an image, obtained

Figure 5: Automatic picks of 2-D RMS velocity after velocity continuation. The contour
spacing is 0.1 km/s, starting from 1.5 km/s. sergey2-beifpk [CR]

by slicing through the velocity cube with the picked RMS velocity. Different parts of the
image have been properly positioned and focused by the velocity continuation process. One
way to further improve the image quality is hybrid migration: demigration to zero-offset,
followed by post-stack depth migration (Kim et al. , 1997). This step requires constructing
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Figure 6: Final result of velocity continuation: seismic image, obtained by slicing through
the velocity cube. sergey2-beifmg [CR]
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an interval velocity model from the picked RMS velocities. Without repeating the details of
the procedure, Figures 7 and 8 show picked RMS velocities and the velocity continuation
image for the Blake Outer Ridge data, shown in many other papers in this report.

Figure 7: Blake Outer Ridge data. Automatic picks of 2-D RMS velocity after velocity
continuation. The contour spacing is 0.01 km/s, starting from 1.5 km/s. sergey2-pck [CR]

CONCLUSIONS

I have demonstrated an application of velocity continuation to migration velocity analysis
on simple data sets. The first results look promising and encourage further real data tests,
hopefully with 3-D data.
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Figure 8: Blake Outer Ridge data. Final result of velocity continuation: seismic image,
obtained by slicing through the velocity cube. sergey2-img [CR]
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