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Prestack multiple attenuation using the hyperbolic Radon
transform

A comparison of inversion schemes

Antoine Guitton1

ABSTRACT

I apply the iterative hyperbolic Radon transform to CMP gathers to create a velocity panel
where multiples and primaries are separable. The velocity panel is created using three
different inversion schemes: (1) l2 norm inversion, (2) l1 norm inversion and (3) l1 norm
with l1 regularization inversion. The third technique is particularly efficient at separating
primaries and multiples in the prestack domain. A comparison of the three techniques
shows that some noticeable differences appear in the prestack domain after multiple at-
tenuation and that no discrepancies emerge on the stacked sections. These conclusions
are linked to convergence properties of each method, and also linked to the “quality” of
the data.

INTRODUCTION

The last decade has seen an exponential growth in the use of 3-D seismic imaging. Contempo-
raneous with this development, imaging techniques have become more complex in the effort
to account for multi-pathing in complex media and to produce “true amplitude” migrated pic-
tures of the subsurface. Since multiples are not accounted for in the physical model that leads
to these migration methods, they can severely affect the final migration result producing erro-
neous interfaces or amplitude artifacts; consequently, the multiples have to be removed from
the data. As pointed out by Weglein (1999), the multiple attenuation techniques may be di-
vided into two families: (1) filtering methods which exploit the periodicity and the separability
(move-out discrepancies) of the multiples and (2) the wavefield prediction/subtraction meth-
ods, where the multiples are first predicted (Verschhur et al., 1992; Weglein et al., 1997) and
then subtracted (Spitz, 1999; Doicin and Spitz, 1991; Dragoset and MacKay, 1993; Clapp and
Brown, 1999; Brown et al., 1999).

As oil companies lead exploration towards more complex geological structures (e.g., salt
plays) and use 3-D surveys intensively, the attenuation of the multiples becomes more chal-
lenging. Spitz (2000, Personal communication) recently asserted that multiples are the num-
ber one problem in seismic processing. Traditionally, filtering techniques are the method of
choice for multiple processing because of their robustness and cost. However, they have some
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limitations when tackling multiples in complex media (predictive deconvolution) and in the
preservation of primaries’amplitude ( f -k filters). Wavefield methods overcome these limita-
tions, therefore they are becoming more popular in the seismic industry. Nonetheless, they are
often arduous to tune, generally slow, and very difficult to extend in 3-D for coverage reasons.

My approach

This paper will describe my production of a velocity domain where multiples and primaries
are easily identifiable and separable by the use of the Hyperbolic Radon Transform (HRT)
and inverse theory. The Huber function (Huber, 1973), or Huber norm, allows us to solve
hybrid l1-l2 inverse problems in an efficient fashion. I compare three different methods to
obtain the velocity panel: (1) least-squares inversion, (2) l1 inversion, and (3) l1 inversion
with l1 regularization. These velocity panels are then used to perform the multiple suppression
(Lumley et al., 1995).

In this paper I will first review the theory of the velocity transform operator. Next, I
introduce the Huber norm and the inverse problem I intend to solve to produce the velocity
field. Finally, I apply a multiple attenuation technique for different inverse problems to a
complete 2-D data set (Mobil AVO data). I will show that the multiple reflections are favorably
attenuated with no noticeable differences between the different inverse problems.

THEORY

Definitions of operators

The HRT maps the data (t , x) into a velocity space ( , ) that clearly exhibits the moveout
inherent in the data and, therefore, forms a convenient basis for velocity analysis. Thorson
and Claerbout (1985) were the first to define the forward and adjoint operators of the HRT,
formulating it as an inverse problem, where the velocity domain is the unknown space. In their
approach, the forward operator H stretches the model space (velocity domain) into the data
space (CMP gathers) using a hyperbola superposition principle, whereas the adjoint operator
H†, the HRT, squeezes the data summing over hyperbolas (related to the velocity stack as
defined by Taner and Koehler (1969)). The forward operation is

d(t , x)
smax

s smin

om( t2 s2x2,s), (1)

and the adjoint transformation becomes

m( ,s)
xmax

x xmin

od(t 2 s2x2, x), (2)

where x is the offset, s the slowness, the two-times zero offset travel time, and o a weight-
ing function that compensates to some extent for geometrical spreading and other effects
(Claerbout and Black, 1997).
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The inverse problem

Having defined the forward operator H and its adjoint H†, we can now pose the inverse prob-
lem. Inverse theory helps us to find a velocity panel which synthesizes a given CMP gather
via the operator H. In equations, given data d (CMP gather), we want to solve for the model
m (velocity panel)

Hm d,

which is equivalent to the linear system

H†Hm H†d.

This system is easy to solve if H†H I, i.e., if H is unitary. Unfortunately, H is far from an
unitary operator. Sacchi and Ulrych (1995) give a couple of reasons for this behavior (see also
Kabir and Marfurt (1999) for a more graphical interpretation of the artifacts):

1. The velocity (slowness) range is not wide enough.

2. The sampling in the velocity domain is too coarse.

Inverse problems are often used to handle the non-unitarity of operators. A prior advisable
step in the design of an inverse problem is to attribute some properties to the model in terms of
moments of corresponding distributions. A reasonable property of the model space would be
sparseness, meaning that we want to cluster the components of the solution into a few large
peaks (Thorson and Claerbout, 1985). The sparseness would help to distinguish primaries and
multiples in the velocity space. Finally, we would like to design a solver that bears robustness
to bad (inconsistent) data points. These bad data points leave large values in the residual and
attract most of the solver’s efforts (Fomel and Claerbout, 1995). Unfortunately, seismic data
are generally very noisy, and the need for robust estimators is very pressing.

How to obtain a sparse model?

Some authors have proposed different solutions to address the sparseness of the model space.
Thorson and Claerbout (1985) developed a stochastic inversion scheme that converges to a
solution with minimum entropy. Sacchi and Ulrych (1995) apply a very similar method with
more degrees of freedom to the choice of parameters. Nichols (1994) uses a regularization
term with the l1 norm. All these methods assign long-tailed density functions to the model
parameters. Figure 1 shows an exponential (related to the l1 norm) and a Gaussian distribution
(related to the l2 norm). The Gaussian distribution will tend to smooth the model space,
spreading the energy, whereas the exponential distribution will tend to focus the energy on a
few peaks, neglecting average values, and thus leading to a sparse model.
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Figure 1: Exponential (left) and Gaussian (right) distribution with zero mean. The exponential
distribution has the longer tail. antoine1-distri [CR]

How to design a robust solver

The need for a robust solver may be addressed using the l1 norm for the data residual (Claer-
bout and Muir, 1973). Again, robust measures are related to the long-tailed density function in
the same way that the mean square is related to the (short-tailed) Gaussian (Tarantola, 1987).
The l1 norm is then less sensitive to outliers and will give a more probable fitting of the data.

The requirements in the design of a robust inverse method that gives a sparse model for
the velocity estimation problem leads to the minimization of the objective function

f (m) Hm d 1 m 1, (3)

where 1 is the l1 norm. Since we wish to utilize the l1 norm, the minimization of f is a
cumbersome problem. The l1 norm is not differentiable everywhere, which makes its use
rather difficult. The next section presents some alternatives to the l1 norm using hybrid l1-l2

objective functions. These functions are differentiable and allow the use of iterative methods.

Hybrid l1-l2 function

The hybrid l1-l2 norm has been widely used in geophysics (Bube and Langan, 1997; Nichols,
1994; Fomel and Claerbout, 1995). It is generally solved using iteratively reweighted least-
squares (IRLS) algorithms with an appropriate weighting matrix. These algorithms have
proved efficient but are also acknowledged to be difficult to tune. As an alternative to using
IRLS algorithms to compute the hybrid l1-l2 norm, Claerbout (1996) introduced the Huber
norm (Huber, 1973). This norm is a patching of the l1 norm for high residuals and of the l2
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norm for small residuals:

M (r)
r2

2 , 0 r
r 2 , r

(4)

where r is the residual. We call N
i 1 M (ri ) the Huber misfit function, or the Huber function,

for short (Figure 2). Note that the Huber function is smooth near zero residual and weights
small residuals by the mean square. It is reasonable to suppose that the Huber function, while
maintaining robustness against large residuals, is easier to minimize than l1. The parameter ,
which controls the limit between l1 and l2, is called the Huber threshold.

Figure 2: Error measure proposed by
Huber (1973). The upper part above

is the l1 norm, while the lower part
is the l2 norm. antoine1-huber [NR]
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The implementation of an inverse solver to minimize the Huber function is quite chal-
lenging and leads to innovative non-linear algorithms in geophysics (Guitton, 2000b). To
summarize, I developed a quasi-Newton method with a line search. I implemented a More
and Thuente Line Search (More and Thuente, 1994) algorithm, which ensures a sufficient de-
crease in the objective function f (equation 3) and obeys curvature conditions (the so-called
Wolfe conditions, Kelley (1999)). The update of the Hessian is made using a Limited Memory
BFGS method as proposed by Nocedal (1980) and Liu and Nocedal (1989). This method is
guaranteed to converge to a minimum. This strategy has proved efficient in solving the Hu-
ber problem correctly (Guitton and Symes, 1999; Guitton, 2000a) and eliminates the restart
parameter encountered in IRLS algorithms, which makes this Huber solver easier to use.

What will I do?

My goal in this paper is to compare three different inversion schemes for the multiples atten-
uation problem. They all aim to produce a velocity model where primaries are muted out and
the predicted multiples are subtracted from the original data. I successively solve

1. f (m) Hm d 2,

2. f (m) Hm d 1,
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3. f (m) Hm d 1 m 1,

and compare the results. I call arbitrarily “l1 norm” any Huber function with a small threshold.
Let us assume now that to the l1 norm, for the data residual, corresponds a threshold

max d
100

.

In addition, for the regularization term, let us say that to the l1 norm corresponds a threshold

max d
10000

.

is chosen smaller than before leading to a larger l1 treatment of the model. I show later on
that the convergence is greatly reduced by the addition of this regularization term.

MARINE DATA RESULTS

This section presents results obtained using the HRT on a the Mobil AVO data set (Lumley
et al., 1995). These prestack data are heavily contaminated by free-surface and water-bottom
multiples and thus constitute a challenging test-bed for true amplitude multiple attenuation
techniques. The strategy for the multiple elimination is as follows:

1. Create a velocity panel with the iterative Hyperbolic Radon Transform using the Huber
solver.

2. Define a corridor between multiples and primaries in the velocity space.

3. Mute out the primaries in the velocity space.

4. Model back the multiples in the data space.

5. Subtract the multiples field from the input data.

6. NMO and Stack.

This method is most suitable for preserving primaries energy. I compare l2, l1 and l1 with l1

regularization for the inversion in step 1. I decide to parameterize the problem using velocities
and not slownesses.

Computing aspects

The velocity-stack inversion has been fully automated, implying that a threshold is adaptively
computed for each CMP gather independently. The input data are composed of 801 gathers
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with 60 traces each. In my implementation, I parallelized the computing using OpenMP 2(this
concerns the operators only). On 10 processors of our SGI Power Challenge machine (no-
toriously slow), for 30 iterations, it took 30 hours to compute the 801 velocity panels. This
process may be accelerated by faster machines.

Inversion results

Figure 3 shows the result of the inversion for one CMP. Since the Mobil AVO dataset does
not include very complex structures with strong velocity contrasts, this panel illustrates what
happens for all the gathers. The left panel shows the input data. The other panels display
the reconstructed data using the different schemes. Note that the l2 and l1 inversions give
similar results and that the l1 regularization doesn’t converge as well. Figure 4 highlights
this difference between the different problems. The best convergence is achieved using least-
squares and the worst is achieved with the l1 regularization. In my implementation, however,
the l1 problem with or without regularization was solved using twice as many iterations as
with l2. Figure 5 shows the differences between the input data and the remodeled data. It
appears that the l1 norm with l1 regularization encounters some difficulties in fitting the far
offset data. Note that the l1 norm and the l2 norm are both comparable. This is expected since
the data are not strongly noisy.

Differences arise in favor of the l1 regularization when we look at the model space (Figure
6), however. The l1 and l2 results are again very similar and the l1 norm with l1 regularization
appears spikier. This result is consistent with the theory (see Theory section). The spiky result
is then used to define the limit between primaries and multiples (black line in the right panel
of Figure 6). A mask is defined accordingly and the primaries are muted out in the model
space. The next step consists of remodeling the multiples back in the data space, applying the
hyperbola superposition principle (operator H). Figure 7 shows the predicted multiples. Note
that for the three inversion schemes, some primaries remain. This is particularly annoying to
us in our attempt to produce true amplitude multiple-free gathers. Figure 8 displays the result
of the multiple attenuation process. The three methods display similar results. Nonetheless, at
far offset, the l1 regularization shows more energetic events. This is consistent with Figure 5
where we showed that the l1 regularization was unable to fit this part of the data.

NMO-Stacking process

In the last step, the data are NMO corrected and stacked. The stacking velocity comes from
Lumley et al. (1995). Figure 9 shows the stack of the input data without multiple attenuation.
Figures 10, 12, 14 show the stacks of the multiple-free data with the different methods. Figures
11, 13, 15 show the difference between the stacked section of the input data with multiples and
the stacked section of the data without multiples for the three inversion schemes. We see that
the multiple suppression has cleaned up deeper parts of the structure (below 2s.). Furthermore,

2OpenMP is a specification for a set of compiler directives, library routines, and environment variables
that can be used to specify shared memory parallelism in Fortran and C/C++ programs (www.openmp.org).
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Figure 3: Left: input data. Middle-left: l2 reconstructed data. Middle-right: l1 reconstructed
data. Right: l1 with l1 regularization reconstructed data. antoine1-comp_dat [CR]



SEP–103 Multiple attenuation 131

Figure 4: Comparison of the convergence for different inversion schemes for one CMP gather.
antoine1-residual [CR]
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Figure 5: Left: input data. Middle-left: l2 residual. Middle-right: l1 residual. Right: l1 with
l1 regularization residual. antoine1-diff [CR]



SEP–103 Multiple attenuation 133

Figure 6: Left:l2 model. Middle: l1 model. Right: l1 with l1 regularization. The line shows
the limit of the muting process that separates “guessed” multiples on the left from “guessed”
primaries on the right for the spiky model. antoine1-comp_scan [CR]
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Figure 7: Predicted multiples. Left: l2 multiples. Middle: l1 multiples. Right: l1 with l1

regularization multiples. antoine1-comp_mult [CR]
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Figure 8: Gathers after multiple attenuation. Left: input data with multiples. Middle-left: l2

multiple attenuation. Middle-right: l1 multiple attenuation. Right: l1 with l1 regularization
multiple attenuation. antoine1-comp [CR]
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there are no noticeable differences between the three methods in the stacked sections. In
addition, as is often the case, the stacking is such a powerful multiple-suppression method that
it attenuates multiples sufficiently well: the simple stack of the input data with multiples looks
fairly close to the stacked section without multiples (see Figure 9).

Discussion

The overall results may seem disappointing: the simple stacking of the input data give sim-
ilar results to the stacking of multiple-free gathers using l2, l1 and l1 with l1 regularization.
Nonetheless, data with more complex multiples would certainly lead to different conclusions.
In addition, these data demonstrate that when the gathers are not particularly noisy, which is
the case here, the l1 norm and the l2 norm behave similarly. The l1 norm with l1 regularization
produces expected sparse velocity panels with very bad convergence properties, meaning that
we need to think about new strategies to improve it. Claerbout (2000, Personal communica-
tion) recently suggested that I minimize

f (m) R(Hm d)

where R is the Prediction Error Filter (PEF) of the residual. The PEF would help to obtain
Independent Identically Distributed (IID) variables in the residual. Another idea is to minimize

f (m) F.T2 D(Hm d) Huber

where F .T2 D is the 2-D Fourier Transform. The idea behind this last equation is that the far
offset data, which the l1 norm with l1 regularization does not fit very well, creates (almost)
mono-frequency patterns in the residual that would map in a very localized area of the Fourier
space with high amplitudes (two points for a perfectly mono-frequency event with one slope).
The Huber norm with an appropriate threshold would treat these focused energies as outliers
and get rid of them.

CONCLUSION

I have shown that the multiple reflections may be attenuated in the prestack domain using
the Hyperbolic Radon Transform. Different inverse problems have been solved to obtain the
velocity panels showing different properties: (1) the l2 and l1 norm produce comparable results
in the velocity space and for the reconstructed data, (2) the l1 norm with l1 regularization shows
spikier results in the velocity domain but converge much more slowly than the other methods,
and (3) the stacked sections of the multiple-free data are very similar for the different inverse
problems. The good quality of the data explains the small discrepancy between the l2 and the
l1 norm; more noisy gathers would lead to different conclusions.
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Figure 9: Stacked section of the input data with multiples. antoine1-stack_IN [CR]

Figure 10: Stacked section after multiple suppression using the l2 norm. antoine1-stack_L2
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Figure 11: Difference between the stacked section with multiples and the stacked section
without multiples using the l2 norm. antoine1-comp_stack_L2 [CR]

Figure 12: Stacked section after multiple suppression using the l1 norm. antoine1-stack_L1
[CR]
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Figure 13: Difference between the stacked section with multiples and the stacked section
without multiples using the l1 norm. antoine1-comp_stack_L1 [CR]

Figure 14: Stacked section after multiple suppression using the l1 norm with l1 regularization.
antoine1-stack_L1L1 [CR]
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Figure 15: Difference between the stacked section with multiples and the stacked section
without multiples using the l1 norm with l1 regularization. antoine1-comp_stack_L1L1 [CR]
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