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Short Note

Implementation of a nonlinear solver for minimizing the Huber
norm

Antoine Guitton1

INTRODUCTION

The Huber norm (Huber, 1973) is an alternative to Iteratively Reweighted Least Square pro-
grams for solving the hybrid l2-l1 problem. In this note, I detail a method for minimizing
the Huber norm. Because the Huber norm gives rise to a non-linear problem with non-twice
continuously differentiable objective functions, its use is quite challenging. Claerbout (1996)
implemented a Huber regression based on conjugate-gradient descents. However, the final
results were not satisfying. Here I propose to solve the Huber problem using a quasi-Newton
update of the solution with the computation of an approximated Hessian (second derivative
of the objective function). This strategy is innovative in seismic processing and merits some
explanation.

In this paper I first provide general definitions plus sufficient conditions to solve the opti-
mization problem. Then, I present the quasi-Newton method and the complete algorithm used
to solve the Huber problem.

DEFINITIONS AND CONDITIONS FOR OPTIMALITY

This part follows closely Kelley ’s Iterative Method for Optimization (Kelley, 1999). We start
here with a series of definitions:

1. A is positive definite if xTAx 0 for all x N

2. A is spd if A is positive definite and symmetric

3. x U (U N ) is a global minimizer if f (x ) f (x) for all x U

The Euclidian norm is also defined as

x
N

i 1

(xi )2.
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Now, I give sufficient conditions that a minimizer x exists for a function f.

Theorem

Let f be twice continuously differentiable in a neighborhood of x . Assume that f (x ) 0
and that 2 f (x ) is positive definite, then x is a local minimizer of f .

Proof

Let u N with u 0. For sufficiently small t we have

f (x tu) f (x ) t f (x )T u
t2

2
uT 2 f (x )u o(t2).

But f (x ) 0 giving

f (x tu) f (x )
t2

2
uT 2 f (x )u o(t2).

If 2 f (x ) is positive definite, its smallest eigenvalue obeys 0. So we have

f (x tu) f (x )
2

tu 2 o(t2) 0.

Then, x is a local minimizer for f .

We see that a sufficient condition for a local minimizer is f (x ) 0 and 2 f (x ) (Hes-
sian) is positive definite. These conditions are very important and should guide us in the choice
of an optimization strategy.

Quadratic functions form the basis for most of the algorithms in optimization, in particular
for the quasi-Newton method detailed in this paper. It is then important to discuss some issues
involved with these functions. Now, if we pose a quadratic objective function

f (x) xT b
1

2
xT Hx,

we see that we want to solve

f (x) b Hx 0.

We may assume that the Hessian H is symmetric because

xTHx xT HT H
2

x.

So, the unique global minimizer is the solution of the system above if H (the Hessian) is spd.
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A QUASI-NEWTON METHOD FOR UNCONSTRAINED OPTIMIZATION

We will assume that f and x satisfy the following assumptions:

1. f is twice continuously differentiable

2. f (x ) 0

3. 2 f (x ) is symmetric positive definite

The Newton methods update the current iteration xn by the formula

xn 1 xn nH 1
n f (xn), (1)

where n is given by a line search that ensures sufficient decrease. Quasi-Newton methods
update an approximation of the Hessian H 1

n as the iterations progress. A possible update
is the BFGS method (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), which
overcomes some limitations of the earlier Broyden’s method (Broyden, 1965). In particular,
the Broyden’s update does not keep the spd structure of the Hessian. This structure not only
ensures the existence of a local minimizer but also allows the convergence of the updated
solution xn 1 to the minimum (Kelley, 1999). The BFGS update is a rank-two update given
by

Hn 1 Hn
yyT

yT s
(Hns)(Hns)T

sT Hns
, (2)

with s xn 1 xn and y f (xn 1) f (xn). In practice, it is very useful to express the
previous equation in terms of the inverse matrices. We then have

H 1
n 1 I

syT

yT s
H 1

n I
ysT

yT s
ssT

yT s
. (3)

Lemma

Let Hn be spd, yT s 0, and Hn 1 given in equation (2). Then Hn 1 is spd.

Proof

Starting from equation (2), we can write for all z 0 and yT s 0,

zT Hn 1z zT Hnz
(zT y)2

yT s
(zT Hns)2

(sT Hns)
.

Since Hn is spd, we have

(zT Hns)2 (sT Hns)(zT Hnz)
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with equality only if z 0 or s 0. But we have z 0 and yT s 0 so that

zT Hn 1z
(zT y)2

yT s
0.

Then Hn 1 is spd. If during the iterations we have yT s 0, then the update is a failure.

The previous lemma is very important since it shows that starting from an initial spd
Hessian H0, the next approximation of the Hessian is spd (given that yT s 0). This guarantees
the existence of a minimizer for the function f (the inverse H 1 is also spd). It can be shown
(Kelley, 1999) that given some assumptions, the BFGS iterates are defined and converge q-
superlinearly 2 to the local minimizer x . In practice, the storage needed to compute the
update and the possibility that yT s 0 are important issues. The updated Hessian is computed
at each iteration recursively. For this, we need to store a solution step vector s and a gradient
step vector y after each iteration. If for small problems this storage is not an issue, it may
become critical for large-scale problems. Unfortunately, these large-scale problems occur in
geophysics, and we need to find a better storage solution. Nocedal (1980) gives an interesting
answer to this problem. Instead of keeping all the s and y from the past iterations, we update
the Hessian using the information from the m previous iterations, where m is given by the end
user. This means that when the number of iterations is smaller than m, we have a “real” BFGS
update, and when it is larger than m, we have a Limited-memory BFGS (L-BFGS) update.

L-BFGS update

For the sake of completeness, I give the updating formulas of the Hessian as presented by
Nocedal (1980). We define first

i 1 yT
i si and vi (I i yi sT

i ).

In addition, we pose H 1 B. As described above, when k, the number of iterations, obeys
k 1 m, where m is the storage limit, we have the usual BFGS update

Bk 1 vT
k vT

k 1 vT
0 B0v0 vk 1vk

vT
k vT

1 0s0sT
0 v1 vk

.

. (4)

.

vT
k k 1sk 1sT

k 1vk

ksksT
k .

2xn x q-superlinearly if

limn
xn 1 x
xn x

0.
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For k 1 m we have the special limited-memory update

Bk 1 vT
k vT

k 1 vT
k m 1B0vk m 1 vk 1vk

vT
k vT

k m 2 k m 1sk m 1sT
k m 1vk m 2 vk

.

. (5)

.

vT
k k 1sk 1sT

k 1vk

ksksT
k .

It is easy to show that the special updated Hessian is also spd. The L-BFGS algorithm is then

Algorithm 1

1. Choose x0, m, 0 1, 1 and a symmetric positive definite B0. Set k 0

2. Compute

dk Bk f (xk) (6)

xk 1 xk kdk , (7)

where k verifies the Wolfe conditions (More and Thuente, 1994):

f (xk kdk) f (xk) k f (xk)T dk , (8)

f (xk kdk)T dk f (xk)T dk . (9)

We always try steplength k 1 first.

3. Let m̂=min k,m 1 . Check if yT
k sk 0.

If no: Bk 1 I (steepest descent step) and delete the pairs yi ,si
k
j k m̂ .

If yes: Update B0 m̂ 1 times using the pairs yi ,si
k
j k m̂ , i.e., let

Bk 1 vT
k vT

k 1 vT
k m̂B0vk m̂ vk 1vk

vT
k vT

k m̂ 1 k m̂sk m̂ sT
k m̂ vk m̂ 1 vk

.

. (10)

.

vT
k k 1sk 1sT

k 1vk

ksksT
k .

4. Set k : k 1 and go to 2.
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The update Bk 1 is not formed explicitly; instead, we compute dk Bk f (xk) with an
iterative formula (Nocedal, 1980). Liu and Nocedal (1989) propose that we scale the initial
symmetric positive definite B0 at each iteration:

B0
k

yT
k sk

yk
2

B0. (11)

This scaling greatly improves the performances of the method. Liu and Nocedal (1989) show
that the storage limit for large-scale problems has little effect on the method’s performances.
A common choice for m is m 5 (this is the default in my implementation as well). Condi-
tions (8) and (9) are satisfied if we use an appropriate line search algorithm. I programmed
a MoreThuente line search algorithm (More and Thuente, 1994), which ensures sufficient
decrease of the objective function (equation 8) and obeys the curvature condition given in
equation (9). We do not describe this program here. In practice, the initial guess B0 for the
Hessian can be the identity matrix I; then it might be scaled as proposed above. Liu and
Nocedal (1989) prove that the L-BFGS algorithm converges to the local minimizer x and
that the family of solutions xk converges R-linearly 3 (remember that the usual BFGS gives
q-superlinear convergence, which is better).

SOLVING THE HUBER PROBLEM WITH A QUASI-NEWTON METHOD

The Huber norm (Huber, 1973, 1981) is a hybrid l1-l2 measure. We expect to find the min-
imum of the function using a quasi-Newton method with a L-BFGS update of the Hessian
(Guitton and Symes, 1999). The Huber norm is

f (x) Ax m Huber ,

r Huber , (12)
N

i 1

M (ri ),

where

M (r)
r2

2 , 0 r
r 2 , r .

(13)

commands the limit between an l1 or l2 treatment of the residual; we call it the Huber
threshold and it must be given by the user. The gradient of the objective function is given by

f (x) AT (Ax m) , (14)

3xn x R-linearly if there is a constant 0 r 1 such that

f (xk) f (x ) r k[ f (x0) f (x )].
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where z is the vector whose i th component is

zi max ,min , zi .

Because the Huber function is not twice continuously differentiable, it does not satisfy the
three necessary conditions that guarantee the convergence to a minimum. However, we only
need to compute the gradient for the BFGS update of the Hessian. Furthermore, given that
the approximated Hessian is certainly a vague approximation of the real one (Symes, 1999,
Personal communication), the violation of the initial conditions is mild. In addition, results
(Guitton, 2000) show that this method converges to a minimum. Li (1995) shows that the
Huber function has a unique minimizer for any meaningful choice of . Indeed, if the l1

problem f (x) Ax m 1 has multiple solutions (Tarantola, 1987), then the Huber problem,
provided that is small enough, also has multiple solutions. This is annoying since we want
to find a global minimum for the problem using quasi-Newton updates. In practice, however,
it seems that

max d
100

is a good choice for the threshold (Darche, 1989). The threshold being set properly, the Huber
function has mathematical properties that allow the use of quasi-Newton methods. We can
now define an efficient algorithm in order to solve the Huber problem:

Algorithm 2

1. Choose x0 and the threshold . Set k 0

2. Compute f (xk) using equation 14

3. Compute dk Bk f (xk) using a L-BFGS update (Algorithm 1, step 3)

4. Compute the step k using a MoreThuente line search ( k 1 tried first)

5. Update the solution xk 1 xk kdk

6. Go to step 2

This algorithm will converge to the minimizer x , as proven by Liu and Nocedal (1989).

CONCLUSION

Given an adequate threshold , the Huber problem may be solved using a quasi-Newton solver.
The Limited memory BFGS method, a quasi-Newton update, has interesting storage proper-
ties that lead to efficient convergence to the local minimum of any convex function. In this
paper, I proposed an algorithm to solve the Huber problem using the L-BFGS solver and a
MoreThuente line search. This algorithm is then supposed to give a R-linear convergence to
the desired solution.
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